C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.47 2013/08/01 20:11:34 jmc Exp $ C $Name: $ CBOI C !TITLE: pkg/mom\_advdiff C !AUTHORS: adcroft@mit.edu C !INTRODUCTION: Flux-form Momentum Equations Package C C Package "mom\_fluxform" provides methods for calculating explicit terms C in the momentum equation cast in flux-form: C \begin{eqnarray*} C G^u & = & -\frac{1}{\rho} \partial_x \phi_h C -\nabla \cdot {\bf v} u C -fv C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x C + \mbox{metrics} C \\ C G^v & = & -\frac{1}{\rho} \partial_y \phi_h C -\nabla \cdot {\bf v} v C +fu C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y C + \mbox{metrics} C \end{eqnarray*} C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface C stresses as well as internal viscous stresses. CEOI #include "MOM_FLUXFORM_OPTIONS.h" #ifdef ALLOW_MOM_COMMON # include "MOM_COMMON_OPTIONS.h" #endif CBOP C !ROUTINE: MOM_FLUXFORM C !INTERFACE: ========================================================== SUBROUTINE MOM_FLUXFORM( I bi,bj,k,iMin,iMax,jMin,jMax, I KappaRU, KappaRV, U fVerUkm, fVerVkm, O fVerUkp, fVerVkp, O guDiss, gvDiss, I myTime, myIter, myThid ) C !DESCRIPTION: C Calculates all the horizontal accelerations except for the implicit surface C pressure gradient and implicit vertical viscosity. C !USES: =============================================================== C == Global variables == IMPLICIT NONE #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "DYNVARS.h" #include "FFIELDS.h" #include "SURFACE.h" #ifdef ALLOW_MOM_COMMON # include "MOM_VISC.h" #endif #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" # include "tamc_keys.h" # include "MOM_FLUXFORM.h" #endif C !INPUT PARAMETERS: =================================================== C bi,bj :: current tile indices C k :: current vertical level C iMin,iMax,jMin,jMax :: loop ranges C KappaRU :: vertical viscosity C KappaRV :: vertical viscosity C fVerUkm :: vertical advective flux of U, interface above (k-1/2) C fVerVkm :: vertical advective flux of V, interface above (k-1/2) C fVerUkp :: vertical advective flux of U, interface below (k+1/2) C fVerVkp :: vertical advective flux of V, interface below (k+1/2) C guDiss :: dissipation tendency (all explicit terms), u component C gvDiss :: dissipation tendency (all explicit terms), v component C myTime :: current time C myIter :: current time-step number C myThid :: my Thread Id number INTEGER bi,bj,k INTEGER iMin,iMax,jMin,jMax _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL fVerUkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerVkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerUkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerVkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL myTime INTEGER myIter INTEGER myThid C !OUTPUT PARAMETERS: ================================================== C None - updates gU() and gV() in common blocks C !LOCAL VARIABLES: ==================================================== C i,j :: loop indices C vF :: viscous flux C v4F :: bi-harmonic viscous flux C cF :: Coriolis acceleration C mT :: Metric terms C fZon :: zonal fluxes C fMer :: meridional fluxes C fVrUp,fVrDw :: vertical viscous fluxes at interface k & k+1 INTEGER i,j #ifdef ALLOW_AUTODIFF_TAMC INTEGER imomkey #endif _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy) C afFacMom :: Tracer parameters for turning terms on and off. C vfFacMom C pfFacMom afFacMom - Advective terms C cfFacMom vfFacMom - Eddy viscosity terms C mtFacMom pfFacMom - Pressure terms C cfFacMom - Coriolis terms C foFacMom - Forcing C mtFacMom - Metric term C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uDudxFac _RL AhDudxFac _RL vDudyFac _RL AhDudyFac _RL rVelDudrFac _RL ArDudrFac _RL fuFac _RL mtFacU _RL mtNHFacU _RL uDvdxFac _RL AhDvdxFac _RL vDvdyFac _RL AhDvdyFac _RL rVelDvdrFac _RL ArDvdrFac _RL fvFac _RL mtFacV _RL mtNHFacV _RL sideMaskFac LOGICAL bottomDragTerms CEOP #ifdef MOM_BOUNDARY_CONSERVE COMMON / MOM_FLUXFORM_LOCAL / uBnd, vBnd _RL uBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) _RL vBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) #endif /* MOM_BOUNDARY_CONSERVE */ #ifdef ALLOW_AUTODIFF_TAMC act0 = k - 1 max0 = Nr act1 = bi - myBxLo(myThid) max1 = myBxHi(myThid) - myBxLo(myThid) + 