/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.32 - (show annotations) (download)
Tue Feb 7 11:46:18 2006 UTC (18 years, 3 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint58b_post, checkpoint58a_post
Changes since 1.31: +24 -2 lines
o add hooks for friction at water-shelfice interface

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.31 2005/12/08 15:44:34 heimbach Exp $
2 C $Name: $
3
4 CBOI
5 C !TITLE: pkg/mom\_advdiff
6 C !AUTHORS: adcroft@mit.edu
7 C !INTRODUCTION: Flux-form Momentum Equations Package
8 C
9 C Package "mom\_fluxform" provides methods for calculating explicit terms
10 C in the momentum equation cast in flux-form:
11 C \begin{eqnarray*}
12 C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13 C -\nabla \cdot {\bf v} u
14 C -fv
15 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16 C + \mbox{metrics}
17 C \\
18 C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19 C -\nabla \cdot {\bf v} v
20 C +fu
21 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22 C + \mbox{metrics}
23 C \end{eqnarray*}
24 C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25 C stresses as well as internal viscous stresses.
26 CEOI
27
28 #include "MOM_FLUXFORM_OPTIONS.h"
29
30 CBOP
31 C !ROUTINE: MOM_FLUXFORM
32
33 C !INTERFACE: ==========================================================
34 SUBROUTINE MOM_FLUXFORM(
35 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 I KappaRU, KappaRV,
37 U fVerU, fVerV,
38 O guDiss, gvDiss,
39 I myTime, myIter, myThid)
40
41 C !DESCRIPTION:
42 C Calculates all the horizontal accelerations except for the implicit surface
43 C pressure gradient and implciit vertical viscosity.
44
45 C !USES: ===============================================================
46 C == Global variables ==
47 IMPLICIT NONE
48 #include "SIZE.h"
49 #include "DYNVARS.h"
50 #include "FFIELDS.h"
51 #include "EEPARAMS.h"
52 #include "PARAMS.h"
53 #include "GRID.h"
54 #include "SURFACE.h"
55
56 C !INPUT PARAMETERS: ===================================================
57 C bi,bj :: tile indices
58 C iMin,iMax,jMin,jMAx :: loop ranges
59 C k :: vertical level
60 C kUp :: =1 or 2 for consecutive k
61 C kDown :: =2 or 1 for consecutive k
62 C KappaRU :: vertical viscosity
63 C KappaRV :: vertical viscosity
64 C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
65 C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
66 C guDiss :: dissipation tendency (all explicit terms), u component
67 C gvDiss :: dissipation tendency (all explicit terms), v component
68 C myTime :: current time
69 C myIter :: current time-step number
70 C myThid :: thread number
71 INTEGER bi,bj,iMin,iMax,jMin,jMax
72 INTEGER k,kUp,kDown
73 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
76 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
77 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL myTime
80 INTEGER myIter
81 INTEGER myThid
82
83 C !OUTPUT PARAMETERS: ==================================================
84 C None - updates gU() and gV() in common blocks
85
86 C !LOCAL VARIABLES: ====================================================
87 C i,j :: loop indices
88 C vF :: viscous flux
89 C v4F :: bi-harmonic viscous flux
90 C cF :: Coriolis acceleration
91 C mT :: Metric terms
92 C fZon :: zonal fluxes
93 C fMer :: meridional fluxes
94 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
95 INTEGER i,j
96 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 C afFacMom - Tracer parameters for turning terms
