/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.26 - (show annotations) (download)
Fri Sep 23 15:19:38 2005 UTC (18 years, 7 months ago) by jmc
Branch: MAIN
Changes since 1.25: +2 -2 lines
add missing argument in CALL MOM_CALC_VISC

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.25 2005/09/16 20:57:09 baylor Exp $
2 C $Name: $
3
4 CBOI
5 C !TITLE: pkg/mom\_advdiff
6 C !AUTHORS: adcroft@mit.edu
7 C !INTRODUCTION: Flux-form Momentum Equations Package
8 C
9 C Package "mom\_fluxform" provides methods for calculating explicit terms
10 C in the momentum equation cast in flux-form:
11 C \begin{eqnarray*}
12 C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13 C -\nabla \cdot {\bf v} u
14 C -fv
15 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16 C + \mbox{metrics}
17 C \\
18 C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19 C -\nabla \cdot {\bf v} v
20 C +fu
21 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22 C + \mbox{metrics}
23 C \end{eqnarray*}
24 C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25 C stresses as well as internal viscous stresses.
26 CEOI
27
28 #include "MOM_FLUXFORM_OPTIONS.h"
29
30 CBOP
31 C !ROUTINE: MOM_FLUXFORM
32
33 C !INTERFACE: ==========================================================
34 SUBROUTINE MOM_FLUXFORM(
35 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 I KappaRU, KappaRV,
37 U fVerU, fVerV,
38 O guDiss, gvDiss,
39 I myTime, myIter, myThid)
40
41 C !DESCRIPTION:
42 C Calculates all the horizontal accelerations except for the implicit surface
43 C pressure gradient and implciit vertical viscosity.
44
45 C !USES: ===============================================================
46 C == Global variables ==
47 IMPLICIT NONE
48 #include "SIZE.h"
49 #include "DYNVARS.h"
50 #include "FFIELDS.h"
51 #include "EEPARAMS.h"
52 #include "PARAMS.h"
53 #include "GRID.h"
54 #include "SURFACE.h"
55
56 C !INPUT PARAMETERS: ===================================================
57 C bi,bj :: tile indices
58 C iMin,iMax,jMin,jMAx :: loop ranges
59 C k :: vertical level
60 C kUp :: =1 or 2 for consecutive k
61 C kDown :: =2 or 1 for consecutive k
62 C KappaRU :: vertical viscosity
63 C KappaRV :: vertical viscosity
64 C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
65 C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
66 C guDiss :: dissipation tendency (all explicit terms), u component
67 C gvDiss :: dissipation tendency (all explicit terms), v component
68 C myTime :: current time
69 C myIter :: current time-step number
70 C myThid :: thread number
71 INTEGER bi,bj,iMin,iMax,jMin,jMax
72 INTEGER k,kUp,kDown
73 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
76 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
77 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL myTime
80 INTEGER myIter
81 INTEGER myThid
82
83 C !OUTPUT PARAMETERS: ==================================================
84 C None - updates gU() and gV() in common blocks
85
86 C !LOCAL VARIABLES: ====================================================
87 C i,j :: loop indices
88 C vF :: viscous flux
89 C v4F :: bi-harmonic viscous flux
90 C cF :: Coriolis acceleration
91 C mT :: Metric terms
92 C fZon :: zonal fluxes
93 C fMer :: meridional fluxes
94 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
95 INTEGER i,j
96 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 C afFacMom - Tracer parameters for turning terms
105 C vfFacMom on and off.
106 C pfFacMom afFacMom - Advective terms
107 C cfFacMom vfFacMom - Eddy viscosity terms
108 C mTFacMom pfFacMom - Pressure terms
109 C cfFacMom - Coriolis terms
110 C foFacMom - Forcing
111 C mTFacMom - Metric term
112 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
113 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 _RL uDudxFac
133 _RL AhDudxFac
134 _RL vDudyFac
135 _RL AhDudyFac
136 _RL rVelDudrFac
137 _RL ArDudrFac
138 _RL fuFac
139 _RL mtFacU
140 _RL uDvdxFac
141 _RL AhDvdxFac
142 _RL vDvdyFac
143 _RL AhDvdyFac
144 _RL rVelDvdrFac
145 _RL ArDvdrFac
146 _RL fvFac
147 _RL mtFacV
148 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
149 CEOP
150
151 C Initialise intermediate terms
152 DO j=1-OLy,sNy+OLy
153 DO i=1-OLx,sNx+OLx
154 vF(i,j) = 0.
