/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vecinv.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_vecinv/mom_vecinv.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.16 - (hide annotations) (download)
Mon May 24 15:15:16 2004 UTC (20 years ago) by adcroft
Branch: MAIN
Changes since 1.15: +2 -2 lines
Combined mom_vi_calc_ke.F and mom_calc_ke.F into mom_common/mom_calc_ke.F
 - they use different discretizations so a s/r argument is used to distinguish

1 adcroft 1.16 C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.15 2004/02/25 00:56:47 jmc Exp $
2 adcroft 1.2 C $Name: $
3 adcroft 1.1
4 edhill 1.10 #include "PACKAGES_CONFIG.h"
5 adcroft 1.1 #include "CPP_OPTIONS.h"
6    
7     SUBROUTINE MOM_VECINV(
8     I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
9 jmc 1.4 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
10 adcroft 1.1 U fVerU, fVerV,
11 jmc 1.15 I myTime, myIter, myThid)
12 adcroft 1.1 C /==========================================================\
13     C | S/R MOM_VECINV |
14     C | o Form the right hand-side of the momentum equation. |
15     C |==========================================================|
16     C | Terms are evaluated one layer at a time working from |
17     C | the bottom to the top. The vertically integrated |
18     C | barotropic flow tendency term is evluated by summing the |
19     C | tendencies. |
20     C | Notes: |
21     C | We have not sorted out an entirely satisfactory formula |
22     C | for the diffusion equation bc with lopping. The present |
23     C | form produces a diffusive flux that does not scale with |
24     C | open-area. Need to do something to solidfy this and to |
25     C | deal "properly" with thin walls. |
26     C \==========================================================/
27     IMPLICIT NONE
28    
29     C == Global variables ==
30     #include "SIZE.h"
31     #include "DYNVARS.h"
32     #include "EEPARAMS.h"
33     #include "PARAMS.h"
34     #include "GRID.h"
35 jmc 1.7 #ifdef ALLOW_TIMEAVE
36     #include "TIMEAVE_STATV.h"
37     #endif
38 adcroft 1.1
39     C == Routine arguments ==
40     C fVerU - Flux of momentum in the vertical
41     C fVerV direction out of the upper face of a cell K
42     C ( flux into the cell above ).
43 jmc 1.4 C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential
44 adcroft 1.1 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
45     C results will be set.
46     C kUp, kDown - Index for upper and lower layers.
47     C myThid - Instance number for this innvocation of CALC_MOM_RHS
48 jmc 1.4 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
50 adcroft 1.1 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
51     _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
52     _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
53     _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
54     INTEGER kUp,kDown
55 jmc 1.15 _RL myTime
56 adcroft 1.2 INTEGER myIter
57 adcroft 1.1 INTEGER myThid
58     INTEGER bi,bj,iMin,iMax,jMin,jMax
59    
60 edhill 1.11 #ifdef ALLOW_MOM_VECINV
61 jmc 1.7
62 adcroft 1.2 C == Functions ==
63     LOGICAL DIFFERENT_MULTIPLE
64     EXTERNAL DIFFERENT_MULTIPLE
65    
66 adcroft 1.1 C == Local variables ==
67     _RL aF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68     _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69     _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71     _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72     _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73     _RL pF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74     _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75     _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 adcroft 1.3 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77     _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 adcroft 1.1 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79     _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80     _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81     _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82     _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83     _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84     _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85     _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86     _RL uDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87     _RL vDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88     C I,J,K - Loop counters