105 C vfFacMom on and off.
106 C pfFacMom afFacMom - Advective terms
107 C cfFacMom vfFacMom - Eddy viscosity terms
108 C mTFacMom pfFacMom - Pressure terms
109 C cfFacMom - Coriolis terms
110 C foFacMom - Forcing
111 C mTFacMom - Metric term
112 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
113 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 _RL uDudxFac
133 _RL AhDudxFac
134 _RL vDudyFac
135 _RL AhDudyFac
136 _RL rVelDudrFac
137 _RL ArDudrFac
138 _RL fuFac
139 _RL mtFacU
140 _RL uDvdxFac
141 _RL AhDvdxFac
142 _RL vDvdyFac
143 _RL AhDvdyFac
144 _RL rVelDvdrFac
145 _RL ArDvdrFac
146 _RL fvFac
147 _RL mtFacV
148 _RL sideMaskFac
149 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
150 CEOP
151
152 C Initialise intermediate terms
153 DO j=1-OLy,sNy+OLy
154 DO i=1-OLx,sNx+OLx
155 vF(i,j) = 0.
156 v4F(i,j) = 0.
157 cF(i,j) = 0.
158 mT(i,j) = 0.
159 fZon(i,j) = 0.
160 fMer(i,j) = 0.
161 fVrUp(i,j)= 0.
162 fVrDw(i,j)= 0.
163 rTransU(i,j)= 0.
164 rTransV(i,j)= 0.
165 strain(i,j) = 0.
166 tension(i,j)= 0.
167 guDiss(i,j) = 0.
168 gvDiss(i,j) = 0.
169 #ifdef ALLOW_AUTODIFF_TAMC
170 vort3(i,j) = 0. _d 0
171 strain(i,j) = 0. _d 0
172 tension(i,j) = 0. _d 0
173 #endif
174 ENDDO
175 ENDDO
176
177 C-- Term by term tracer parmeters
178 C o U momentum equation
179 uDudxFac = afFacMom*1.
180 AhDudxFac = vfFacMom*1.
181 vDudyFac = afFacMom*1.
182 AhDudyFac = vfFacMom*1.
183 rVelDudrFac = afFacMom*1.
184 ArDudrFac = vfFacMom*1.
185 mTFacU = mtFacMom*1.
186 fuFac = cfFacMom*1.
187 C o V momentum equation
188 uDvdxFac = afFacMom*1.
189 AhDvdxFac = vfFacMom*1.
190 vDvdyFac = afFacMom*1.
191 AhDvdyFac = vfFacMom*1.
192 rVelDvdrFac = afFacMom*1.
193 ArDvdrFac = vfFacMom*1.
194 mTFacV = mtFacMom*1.
195 fvFac = cfFacMom*1.
196
197 IF (implicitViscosity) THEN
198 ArDudrFac = 0.
199 ArDvdrFac = 0.
200 ENDIF
201
202 C note: using standard stencil (no mask) results in under-estimating
203 C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
204 IF ( no_slip_sides ) THEN
205 sideMaskFac = sideDragFactor
206 ELSE
207 sideMaskFac = 0. _d 0
208 ENDIF
209
210 IF ( no_slip_bottom
211 & .OR. bottomDragQuadratic.NE.0.
212 & .OR. bottomDragLinear.NE.0.) THEN
213 bottomDragTerms=.TRUE.
214 ELSE
215 bottomDragTerms=.FALSE.
216 ENDIF
217
218 C-- Calculate open water fraction at vorticity points
219 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
220
221 C---- Calculate common quantities used in both U and V equations
222 C Calculate tracer cell face open areas
223 DO j=1-OLy,sNy+OLy
224 DO i=1-OLx,sNx+OLx
225 xA(i,j) = _dyG(i,j,bi,bj)
226 & *drF(k)*_hFacW(i,j,k,bi,bj)
227 yA(i,j) = _dxG(i,j,bi,bj)
228 & *drF(k)*_hFacS(i,j,k,bi,bj)
229 ENDDO
230 ENDDO
231
232 C Make local copies of horizontal flow field
233 DO j=1-OLy,sNy+OLy
234 DO i=1-OLx,sNx+OLx
235 uFld(i,j) = uVel(i,j,k,bi,bj)
236 vFld(i,j) = vVel(i,j,k,bi,bj)