155 v4F(i,j) = 0.
156 cF(i,j) = 0.
157 mT(i,j) = 0.
158 fZon(i,j) = 0.
159 fMer(i,j) = 0.
160 fVrUp(i,j)= 0.
161 fVrDw(i,j)= 0.
162 rTransU(i,j)= 0.
163 rTransV(i,j)= 0.
164 strain(i,j) = 0.
165 tension(i,j)= 0.
166 guDiss(i,j) = 0.
167 gvDiss(i,j) = 0.
168 ENDDO
169 ENDDO
170
171 C-- Term by term tracer parmeters
172 C o U momentum equation
173 uDudxFac = afFacMom*1.
174 AhDudxFac = vfFacMom*1.
175 vDudyFac = afFacMom*1.
176 AhDudyFac = vfFacMom*1.
177 rVelDudrFac = afFacMom*1.
178 ArDudrFac = vfFacMom*1.
179 mTFacU = mtFacMom*1.
180 fuFac = cfFacMom*1.
181 C o V momentum equation
182 uDvdxFac = afFacMom*1.
183 AhDvdxFac = vfFacMom*1.
184 vDvdyFac = afFacMom*1.
185 AhDvdyFac = vfFacMom*1.
186 rVelDvdrFac = afFacMom*1.
187 ArDvdrFac = vfFacMom*1.
188 mTFacV = mtFacMom*1.
189 fvFac = cfFacMom*1.
190
191 IF (implicitViscosity) THEN
192 ArDudrFac = 0.
193 ArDvdrFac = 0.
194 ENDIF
195
196 IF ( no_slip_bottom
197 & .OR. bottomDragQuadratic.NE.0.
198 & .OR. bottomDragLinear.NE.0.) THEN
199 bottomDragTerms=.TRUE.
200 ELSE
201 bottomDragTerms=.FALSE.
202 ENDIF
203
204 C-- Calculate open water fraction at vorticity points
205 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
206
207 C---- Calculate common quantities used in both U and V equations
208 C Calculate tracer cell face open areas
209 DO j=1-OLy,sNy+OLy
210 DO i=1-OLx,sNx+OLx
211 xA(i,j) = _dyG(i,j,bi,bj)
212 & *drF(k)*_hFacW(i,j,k,bi,bj)
213 yA(i,j) = _dxG(i,j,bi,bj)
214 & *drF(k)*_hFacS(i,j,k,bi,bj)
215 ENDDO
216 ENDDO
217
218 C Make local copies of horizontal flow field
219 DO j=1-OLy,sNy+OLy
220 DO i=1-OLx,sNx+OLx
221 uFld(i,j) = uVel(i,j,k,bi,bj)
222 vFld(i,j) = vVel(i,j,k,bi,bj)
223 ENDDO
224 ENDDO
225
226 C Calculate velocity field "volume transports" through tracer cell faces.
227 DO j=1-OLy,sNy+OLy
228 DO i=1-OLx,sNx+OLx
229 uTrans(i,j) = uFld(i,j)*xA(i,j)
230 vTrans(i,j) = vFld(i,j)*yA(i,j)