89     INTEGER i,j,k
90     C rVelMaskOverride - Factor for imposing special surface boundary conditions
91     C ( set according to free-surface condition ).
92     C hFacROpen - Lopped cell factos used tohold fraction of open
93     C hFacRClosed and closed cell wall.
94     _RL rVelMaskOverride
95     C xxxFac - On-off tracer parameters used for switching terms off.
96     _RL uDudxFac
97     _RL AhDudxFac
98     _RL A4DuxxdxFac
99     _RL vDudyFac
100     _RL AhDudyFac
101     _RL A4DuyydyFac
102     _RL rVelDudrFac
103     _RL ArDudrFac
104     _RL fuFac
105     _RL phxFac
106     _RL mtFacU
107     _RL uDvdxFac
108     _RL AhDvdxFac
109     _RL A4DvxxdxFac
110     _RL vDvdyFac
111     _RL AhDvdyFac
112     _RL A4DvyydyFac
113     _RL rVelDvdrFac
114     _RL ArDvdrFac
115     _RL fvFac
116     _RL phyFac
117     _RL vForcFac
118     _RL mtFacV
119     _RL wVelBottomOverride
120     LOGICAL bottomDragTerms
121 jmc 1.15 LOGICAL writeDiag
122 adcroft 1.1 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123     _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126    
127 heimbach 1.9 #ifdef ALLOW_AUTODIFF_TAMC
128     C-- only the kDown part of fverU/V is set in this subroutine
129     C-- the kUp is still required
130     C-- In the case of mom_fluxform Kup is set as well
131     C-- (at least in part)
132     fVerU(1,1,kUp) = fVerU(1,1,kUp)
133     fVerV(1,1,kUp) = fVerV(1,1,kUp)
134     #endif
135    
136 adcroft 1.1 rVelMaskOverride=1.
137     IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac
138     wVelBottomOverride=1.
139     IF (k.EQ.Nr) wVelBottomOverride=0.
140 jmc 1.15 writeDiag = DIFFERENT_MULTIPLE(diagFreq, myTime,
141     & myTime-deltaTClock)
142 adcroft 1.1
143     C Initialise intermediate terms
144     DO J=1-OLy,sNy+OLy
145     DO I=1-OLx,sNx+OLx
146     aF(i,j) = 0.
147     vF(i,j) = 0.
148     vrF(i,j) = 0.
149     uCf(i,j) = 0.
150     vCf(i,j) = 0.
151     mT(i,j) = 0.
152     pF(i,j) = 0.
153     del2u(i,j) = 0.
154     del2v(i,j) = 0.
155     dStar(i,j) = 0.
156     zStar(i,j) = 0.
157     uDiss(i,j) = 0.
158     vDiss(i,j) = 0.
159     vort3(i,j) = 0.
160     omega3(i,j) = 0.
161     ke(i,j) = 0.
162 heimbach 1.8 #ifdef ALLOW_AUTODIFF_TAMC
163     strain(i,j) = 0. _d 0
164     tension(i,j) = 0. _d 0
165     #endif
166 adcroft 1.1 ENDDO
167     ENDDO
168    
169     C-- Term by term tracer parmeters
170     C o U momentum equation
171     uDudxFac = afFacMom*1.
172     AhDudxFac = vfFacMom*1.
173     A4DuxxdxFac = vfFacMom*1.
174     vDudyFac = afFacMom*1.
175     AhDudyFac = vfFacMom*1.
176     A4DuyydyFac = vfFacMom*1.
177     rVelDudrFac = afFacMom*1.
178     ArDudrFac = vfFacMom*1.
179     mTFacU = mtFacMom*1.
180     fuFac = cfFacMom*1.
181     phxFac = pfFacMom*1.
182     C o V momentum equation
183     uDvdxFac = afFacMom*1.
184     AhDvdxFac = vfFacMom*1.
185     A4DvxxdxFac = vfFacMom*1.
186     vDvdyFac = afFacMom*1.
187     AhDvdyFac = vfFacMom*1.
188     A4DvyydyFac = vfFacMom*1.
189     rVelDvdrFac = afFacMom*1.
190     ArDvdrFac = vfFacMom*1.
191     mTFacV = mtFacMom*1.
192     fvFac = cfFacMom*1.
193     phyFac = pfFacMom*1.
194     vForcFac = foFacMom*1.
195    
196     IF ( no_slip_bottom
197     & .OR. bottomDragQuadratic.NE.0.