237 ENDDO
238 ENDDO
239
240 C Calculate velocity field "volume transports" through tracer cell faces.
241 DO j=1-OLy,sNy+OLy
242 DO i=1-OLx,sNx+OLx
243 uTrans(i,j) = uFld(i,j)*xA(i,j)
244 vTrans(i,j) = vFld(i,j)*yA(i,j)
245 ENDDO
246 ENDDO
247
248 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
249 IF ( momViscosity) THEN
250 CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
251 CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
252 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
253 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
254 DO j=1-Oly,sNy+Oly
255 DO i=1-Olx,sNx+Olx
256 IF ( hFacZ(i,j).EQ.0. ) THEN
257 vort3(i,j) = sideMaskFac*vort3(i,j)
258 strain(i,j) = sideMaskFac*strain(i,j)
259 ENDIF
260 ENDDO
261 ENDDO
262 #ifdef ALLOW_DIAGNOSTICS
263 IF ( useDiagnostics ) THEN
264 CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
265 CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
266 CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
267 CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
268 ENDIF
269 #endif
270 ENDIF
271
272 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
273 IF (momAdvection.AND.k.EQ.1) THEN
274
275 C- Calculate vertical transports above U & V points (West & South face):
276 CALL MOM_CALC_RTRANS( k, bi, bj,
277 O rTransU, rTransV,
278 I myTime, myIter, myThid)
279
280 C- Free surface correction term (flux at k=1)
281 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
282 O fVerU(1-OLx,1-OLy,kUp), myThid )
283
284 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
285 O fVerV(1-OLx,1-OLy,kUp), myThid )
286
287 C--- endif momAdvection & k=1
288 ENDIF
289
290
291 C--- Calculate vertical transports (at k+1) below U & V points :
292 IF (momAdvection) THEN
293 CALL MOM_CALC_RTRANS( k+1, bi, bj,
294 O rTransU, rTransV,
295 I myTime, myIter, myThid)
296 ENDIF
297
298 IF (momViscosity) THEN
299 CALL MOM_CALC_VISC(
300 I bi,bj,k,
301 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
302 O harmonic,biharmonic,useVariableViscosity,
303 I hDiv,vort3,tension,strain,KE,hFacZ,
304 I myThid)
305 ENDIF
306
307 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
308
309 C---- Zonal momentum equation starts here
310
311 IF (momAdvection) THEN
312 C--- Calculate mean fluxes (advection) between cells for zonal flow.
313
314 C-- Zonal flux (fZon is at east face of "u" cell)
315 C Mean flow component of zonal flux -> fZon
316 CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
317
318 C-- Meridional flux (fMer is at south face of "u" cell)
319 C Mean flow component of meridional flux -> fMer
320 CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
321
322 C-- Vertical flux (fVer is at upper face of "u" cell)
323 C Mean flow component of vertical flux (at k+1) -> fVer
324 CALL MOM_U_ADV_WU(
325 I bi,bj,k+1,uVel,wVel,rTransU,
326 O fVerU(1-OLx,1-OLy,kDown), myThid )
327
328 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
329 DO j=jMin,jMax
330 DO i=iMin,iMax
331 gU(i,j,k,bi,bj) =
332 #ifdef OLD_UV_GEOM
333 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
334 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
335 #else
336 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
337 & *recip_rAw(i,j,bi,bj)
338 #endif
339 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
340 & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
341 & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
342 & )
343 ENDDO
344 ENDDO
345
346 #ifdef ALLOW_DIAGNOSTICS
347 IF ( useDiagnostics ) THEN
348 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)
349 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)
350 CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),
351 & 'ADVrE_Um',k,1,2,bi,bj,myThid)
352 ENDIF
353 #endif
354
355 #ifdef NONLIN_FRSURF
356 C-- account for 3.D divergence of the flow in rStar coordinate:
357 # ifndef DISABLE_RSTAR_CODE
358 IF ( select_rStar.GT.0 ) THEN
359 DO j=jMin,jMax
360 DO i=iMin,iMax
361 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
362 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
363 & *uVel(i,j,k,bi,bj)