231 ENDDO
232 ENDDO
233
234 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
235 CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
236 CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
237 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
238 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
239
240 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
241 IF (momAdvection.AND.k.EQ.1) THEN
242
243 C- Calculate vertical transports above U & V points (West & South face):
244 CALL MOM_CALC_RTRANS( k, bi, bj,
245 O rTransU, rTransV,
246 I myTime, myIter, myThid)
247
248 C- Free surface correction term (flux at k=1)
249 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
250 O fVerU(1-OLx,1-OLy,kUp), myThid )
251
252 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
253 O fVerV(1-OLx,1-OLy,kUp), myThid )
254
255 C--- endif momAdvection & k=1
256 ENDIF
257
258
259 C--- Calculate vertical transports (at k+1) below U & V points :
260 IF (momAdvection) THEN
261 CALL MOM_CALC_RTRANS( k+1, bi, bj,
262 O rTransU, rTransV,
263 I myTime, myIter, myThid)
264 ENDIF
265
266 IF (momViscosity) THEN
267 CALL MOM_CALC_VISC(
268 I bi,bj,k,
269 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
270 O harmonic,biharmonic,useVariableViscosity,
271 I hDiv,vort3,tension,strain,KE,hFacZ,
272 I myThid)
273 ENDIF
274
275 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
276
277 C---- Zonal momentum equation starts here
278
279 IF (momAdvection) THEN
280 C--- Calculate mean fluxes (advection) between cells for zonal flow.
281
282 C-- Zonal flux (fZon is at east face of "u" cell)
283 C Mean flow component of zonal flux -> fZon
284 CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
285
286 C-- Meridional flux (fMer is at south face of "u" cell)
287 C Mean flow component of meridional flux -> fMer
288 CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
289
290 C-- Vertical flux (fVer is at upper face of "u" cell)
291 C Mean flow component of vertical flux (at k+1) -> fVer
292 CALL MOM_U_ADV_WU(
293 I bi,bj,k+1,uVel,wVel,rTransU,
294 O fVerU(1-OLx,1-OLy,kDown), myThid )
295
296 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
297 DO j=jMin,jMax
298 DO i=iMin,iMax
299 gU(i,j,k,bi,bj) =
300 #ifdef OLD_UV_GEOM
301 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
302 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
303 #else
304 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
305 & *recip_rAw(i,j,bi,bj)
306 #endif
307 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
308 & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
309 & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
310 & )
311 ENDDO
312 ENDDO
313
314 #ifdef ALLOW_DIAGNOSTICS
315 IF ( useDiagnostics ) THEN
316 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)
317 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)
318 CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),
319 & 'ADVrE_Um',k,1,2,bi,bj,myThid)
320 ENDIF
321 #endif
322
323 #ifdef NONLIN_FRSURF
324 C-- account for 3.D divergence of the flow in rStar coordinate:
325 IF ( select_rStar.GT.0 ) THEN
326 DO j=jMin,jMax
327 DO i=iMin,iMax
328 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
329 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
330 & *uVel(i,j,k,bi,bj)
331 ENDDO
332 ENDDO
333 ENDIF
334 IF ( select_rStar.LT.0 ) THEN
335 DO j=jMin,jMax
336 DO i=iMin,iMax
337 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
338 & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
339 ENDDO
340 ENDDO
341 ENDIF
342 #endif /* NONLIN_FRSURF */
343
344 ELSE
345 C- if momAdvection / else
346 DO j=1-OLy,sNy+OLy
347 DO i=1-OLx,sNx+OLx
348 gU(i,j,k,bi,bj) = 0. _d 0
349 ENDDO
350 ENDDO
351
352 C- endif momAdvection.
353 ENDIF
354
355 IF (momViscosity) THEN
356 C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
357
358 C Bi-harmonic term del^2 U -> v4F
359 IF (biharmonic)
360 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
361
362 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
363 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
364 I viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,myThid)
365
366 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
367 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
368 I viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,myThid)
369
370 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
371 IF (.NOT.implicitViscosity) THEN
372 CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
373 CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
374 ENDIF
375
376 C-- Tendency is minus divergence of the fluxes
377 DO j=jMin,jMax
378 DO i=iMin,iMax
379 guDiss(i,j) =
380 #ifdef OLD_UV_GEOM
381 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
382 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
383 #else
384 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
385 & *recip_rAw(i,j,bi,bj)
386 #endif
387 & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
388 & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
389 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
390 & )