1 act2 = bj - myByLo(myThid) max2 = myByHi(myThid) - myByLo(myThid) + 1 act3 = myThid - 1 max3 = nTx*nTy act4 = ikey_dynamics - 1 imomkey = (act0 + 1) & + act1*max0 & + act2*max0*max1 & + act3*max0*max1*max2 & + act4*max0*max1*max2*max3 #endif /* ALLOW_AUTODIFF_TAMC */ C Initialise intermediate terms DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx vF(i,j) = 0. v4F(i,j) = 0. cF(i,j) = 0. mT(i,j) = 0. fZon(i,j) = 0. fMer(i,j) = 0. fVrUp(i,j)= 0. fVrDw(i,j)= 0. rTransU(i,j)= 0. rTransV(i,j)= 0. c KE(i,j) = 0. hDiv(i,j) = 0. vort3(i,j) = 0. strain(i,j) = 0. tension(i,j)= 0. guDiss(i,j) = 0. gvDiss(i,j) = 0. ENDDO ENDDO C-- Term by term tracer parmeters C o U momentum equation uDudxFac = afFacMom*1. AhDudxFac = vfFacMom*1. vDudyFac = afFacMom*1. AhDudyFac = vfFacMom*1. rVelDudrFac = afFacMom*1. ArDudrFac = vfFacMom*1. mtFacU = mtFacMom*1. mtNHFacU = 1. fuFac = cfFacMom*1. C o V momentum equation uDvdxFac = afFacMom*1. AhDvdxFac = vfFacMom*1. vDvdyFac = afFacMom*1. AhDvdyFac = vfFacMom*1. rVelDvdrFac = afFacMom*1. ArDvdrFac = vfFacMom*1. mtFacV = mtFacMom*1. mtNHFacV = 1. fvFac = cfFacMom*1. IF (implicitViscosity) THEN ArDudrFac = 0. ArDvdrFac = 0. ENDIF C note: using standard stencil (no mask) results in under-estimating C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor IF ( no_slip_sides ) THEN sideMaskFac = sideDragFactor ELSE sideMaskFac = 0. _d 0 ENDIF IF ( no_slip_bottom & .OR. bottomDragQuadratic.NE.0. & .OR. bottomDragLinear.NE.0.) THEN bottomDragTerms=.TRUE. ELSE bottomDragTerms=.FALSE. ENDIF C-- Calculate open water fraction at vorticity points CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid) C---- Calculate common quantities used in both U and V equations C Calculate tracer cell face open areas DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx xA(i,j) = _dyG(i,j,bi,bj)*deepFacC(k) & *drF(k)*_hFacW(i,j,k,bi,bj) yA(i,j) = _dxG(i,j,bi,bj)*deepFacC(k) & *drF(k)*_hFacS(i,j,k,bi,bj) ENDDO ENDDO C Make local copies of horizontal flow field DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx uFld(i,j) = uVel(i,j,k,bi,bj) vFld(i,j) = vVel(i,j,k,bi,bj) ENDDO ENDDO C Calculate velocity field "volume transports" through tracer cell faces. C anelastic: transports are scaled by rhoFacC (~ mass transport) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx uTrans(i,j) = uFld(i,j)*xA(i,j)*rhoFacC(k) vTrans(i,j) = vFld(i,j)*yA(i,j)*rhoFacC(k) ENDDO ENDDO CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid) IF ( momViscosity) THEN CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid) CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid) CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid) CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx IF ( hFacZ(i,j).EQ.0. ) THEN vort3(i,j) = sideMaskFac*vort3(i,j) strain(i,j) = sideMaskFac*strain(i,j) ENDIF ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid) ENDIF #endif ENDIF C--- First call (k=1): compute vertical adv. flux fVerUkm & fVerVkm IF (momAdvection.AND.k.EQ.1) THEN #ifdef MOM_BOUNDARY_CONSERVE CALL MOM_UV_BOUNDARY( bi, bj, k, I uVel, vVel, O uBnd(1-OLx,1-OLy,k,bi,bj), O vBnd(1-OLx,1-OLy,k,bi,bj), I myTime, myIter, myThid ) #endif /* MOM_BOUNDARY_CONSERVE */ C- Calculate vertical transports above U & V points (West & South face): #ifdef ALLOW_AUTODIFF_TAMC # ifdef NONLIN_FRSURF # ifndef DISABLE_RSTAR_CODE CADJ STORE dwtransc(:,:,bi,bj) = CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte CADJ STORE dwtransu(:,:,bi,bj) = CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte CADJ STORE dwtransv(:,:,bi,bj) = CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte # endif # endif /* NONLIN_FRSURF */ #endif /* ALLOW_AUTODIFF_TAMC */ CALL MOM_CALC_RTRANS( k, bi, bj, O rTransU, rTransV, I myTime, myIter, myThid) C- Free surface correction term (flux at k=1) CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU, O fVerUkm, myThid ) CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV, O fVerVkm, myThid ) C--- endif momAdvection & k=1 ENDIF C--- Calculate vertical transports (at k+1) below U & V points : IF (momAdvection) THEN CALL MOM_CALC_RTRANS( k+1, bi, bj, O rTransU, rTransV, I myTime, myIter, myThid) ENDIF #ifdef MOM_BOUNDARY_CONSERVE IF ( momAdvection .AND. k.LT.Nr ) THEN CALL MOM_UV_BOUNDARY( bi, bj, k+1, I uVel, vVel, O uBnd(1-OLx,1-OLy,k+1,bi,bj), O vBnd(1-OLx,1-OLy,k+1,bi,bj), I myTime, myIter, myThid ) ENDIF #endif /* MOM_BOUNDARY_CONSERVE */ IF (momViscosity) THEN DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx viscAh_D(i,j) = viscAhD viscAh_Z(i,j) = viscAhZ viscA4_D(i,j) = viscA4D viscA4_Z(i,j) = viscA4Z ENDDO ENDDO IF ( useVariableVisc ) THEN CALL MOM_CALC_VISC( bi, bj, k, O viscAh_Z, viscAh_D, viscA4_Z, viscA4_D, I hDiv, vort3, tension, strain, KE, hFacZ, I myThid ) ENDIF ENDIF C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C---- Zonal momentum equation starts here IF (momAdvection) THEN C--- Calculate mean fluxes (advection) between cells for zonal flow. #ifdef MOM_BOUNDARY_CONSERVE CALL MOM_U_ADV_UU( bi,bj,k,uTrans,uBnd(1-OLx,1-OLy,k,bi,bj), O fZon,myThid ) CALL MOM_U_ADV_VU( bi,bj,k,vTrans,uBnd(1-OLx,1-OLy,k,bi,bj), O fMer,myThid ) CALL MOM_U_ADV_WU( I bi,bj,k+1,uBnd,wVel,rTransU, O fVerUkp, myThid ) #else /* MOM_BOUNDARY_CONSERVE */ C-- Zonal flux (fZon is at east face of "u" cell) C Mean flow component of zonal flux -> fZon CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid) C-- Meridional flux (fMer is at south face of "u" cell) C Mean flow component of meridional flux -> fMer CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid) C-- Vertical flux (fVer is at upper face of "u" cell) C Mean flow component of vertical flux (at k+1) -> fVer CALL MOM_U_ADV_WU( I bi,bj,k+1,uVel,wVel,rTransU, O fVerUkp, myThid ) #endif /* MOM_BOUNDARY_CONSERVE */ C-- Tendency is minus divergence of the fluxes + coriolis + pressure term DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = #ifdef OLD_UV_GEOM & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/ & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) ) #else & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k) & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k) #endif & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac & +( fVerUkp(i,j) - fVerUkm(i,j) )*rkSign*rVelDudrFac & ) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL( fZon, 'ADVx_Um ',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL( fMer, 'ADVy_Um ',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(fVerUkm,'ADVrE_Um',k,1,2,bi,bj,myThid) ENDIF #endif #ifdef NONLIN_FRSURF C-- account for 3.D divergence of the flow in rStar coordinate: # ifndef DISABLE_RSTAR_CODE IF ( select_rStar.GT.0 ) THEN DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj) & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf & *uVel(i,j,k,bi,bj) ENDDO ENDDO ENDIF IF ( select_rStar.LT.0 ) THEN DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj) & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj) ENDDO ENDDO ENDIF # endif /* DISABLE_RSTAR_CODE */ #endif /* NONLIN_FRSURF */ #ifdef ALLOW_ADDFLUID IF ( selectAddFluid.GE.1 ) THEN DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj) & + uVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0 & *( addMass(i-1,j,k,bi,bj) + addMass(i,j,k,bi,bj) ) & *_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k) & * recip_rAw(i,j,bi,bj)*recip_deepFac2C(k) ENDDO ENDDO ENDIF #endif /* ALLOW_ADDFLUID */ ELSE C- if momAdvection / else DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx gU(i,j,k,bi,bj) = 0. _d 0 ENDDO ENDDO C- endif momAdvection. ENDIF IF (momViscosity) THEN C--- Calculate eddy fluxes (dissipation) between cells for zonal flow. C Bi-harmonic term del^2 U -> v4F IF ( useBiharmonicVisc ) & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid) C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon, I viscAh_D,viscA4_D,myThid) C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer, I viscAh_Z,viscA4_Z,myThid) C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw IF (.NOT.implicitViscosity) THEN CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid) CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid) ENDIF C-- Tendency is minus divergence of the fluxes C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is) DO j=jMin,jMax DO i=iMin,iMax guDiss(i,j) = #ifdef OLD_UV_GEOM & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/ & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) ) #else & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k) & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k) #endif & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac & *recip_rhoFacC(k) & ) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid) IF (.NOT.implicitViscosity) & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid) ENDIF #endif C-- No-slip and drag BCs appear as body forces in cell abutting topography IF (no_slip_sides) THEN C- No-slip BCs impose a drag at walls... CALL MOM_U_SIDEDRAG( bi, bj, k, I uFld, v4f, hFacZ, I viscAh_Z, viscA4_Z, I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, O vF, I myThid ) DO j=jMin,jMax DO i=iMin,iMax gUdiss(i,j) = gUdiss(i,j) + vF(i,j) ENDDO ENDDO ENDIF C- No-slip BCs impose a drag at bottom IF (bottomDragTerms) THEN CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax gUdiss(i,j) = gUdiss(i,j) + vF(i,j) ENDDO ENDDO ENDIF #ifdef ALLOW_SHELFICE IF (useShelfIce) THEN CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax gUdiss(i,j) = gUdiss(i,j) + vF(i,j) ENDDO ENDDO ENDIF #endif /* ALLOW_SHELFICE */ C- endif momViscosity ENDIF C-- Forcing term (moved to timestep.F) c IF (momForcing) c & CALL EXTERNAL_FORCING_U( c I iMin,iMax,jMin,jMax,bi,bj,k, c I myTime,myThid) C-- Metric terms for curvilinear grid systems IF (useNHMTerms) THEN C o Non-Hydrostatic (spherical) metric terms CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j) ENDDO ENDDO ENDIF IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN C o Spherical polar grid metric terms CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j) ENDDO ENDDO ENDIF IF ( usingCylindricalGrid .AND. metricTerms ) THEN C o Cylindrical grid metric terms CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j) ENDDO ENDDO ENDIF C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C---- Meridional momentum equation starts here IF (momAdvection) THEN #ifdef MOM_BOUNDARY_CONSERVE CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vBnd(1-OLx,1-OLy,k,bi,bj), O fZon,myThid ) CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vBnd(1-OLx,1-OLy,k,bi,bj), O fMer,myThid ) CALL MOM_V_ADV_WV( bi,bj,k+1,vBnd,wVel,rTransV, O fVerVkp, myThid ) #else /* MOM_BOUNDARY_CONSERVE */ C--- Calculate mean fluxes (advection) between cells for meridional flow. C Mean flow component of zonal flux -> fZon CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vFld,fZon,myThid ) C-- Meridional flux (fMer is at north face of "v" cell) C Mean flow component of meridional flux -> fMer CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vFld,fMer,myThid ) C-- Vertical flux (fVer is at upper face of "v" cell) C Mean flow component of vertical flux (at k+1) -> fVerV CALL MOM_V_ADV_WV( bi,bj,k+1,vVel,wVel,rTransV, O fVerVkp, myThid ) #endif /* MOM_BOUNDARY_CONSERVE */ C-- Tendency is minus divergence of the fluxes + coriolis + pressure term DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = #ifdef OLD_UV_GEOM & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/ & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) ) #else & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k) & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k) #endif & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac & +( fVerVkp(i,j) - fVerVkm(i,j) )*rkSign*rVelDvdrFac & ) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL( fZon, 'ADVx_Vm ',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL( fMer, 'ADVy_Vm ',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(fVerVkm,'ADVrE_Vm',k,1,2,bi,bj,myThid) ENDIF #endif #ifdef NONLIN_FRSURF C-- account for 3.D divergence of the flow in rStar coordinate: # ifndef DISABLE_RSTAR_CODE IF ( select_rStar.GT.0 ) THEN DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj) & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf & *vVel(i,j,k,bi,bj) ENDDO ENDDO ENDIF IF ( select_rStar.LT.0 ) THEN DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj) & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj) ENDDO ENDDO ENDIF # endif /* DISABLE_RSTAR_CODE */ #endif /* NONLIN_FRSURF */ #ifdef ALLOW_ADDFLUID IF ( selectAddFluid.GE.1 ) THEN DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj) & + vVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0 & *( addMass(i,j-1,k,bi,bj) + addMass(i,j,k,bi,bj) ) & *_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k) & * recip_rAs(i,j,bi,bj)*recip_deepFac2C(k) ENDDO ENDDO ENDIF #endif /* ALLOW_ADDFLUID */ ELSE C- if momAdvection / else DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx gV(i,j,k,bi,bj) = 0. _d 0 ENDDO ENDDO C- endif momAdvection. ENDIF IF (momViscosity) THEN C--- Calculate eddy fluxes (dissipation) between cells for meridional flow. C Bi-harmonic term del^2 V -> v4F IF ( useBiharmonicVisc ) & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid) C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon, I viscAh_Z,viscA4_Z,myThid) C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer, I viscAh_D,viscA4_D,myThid) C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw IF (.NOT.implicitViscosity) THEN CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid) CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid) ENDIF C-- Tendency is minus divergence of the fluxes + coriolis + pressure term C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is) DO j=jMin,jMax DO i=iMin,iMax gvDiss(i,j) = #ifdef OLD_UV_GEOM & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/ & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) ) #else & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k) & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k) #endif & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac & *recip_rhoFacC(k) & ) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid) IF (.NOT.implicitViscosity) & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid) ENDIF #endif C-- No-slip and drag BCs appear as body forces in cell abutting topography IF (no_slip_sides) THEN C- No-slip BCs impose a drag at walls... CALL MOM_V_SIDEDRAG( bi, bj, k, I vFld, v4f, hFacZ, I viscAh_Z,viscA4_Z, I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, O vF, I myThid ) DO j=jMin,jMax DO i=iMin,iMax gvDiss(i,j) = gvDiss(i,j) + vF(i,j) ENDDO ENDDO ENDIF C- No-slip BCs impose a drag at bottom IF (bottomDragTerms) THEN CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax gvDiss(i,j) = gvDiss(i,j) + vF(i,j) ENDDO ENDDO ENDIF #ifdef ALLOW_SHELFICE IF (useShelfIce) THEN CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax gvDiss(i,j) = gvDiss(i,j) + vF(i,j) ENDDO ENDDO ENDIF #endif /* ALLOW_SHELFICE */ C- endif momViscosity ENDIF C-- Forcing term (moved to timestep.F) c IF (momForcing) c & CALL EXTERNAL_FORCING_V( c I iMin,iMax,jMin,jMax,bi,bj,k, c I myTime,myThid) C-- Metric terms for curvilinear grid systems IF (useNHMTerms) THEN C o Non-Hydrostatic (spherical) metric terms CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j) ENDDO ENDDO ENDIF IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN C o Spherical polar grid metric terms CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j) ENDDO ENDDO ENDIF IF ( usingCylindricalGrid .AND. metricTerms ) THEN C o Cylindrical grid metric terms CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j) ENDDO ENDDO ENDIF C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C-- Coriolis term C Note. As coded here, coriolis will not work with "thin walls" c IF (useCDscheme) THEN c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid) c ELSE IF (.NOT.useCDscheme) THEN CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid) #endif CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid) #endif ENDIF C-- 3.D Coriolis term (horizontal momentum, Eastward component: -fprime*w) IF ( use3dCoriolis ) THEN CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j) ENDDO ENDDO IF ( usingCurvilinearGrid ) THEN C- presently, non zero angleSinC array only supported with Curvilinear-Grid CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j) ENDDO ENDDO ENDIF ENDIF C-- Set du/dt & dv/dt on boundaries to zero DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj) guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj) gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj) gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(gU(1-OLx,1-OLy,k,bi,bj), & 'Um_Advec',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(gV(1-OLx,1-OLy,k,bi,bj), & 'Vm_Advec',k,1,2,bi,bj,myThid) IF (momViscosity) THEN CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid) ENDIF ENDIF #endif /* ALLOW_DIAGNOSTICS */ RETURN END