364 ENDDO
365 ENDDO
366 ENDIF
367 IF ( select_rStar.LT.0 ) THEN
368 DO j=jMin,jMax
369 DO i=iMin,iMax
370 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
371 & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
372 ENDDO
373 ENDDO
374 ENDIF
375 # endif /* DISABLE_RSTAR_CODE */
376 #endif /* NONLIN_FRSURF */
377
378 ELSE
379 C- if momAdvection / else
380 DO j=1-OLy,sNy+OLy
381 DO i=1-OLx,sNx+OLx
382 gU(i,j,k,bi,bj) = 0. _d 0
383 ENDDO
384 ENDDO
385
386 C- endif momAdvection.
387 ENDIF
388
389 IF (momViscosity) THEN
390 C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
391
392 C Bi-harmonic term del^2 U -> v4F
393 IF (biharmonic)
394 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
395
396 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
397 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
398 I viscAh_D,viscA4_D,myThid)
399
400 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
401 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
402 I viscAh_Z,viscA4_Z,myThid)
403
404 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
405 IF (.NOT.implicitViscosity) THEN
406 CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
407 CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
408 ENDIF
409
410 C-- Tendency is minus divergence of the fluxes
411 DO j=jMin,jMax
412 DO i=iMin,iMax
413 guDiss(i,j) =
414 #ifdef OLD_UV_GEOM
415 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
416 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
417 #else
418 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
419 & *recip_rAw(i,j,bi,bj)
420 #endif
421 & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
422 & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
423 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
424 & )
425 ENDDO
426 ENDDO
427
428 #ifdef ALLOW_DIAGNOSTICS
429 IF ( useDiagnostics ) THEN
430 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
431 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
432 IF (.NOT.implicitViscosity)
433 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
434 ENDIF
435 #endif
436
437 C-- No-slip and drag BCs appear as body forces in cell abutting topography
438 IF (no_slip_sides) THEN
439 C- No-slip BCs impose a drag at walls...
440 CALL MOM_U_SIDEDRAG(
441 I bi,bj,k,
442 I uFld, v4f, hFacZ,
443 I viscAh_Z,viscA4_Z,
444 I harmonic,biharmonic,useVariableViscosity,
445 O vF,
446 I myThid)
447 DO j=jMin,jMax
448 DO i=iMin,iMax
449 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
450 ENDDO
451 ENDDO
452 ENDIF
453 C- No-slip BCs impose a drag at bottom
454 IF (bottomDragTerms) THEN
455 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
456 DO j=jMin,jMax
457 DO i=iMin,iMax
458 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
459 ENDDO
460 ENDDO
461 ENDIF
462
463 #ifdef ALLOW_SHELFICE
464 IF (useShelfIce) THEN
465 CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
466 DO j=jMin,jMax
467 DO i=iMin,iMax
468 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
469 ENDDO
470 ENDDO
471 ENDIF
472 #endif /* ALLOW_SHELFICE */
473
474 C- endif momViscosity
475 ENDIF
476
477 C-- Forcing term (moved to timestep.F)
478 c IF (momForcing)
479 c & CALL EXTERNAL_FORCING_U(
480 c I iMin,iMax,jMin,jMax,bi,bj,k,
481 c I myTime,myThid)