391 ENDDO
392 ENDDO
393
394 #ifdef ALLOW_DIAGNOSTICS
395 IF ( useDiagnostics ) THEN
396 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
397 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
398 IF (.NOT.implicitViscosity)
399 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
400 ENDIF
401 #endif
402
403 C-- No-slip and drag BCs appear as body forces in cell abutting topography
404 IF (no_slip_sides) THEN
405 C- No-slip BCs impose a drag at walls...
406 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,v4F,hFacZ,vF,myThid)
407 DO j=jMin,jMax
408 DO i=iMin,iMax
409 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
410 ENDDO
411 ENDDO
412 ENDIF
413 C- No-slip BCs impose a drag at bottom
414 IF (bottomDragTerms) THEN
415 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
416 DO j=jMin,jMax
417 DO i=iMin,iMax
418 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
419 ENDDO
420 ENDDO
421 ENDIF
422
423 C- endif momViscosity
424 ENDIF
425
426 C-- Forcing term (moved to timestep.F)
427 c IF (momForcing)
428 c & CALL EXTERNAL_FORCING_U(
429 c I iMin,iMax,jMin,jMax,bi,bj,k,
430 c I myTime,myThid)
431
432 C-- Metric terms for curvilinear grid systems
433 IF (useNHMTerms) THEN
434 C o Non-hydrosatic metric terms
435 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
436 DO j=jMin,jMax
437 DO i=iMin,iMax
438 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
439 ENDDO
440 ENDDO
441 ENDIF
442 IF (usingSphericalPolarMTerms) THEN
443 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
444 DO j=jMin,jMax
445 DO i=iMin,iMax
446 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
447 ENDDO
448 ENDDO
449 ENDIF
450 IF (usingCylindricalGrid) THEN
451 CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
452 DO j=jMin,jMax
453 DO i=iMin,iMax
454 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
455 ENDDO
456 ENDDO
457 ENDIF
458
459 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
460
461 C---- Meridional momentum equation starts here
462
463 IF (momAdvection) THEN
464 C--- Calculate mean fluxes (advection) between cells for meridional flow.
465 C Mean flow component of zonal flux -> fZon
466 CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
467
468 C-- Meridional flux (fMer is at north face of "v" cell)
469 C Mean flow component of meridional flux -> fMer
470 CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
471
472 C-- Vertical flux (fVer is at upper face of "v" cell)
473 C Mean flow component of vertical flux (at k+1) -> fVerV
474 CALL MOM_V_ADV_WV(
475 I bi,bj,k+1,vVel,wVel,rTransV,
476 O fVerV(1-OLx,1-OLy,kDown), myThid )
477
478 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
479 DO j=jMin,jMax
480 DO i=iMin,iMax
481 gV(i,j,k,bi,bj) =
482 #ifdef OLD_UV_GEOM
483 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
484 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
485 #else
486 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
487 & *recip_rAs(i,j,bi,bj)
488 #endif
489 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
490 & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
491 & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
492 & )
493 ENDDO
494 ENDDO
495
496 #ifdef ALLOW_DIAGNOSTICS
497 IF ( useDiagnostics ) THEN
498 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)
499 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)
500 CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),
501 & 'ADVrE_Vm',k,1,2,bi,bj,myThid)
502 ENDIF
503 #endif
504
505 #ifdef NONLIN_FRSURF
506 C-- account for 3.D divergence of the flow in rStar coordinate:
507 IF ( select_rStar.GT.0 ) THEN
508 DO j=jMin,jMax
509 DO i=iMin,iMax
510 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
511 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
512 & *vVel(i,j,k,bi,bj)