198     & .OR. bottomDragLinear.NE.0.) THEN
199     bottomDragTerms=.TRUE.
200     ELSE
201     bottomDragTerms=.FALSE.
202     ENDIF
203    
204     C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP
205     IF (staggerTimeStep) THEN
206     phxFac = 0.
207     phyFac = 0.
208     ENDIF
209    
210     C-- Calculate open water fraction at vorticity points
211     CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
212    
213     C---- Calculate common quantities used in both U and V equations
214     C Calculate tracer cell face open areas
215     DO j=1-OLy,sNy+OLy
216     DO i=1-OLx,sNx+OLx
217     xA(i,j) = _dyG(i,j,bi,bj)
218     & *drF(k)*_hFacW(i,j,k,bi,bj)
219     yA(i,j) = _dxG(i,j,bi,bj)
220     & *drF(k)*_hFacS(i,j,k,bi,bj)
221     ENDDO
222     ENDDO
223    
224     C Make local copies of horizontal flow field
225     DO j=1-OLy,sNy+OLy
226     DO i=1-OLx,sNx+OLx
227     uFld(i,j) = uVel(i,j,k,bi,bj)
228     vFld(i,j) = vVel(i,j,k,bi,bj)
229     ENDDO
230     ENDDO
231    
232 jmc 1.7 C note (jmc) : Dissipation and Vort3 advection do not necesary
233     C use the same maskZ (and hFacZ) => needs 2 call(s)
234     c CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid)
235    
236 adcroft 1.16 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
237 adcroft 1.1
238     CALL MOM_VI_CALC_HDIV(bi,bj,k,uFld,vFld,hDiv,myThid)
239    
240     CALL MOM_VI_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
241    
242 jmc 1.5 c CALL MOM_VI_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid)
243 adcroft 1.1
244     IF (momViscosity) THEN
245     C Calculate del^2 u and del^2 v for bi-harmonic term
246 dimitri 1.14 IF (viscA4.NE.0. .OR. viscA4Grid.NE.0.) THEN
247 adcroft 1.2 CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ,
248     O del2u,del2v,
249     & myThid)
250     CALL MOM_VI_CALC_HDIV(bi,bj,k,del2u,del2v,dStar,myThid)
251     CALL MOM_VI_CALC_RELVORT3(
252     & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid)
253     ENDIF
254 adcroft 1.1 C Calculate dissipation terms for U and V equations
255 adcroft 1.2 C in terms of vorticity and divergence
256 dimitri 1.14 IF (viscAh.NE.0. .OR. viscA4.NE.0. .OR.
257     & viscAhGrid.NE.0. .OR. viscA4Grid.NE.0. ) THEN
258 adcroft 1.2 CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar,
259     O uDiss,vDiss,
260     & myThid)
261     ENDIF
262 adcroft 1.3 C or in terms of tension and strain
263     IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN
264     CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,
265     O tension,
266     I myThid)
267     CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,
268     O strain,
269     I myThid)
270     CALL MOM_HDISSIP(bi,bj,k,
271     I tension,strain,hFacZ,viscAtension,viscAstrain,
272     O uDiss,vDiss,
273     I myThid)
274     ENDIF
275 adcroft 1.1 ENDIF
276    
277 jmc 1.7 C- Return to standard hfacZ (min-4) and mask vort3 accordingly:
278     c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid)
279    
280 adcroft 1.1 C---- Zonal momentum equation starts here
281    
282     C-- Vertical flux (fVer is at upper face of "u" cell)
283    
284     C Eddy component of vertical flux (interior component only) -> vrF
285     IF (momViscosity.AND..NOT.implicitViscosity)
286     & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid)
287    
288     C Combine fluxes
289     DO j=jMin,jMax
290     DO i=iMin,iMax
291     fVerU(i,j,kDown) = ArDudrFac*vrF(i,j)
292     ENDDO
293     ENDDO
294    
295     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
296     DO j=2-Oly,sNy+Oly-1
297     DO i=2-Olx,sNx+Olx-1
298     gU(i,j,k,bi,bj) = uDiss(i,j)
299     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
300     & *recip_rAw(i,j,bi,bj)
301     & *(
302     & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
303     & )
304 jmc 1.4 & - phxFac*dPhiHydX(i,j)