482
483 C-- Metric terms for curvilinear grid systems
484 IF (useNHMTerms) THEN
485 C o Non-hydrosatic metric terms
486 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
487 DO j=jMin,jMax
488 DO i=iMin,iMax
489 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
490 ENDDO
491 ENDDO
492 ENDIF
493 IF (usingSphericalPolarMTerms) THEN
494 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
495 DO j=jMin,jMax
496 DO i=iMin,iMax
497 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
498 ENDDO
499 ENDDO
500 ENDIF
501 IF (usingCylindricalGrid) THEN
502 CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
503 DO j=jMin,jMax
504 DO i=iMin,iMax
505 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
506 ENDDO
507 ENDDO
508 ENDIF
509
510 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
511
512 C---- Meridional momentum equation starts here
513
514 IF (momAdvection) THEN
515 C--- Calculate mean fluxes (advection) between cells for meridional flow.
516 C Mean flow component of zonal flux -> fZon
517 CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
518
519 C-- Meridional flux (fMer is at north face of "v" cell)
520 C Mean flow component of meridional flux -> fMer
521 CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
522
523 C-- Vertical flux (fVer is at upper face of "v" cell)
524 C Mean flow component of vertical flux (at k+1) -> fVerV
525 CALL MOM_V_ADV_WV(
526 I bi,bj,k+1,vVel,wVel,rTransV,
527 O fVerV(1-OLx,1-OLy,kDown), myThid )
528
529 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
530 DO j=jMin,jMax
531 DO i=iMin,iMax
532 gV(i,j,k,bi,bj) =
533 #ifdef OLD_UV_GEOM
534 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
535 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
536 #else
537 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
538 & *recip_rAs(i,j,bi,bj)
539 #endif
540 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
541 & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
542 & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
543 & )
544 ENDDO
545 ENDDO
546
547 #ifdef ALLOW_DIAGNOSTICS
548 IF ( useDiagnostics ) THEN
549 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)
550 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)
551 CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),
552 & 'ADVrE_Vm',k,1,2,bi,bj,myThid)
553 ENDIF
554 #endif
555
556 #ifdef NONLIN_FRSURF
557 C-- account for 3.D divergence of the flow in rStar coordinate:
558 # ifndef DISABLE_RSTAR_CODE
559 IF ( select_rStar.GT.0 ) THEN
560 DO j=jMin,jMax
561 DO i=iMin,iMax
562 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
563 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
564 & *vVel(i,j,k,bi,bj)
565 ENDDO
566 ENDDO
567 ENDIF
568 IF ( select_rStar.LT.0 ) THEN
569 DO j=jMin,jMax
570 DO i=iMin,iMax
571 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
572 & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
573 ENDDO
574 ENDDO
575 ENDIF
576 # endif /* DISABLE_RSTAR_CODE */
577 #endif /* NONLIN_FRSURF */
578
579 ELSE
580 C- if momAdvection / else
581 DO j=1-OLy,sNy+OLy
582 DO i=1-OLx,sNx+OLx
583 gV(i,j,k,bi,bj) = 0. _d 0
584 ENDDO
585 ENDDO
586
587 C- endif momAdvection.
588 ENDIF
589
590 IF (momViscosity) THEN
591 C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
592 C Bi-harmonic term del^2 V -> v4F
593 IF (biharmonic)
594 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
595
596 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
597 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
598 I viscAh_Z,viscA4_Z,myThid)
599
600 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
601 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
602 I viscAh_D,viscA4_D,myThid)
603
604 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
605 IF (.NOT.implicitViscosity) THEN
606 CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
607 CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
608 ENDIF
609
610 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
611 DO j=jMin,jMax
612 DO i=iMin,iMax
613 gvDiss(i,j) =
614 #ifdef OLD_UV_GEOM
615 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
616 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
617 #else
618 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
619 & *recip_rAs(i,j,bi,bj)
620 #endif
621 & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
622 & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
623 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
624 & )