513 ENDDO
514 ENDDO
515 ENDIF
516 IF ( select_rStar.LT.0 ) THEN
517 DO j=jMin,jMax
518 DO i=iMin,iMax
519 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
520 & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
521 ENDDO
522 ENDDO
523 ENDIF
524 #endif /* NONLIN_FRSURF */
525
526 ELSE
527 C- if momAdvection / else
528 DO j=1-OLy,sNy+OLy
529 DO i=1-OLx,sNx+OLx
530 gV(i,j,k,bi,bj) = 0. _d 0
531 ENDDO
532 ENDDO
533
534 C- endif momAdvection.
535 ENDIF
536
537 IF (momViscosity) THEN
538 C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
539 C Bi-harmonic term del^2 V -> v4F
540 IF (biharmonic)
541 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
542
543 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
544 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
545 I viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,myThid)
546
547 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
548 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
549 I viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,myThid)
550
551 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
552 IF (.NOT.implicitViscosity) THEN
553 CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
554 CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
555 ENDIF
556
557 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
558 DO j=jMin,jMax
559 DO i=iMin,iMax
560 gvDiss(i,j) =
561 #ifdef OLD_UV_GEOM
562 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
563 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
564 #else
565 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
566 & *recip_rAs(i,j,bi,bj)
567 #endif
568 & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
569 & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
570 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
571 & )
572 ENDDO
573 ENDDO
574
575 #ifdef ALLOW_DIAGNOSTICS
576 IF ( useDiagnostics ) THEN
577 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
578 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
579 IF (.NOT.implicitViscosity)
580 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
581 ENDIF
582 #endif
583
584 C-- No-slip and drag BCs appear as body forces in cell abutting topography
585 IF (no_slip_sides) THEN
586 C- No-slip BCs impose a drag at walls...
587 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,v4F,hFacZ,vF,myThid)
588 DO j=jMin,jMax
589 DO i=iMin,iMax
590 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
591 ENDDO
592 ENDDO
593 ENDIF
594 C- No-slip BCs impose a drag at bottom
595 IF (bottomDragTerms) THEN
596 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
597 DO j=jMin,jMax
598 DO i=iMin,iMax
599 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
600 ENDDO
601 ENDDO
602 ENDIF
603
604 C- endif momViscosity
605 ENDIF
606
607 C-- Forcing term (moved to timestep.F)
608 c IF (momForcing)
609 c & CALL EXTERNAL_FORCING_V(
610 c I iMin,iMax,jMin,jMax,bi,bj,k,
611 c I myTime,myThid)
612
613 C-- Metric terms for curvilinear grid systems
614 IF (useNHMTerms) THEN
615 C o Spherical polar grid metric terms
616 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
617 DO j=jMin,jMax
618 DO i=iMin,iMax
619 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
620 ENDDO
621 ENDDO
622 ENDIF
623 IF (usingSphericalPolarMTerms) THEN
624 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
625 DO j=jMin,jMax
626 DO i=iMin,iMax
627 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
628 ENDDO
629 ENDDO
630 ENDIF
631 IF (usingCylindricalGrid) THEN
632 CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
633 DO j=jMin,jMax
634 DO i=iMin,iMax
635 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
636 ENDDO
637 ENDDO
638 ENDIF
639
640 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
641
642 C-- Coriolis term
643 C Note. As coded here, coriolis will not work with "thin walls"
644 c IF (useCDscheme) THEN
645 c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
646 c ELSE
647 IF (.NOT.useCDscheme) THEN
648 CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
649 DO j=jMin,jMax
650 DO i=iMin,iMax
651 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
652 ENDDO
653 ENDDO
654 #ifdef ALLOW_DIAGNOSTICS
655 IF ( useDiagnostics )
656 & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
657 #endif
658 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
659 DO j=jMin,jMax
660 DO i=iMin,iMax
661 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
662 ENDDO
663 ENDDO
664 #ifdef ALLOW_DIAGNOSTICS
665 IF ( useDiagnostics )
666 & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
667 #endif
668 ENDIF
669
670 IF (nonHydrostatic.OR.quasiHydrostatic) THEN
671 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
672 DO j=jMin,jMax
673 DO i=iMin,iMax
674 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
675 ENDDO
676 ENDDO
677 ENDIF
678
679 C-- Set du/dt & dv/dt on boundaries to zero
680 DO j=jMin,jMax
681 DO i=iMin,iMax
682 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
683 guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
684 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
685 gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
686 ENDDO
687 ENDDO
688
689 #ifdef ALLOW_DIAGNOSTICS
690 IF ( useDiagnostics ) THEN
691 IF (bottomDragTerms)
692 & CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
693 CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),
694 & 'Um_Advec',k,1,2,bi,bj,myThid)
695 CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),
696 & 'Vm_Advec',k,1,2,bi,bj,myThid)
697 IF (momViscosity) THEN
698 CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
699 CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
700 ENDIF
701 ENDIF
702 #endif /* ALLOW_DIAGNOSTICS */
703
704 RETURN
705 END

  ViewVC Help
Powered by ViewVC 1.1.22