305 adcroft 1.1 ENDDO
306     ENDDO
307    
308     C-- No-slip and drag BCs appear as body forces in cell abutting topography
309     IF (momViscosity.AND.no_slip_sides) THEN
310     C- No-slip BCs impose a drag at walls...
311     CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid)
312     DO j=jMin,jMax
313     DO i=iMin,iMax
314     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
315     ENDDO
316     ENDDO
317     ENDIF
318 heimbach 1.8
319 adcroft 1.1 C- No-slip BCs impose a drag at bottom
320     IF (momViscosity.AND.bottomDragTerms) THEN
321     CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
322     DO j=jMin,jMax
323     DO i=iMin,iMax
324     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
325     ENDDO
326     ENDDO
327     ENDIF
328    
329     C-- Metric terms for curvilinear grid systems
330     c IF (usingSphericalPolarMTerms) THEN
331     C o Spherical polar grid metric terms
332     c CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
333     c DO j=jMin,jMax
334     c DO i=iMin,iMax
335     c gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
336     c ENDDO
337     c ENDDO
338     c ENDIF
339    
340     C---- Meridional momentum equation starts here
341    
342     C-- Vertical flux (fVer is at upper face of "v" cell)
343    
344     C Eddy component of vertical flux (interior component only) -> vrF
345     IF (momViscosity.AND..NOT.implicitViscosity)
346     & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid)
347    
348     C Combine fluxes -> fVerV
349     DO j=jMin,jMax
350     DO i=iMin,iMax
351     fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j)
352     ENDDO
353     ENDDO
354    
355     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
356     DO j=jMin,jMax
357     DO i=iMin,iMax
358     gV(i,j,k,bi,bj) = vDiss(i,j)
359     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
360     & *recip_rAs(i,j,bi,bj)
361     & *(
362     & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
363     & )
364 jmc 1.4 & - phyFac*dPhiHydY(i,j)
365 adcroft 1.1 ENDDO
366     ENDDO
367    
368     C-- No-slip and drag BCs appear as body forces in cell abutting topography
369     IF (momViscosity.AND.no_slip_sides) THEN
370     C- No-slip BCs impose a drag at walls...
371     CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid)
372     DO j=jMin,jMax
373     DO i=iMin,iMax
374     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
375     ENDDO
376     ENDDO
377     ENDIF
378     C- No-slip BCs impose a drag at bottom
379     IF (momViscosity.AND.bottomDragTerms) THEN
380     CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
381     DO j=jMin,jMax
382     DO i=iMin,iMax
383     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
384     ENDDO
385     ENDDO
386     ENDIF
387    
388     C-- Metric terms for curvilinear grid systems
389     c IF (usingSphericalPolarMTerms) THEN
390     C o Spherical polar grid metric terms
391     c CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
392     c DO j=jMin,jMax
393     c DO i=iMin,iMax
394     c gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
395     c ENDDO
396     c ENDDO
397     c ENDIF
398    
399 jmc 1.5 C-- Horizontal Coriolis terms
400 jmc 1.6 IF (useCoriolis .AND. .NOT.useCDscheme) THEN
401 jmc 1.7 CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,omega3,hFacZ,r_hFacZ,
402 jmc 1.5 & uCf,vCf,myThid)
403     DO j=jMin,jMax
404     DO i=iMin,iMax
405     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
406     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
407     ENDDO
408 adcroft 1.1 ENDDO
409 jmc 1.15 IF ( writeDiag ) THEN
410     CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid)
411     CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid)
412     ENDIF
413 jmc 1.5 ENDIF