625 ENDDO
626 ENDDO
627
628 #ifdef ALLOW_DIAGNOSTICS
629 IF ( useDiagnostics ) THEN
630 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
631 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
632 IF (.NOT.implicitViscosity)
633 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
634 ENDIF
635 #endif
636
637 C-- No-slip and drag BCs appear as body forces in cell abutting topography
638 IF (no_slip_sides) THEN
639 C- No-slip BCs impose a drag at walls...
640 CALL MOM_V_SIDEDRAG(
641 I bi,bj,k,
642 I vFld, v4f, hFacZ,
643 I viscAh_Z,viscA4_Z,
644 I harmonic,biharmonic,useVariableViscosity,
645 O vF,
646 I myThid)
647 DO j=jMin,jMax
648 DO i=iMin,iMax
649 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
650 ENDDO
651 ENDDO
652 ENDIF
653 C- No-slip BCs impose a drag at bottom
654 IF (bottomDragTerms) THEN
655 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
656 DO j=jMin,jMax
657 DO i=iMin,iMax
658 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
659 ENDDO
660 ENDDO
661 ENDIF
662
663 #ifdef ALLOW_SHELFICE
664 IF (useShelfIce) THEN
665 CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRU,vF,myThid)
666 DO j=jMin,jMax
667 DO i=iMin,iMax
668 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
669 ENDDO
670 ENDDO
671 ENDIF
672 #endif /* ALLOW_SHELFICE */
673
674 C- endif momViscosity
675 ENDIF
676
677 C-- Forcing term (moved to timestep.F)
678 c IF (momForcing)
679 c & CALL EXTERNAL_FORCING_V(
680 c I iMin,iMax,jMin,jMax,bi,bj,k,
681 c I myTime,myThid)
682
683 C-- Metric terms for curvilinear grid systems
684 IF (useNHMTerms) THEN
685 C o Spherical polar grid metric terms
686 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
687 DO j=jMin,jMax
688 DO i=iMin,iMax
689 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
690 ENDDO
691 ENDDO
692 ENDIF
693 IF (usingSphericalPolarMTerms) THEN
694 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
695 DO j=jMin,jMax
696 DO i=iMin,iMax
697 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
698 ENDDO
699 ENDDO
700 ENDIF
701 IF (usingCylindricalGrid) THEN
702 CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
703 DO j=jMin,jMax
704 DO i=iMin,iMax
705 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
706 ENDDO
707 ENDDO
708 ENDIF
709
710 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
711
712 C-- Coriolis term
713 C Note. As coded here, coriolis will not work with "thin walls"
714 c IF (useCDscheme) THEN
715 c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
716 c ELSE
717 IF (.NOT.useCDscheme) THEN
718 CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
719 DO j=jMin,jMax
720 DO i=iMin,iMax
721 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
722 ENDDO
723 ENDDO
724 #ifdef ALLOW_DIAGNOSTICS
725 IF ( useDiagnostics )
726 & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
727 #endif
728 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
729 DO j=jMin,jMax
730 DO i=iMin,iMax
731 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
732 ENDDO
733 ENDDO
734 #ifdef ALLOW_DIAGNOSTICS
735 IF ( useDiagnostics )
736 & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
737 #endif
738 ENDIF
739
740 IF (nonHydrostatic.OR.quasiHydrostatic) THEN
741 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
742 DO j=jMin,jMax
743 DO i=iMin,iMax
744 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
745 ENDDO
746 ENDDO
747 ENDIF
748
749 C-- Set du/dt & dv/dt on boundaries to zero
750 DO j=jMin,jMax
751 DO i=iMin,iMax
752 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
753 guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
754 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
755 gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
756 ENDDO
757 ENDDO
758
759 #ifdef ALLOW_DIAGNOSTICS
760 IF ( useDiagnostics ) THEN
761 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
762 CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),
763 & 'Um_Advec',k,1,2,bi,bj,myThid)
764 CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),
765 & 'Vm_Advec',k,1,2,bi,bj,myThid)
766 IF (momViscosity) THEN
767 CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
768 CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
769 ENDIF
770 ENDIF
771 #endif /* ALLOW_DIAGNOSTICS */
772
773 RETURN
774 END

  ViewVC Help
Powered by ViewVC 1.1.22