414 adcroft 1.1
415 jmc 1.5 IF (momAdvection) THEN
416     C-- Horizontal advection of relative vorticity
417     c CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,r_hFacZ,uCf,myThid)
418 jmc 1.7 CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3,hFacZ,r_hFacZ,
419     & uCf,myThid)
420 jmc 1.5 c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)
421     DO j=jMin,jMax
422     DO i=iMin,iMax
423     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
424     ENDDO
425 adcroft 1.1 ENDDO
426 jmc 1.5 c CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,r_hFacZ,vCf,myThid)
427 jmc 1.7 CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3,hFacZ,r_hFacZ,
428     & vCf,myThid)
429 jmc 1.5 c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)
430     DO j=jMin,jMax
431     DO i=iMin,iMax
432     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
433     ENDDO
434 adcroft 1.1 ENDDO
435    
436 jmc 1.15 IF ( writeDiag ) THEN
437     CALL WRITE_LOCAL_RL('zV','I10',1,uCf,bi,bj,k,myIter,myThid)
438     CALL WRITE_LOCAL_RL('zU','I10',1,vCf,bi,bj,k,myIter,myThid)
439     ENDIF
440 jmc 1.7 #ifdef ALLOW_TIMEAVE
441 dimitri 1.13 #ifndef HRCUBE
442 jmc 1.7 IF (taveFreq.GT.0.) THEN
443     CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock,
444     & Nr, k, bi, bj, myThid)
445     CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock,
446     & Nr, k, bi, bj, myThid)
447     ENDIF
448 dimitri 1.13 #endif /* ALLOW_TIMEAVE */
449     #endif /* ndef HRCUBE */
450 jmc 1.7
451 jmc 1.5 C-- Vertical shear terms (-w*du/dr & -w*dv/dr)
452 jmc 1.12 IF ( .NOT. momImplVertAdv ) THEN
453     CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid)
454     DO j=jMin,jMax
455     DO i=iMin,iMax
456     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
457     ENDDO
458 jmc 1.5 ENDDO
459 jmc 1.12 CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid)
460     DO j=jMin,jMax
461     DO i=iMin,iMax
462     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
463     ENDDO
464 jmc 1.5 ENDDO
465 jmc 1.12 ENDIF
466 adcroft 1.1
467     C-- Bernoulli term
468 jmc 1.5 CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid)
469     DO j=jMin,jMax
470     DO i=iMin,iMax
471     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
472     ENDDO
473     ENDDO
474     CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid)
475     DO j=jMin,jMax
476     DO i=iMin,iMax
477     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
478     ENDDO
479 adcroft 1.1 ENDDO
480 jmc 1.15 IF ( writeDiag ) THEN
481     CALL WRITE_LOCAL_RL('KEx','I10',1,uCf,bi,bj,k,myIter,myThid)
482     CALL WRITE_LOCAL_RL('KEy','I10',1,vCf,bi,bj,k,myIter,myThid)
483     ENDIF
484    
485 jmc 1.5 C-- end if momAdvection
486     ENDIF
487    
488     C-- Set du/dt & dv/dt on boundaries to zero
489 adcroft 1.1 DO j=jMin,jMax
490     DO i=iMin,iMax
491 jmc 1.5 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
492     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
493 adcroft 1.1 ENDDO
494     ENDDO
495 jmc 1.5
496 adcroft 1.2
497 jmc 1.15 IF ( writeDiag ) THEN
498 adcroft 1.3 CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid)
499     CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid)
500 adcroft 1.2 CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid)
501     CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid)
502 adcroft 1.3 CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid)
503 jmc 1.5 c CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid)
504 adcroft 1.3 CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid)
505     CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid)
506 adcroft 1.1 ENDIF
507 jmc 1.7
508 edhill 1.11 #endif /* ALLOW_MOM_VECINV */
509 adcroft 1.1
510     RETURN
511     END

  ViewVC Help
Powered by ViewVC 1.1.22