/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.12 - (show annotations) (download)
Thu Apr 17 13:44:10 2003 UTC (21 years ago) by jmc
Branch: MAIN
CVS Tags: checkpoint50c_post, checkpoint50c_pre, checkpoint51, checkpoint50d_post, checkpoint51f_post, checkpoint51d_post, checkpoint51b_pre, checkpoint51h_pre, checkpoint50f_post, checkpoint50f_pre, branchpoint-genmake2, checkpoint51b_post, checkpoint51c_post, checkpoint50g_post, checkpoint50h_post, checkpoint50e_pre, checkpoint50i_post, checkpoint51i_pre, checkpoint50e_post, checkpoint50d_pre, checkpoint51e_post, checkpoint51f_pre, checkpoint51g_post, checkpoint50b_post, checkpoint51a_post
Branch point for: branch-genmake2
Changes since 1.11: +29 -27 lines
o to allow to put the momForcing out of the Adams-Bashforth:
  move forcing & CD-scheme calls from mom_fluxform & mom_vecinv
  to timestep.F
o new flag "useCDscheme" (default=F); replace guCD,gvCD by local arrays

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.11 2003/02/18 15:36:45 jmc Exp $
2 C $Name: $
3
4 CBOI
5 C !TITLE: pkg/mom\_advdiff
6 C !AUTHORS: adcroft@mit.edu
7 C !INTRODUCTION: Flux-form Momentum Equations Package
8 C
9 C Package "mom\_fluxform" provides methods for calculating explicit terms
10 C in the momentum equation cast in flux-form:
11 C \begin{eqnarray*}
12 C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13 C -\nabla \cdot {\bf v} u
14 C -fv
15 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16 C + \mbox{metrics}
17 C \\
18 C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19 C -\nabla \cdot {\bf v} v
20 C +fu
21 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22 C + \mbox{metrics}
23 C \end{eqnarray*}
24 C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25 C stresses as well as internal viscous stresses.
26 CEOI
27
28 #include "CPP_OPTIONS.h"
29
30 CBOP
31 C !ROUTINE: MOM_FLUXFORM
32
33 C !INTERFACE: ==========================================================
34 SUBROUTINE MOM_FLUXFORM(
35 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 I dPhihydX,dPhiHydY,KappaRU,KappaRV,
37 U fVerU, fVerV,
38 I myTime,myIter,myThid)
39
40 C !DESCRIPTION:
41 C Calculates all the horizontal accelerations except for the implicit surface
42 C pressure gradient and implciit vertical viscosity.
43
44 C !USES: ===============================================================
45 C == Global variables ==
46 IMPLICIT NONE
47 #include "SIZE.h"
48 #include "DYNVARS.h"
49 #include "FFIELDS.h"
50 #include "EEPARAMS.h"
51 #include "PARAMS.h"
52 #include "GRID.h"
53 #include "SURFACE.h"
54
55 C !INPUT PARAMETERS: ===================================================
56 C bi,bj :: tile indices
57 C iMin,iMax,jMin,jMAx :: loop ranges
58 C k :: vertical level
59 C kUp :: =1 or 2 for consecutive k
60 C kDown :: =2 or 1 for consecutive k
61 C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential
62 C KappaRU :: vertical viscosity
63 C KappaRV :: vertical viscosity
64 C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
65 C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
66 C myTime :: current time
67 C myIter :: current time-step number
68 C myThid :: thread number
69 INTEGER bi,bj,iMin,iMax,jMin,jMax
70 INTEGER k,kUp,kDown
71 _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
76 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
77 _RL myTime
78 INTEGER myIter
79 INTEGER myThid
80
81 C !OUTPUT PARAMETERS: ==================================================
82 C None - updates gU() and gV() in common blocks
83
84 C !LOCAL VARIABLES: ====================================================
85 C i,j :: loop indices
86 C aF :: advective flux
87 C vF :: viscous flux
88 C v4F :: bi-harmonic viscous flux
89 C vrF :: vertical viscous flux
90 C cF :: Coriolis acceleration
91 C mT :: Metric terms
92 C pF :: Pressure gradient
93 C fZon :: zonal fluxes
94 C fMer :: meridional fluxes
95 INTEGER i,j
96 _RL aF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL vrF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL pF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105 C wMaskOverride - Land sea flag override for top layer.
106 C afFacMom - Tracer parameters for turning terms
107 C vfFacMom on and off.
108 C pfFacMom afFacMom - Advective terms
109 C cfFacMom vfFacMom - Eddy viscosity terms
110 C mTFacMom pfFacMom - Pressure terms
111 C cfFacMom - Coriolis terms
112 C foFacMom - Forcing
113 C mTFacMom - Metric term
114 C uDudxFac, AhDudxFac, etc ... individual term tracer parameters
115 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 C I,J,K - Loop counters
126 C rVelMaskOverride - Factor for imposing special surface boundary conditions
127 C ( set according to free-surface condition ).
128 C hFacROpen - Lopped cell factos used tohold fraction of open
129 C hFacRClosed and closed cell wall.
130 _RL rVelMaskOverride
131 C xxxFac - On-off tracer parameters used for switching terms off.
132 _RL uDudxFac
133 _RL AhDudxFac
134 _RL A4DuxxdxFac
135 _RL vDudyFac
136 _RL AhDudyFac
137 _RL A4DuyydyFac
138 _RL rVelDudrFac
139 _RL ArDudrFac
140 _RL fuFac
141 _RL phxFac
142 _RL mtFacU
143 _RL uDvdxFac
144 _RL AhDvdxFac
145 _RL A4DvxxdxFac
146 _RL vDvdyFac
147 _RL AhDvdyFac
148 _RL A4DvyydyFac
149 _RL rVelDvdrFac
150 _RL ArDvdrFac
151 _RL fvFac
152 _RL phyFac
153 _RL vForcFac
154 _RL mtFacV
155 INTEGER km1,kp1
156 _RL wVelBottomOverride
157 LOGICAL bottomDragTerms
158 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
159 CEOP
160
161 km1=MAX(1,k-1)
162 kp1=MIN(Nr,k+1)
163 rVelMaskOverride=1.
164 IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac
165 wVelBottomOverride=1.
166 IF (k.EQ.Nr) wVelBottomOverride=0.
167
168 C Initialise intermediate terms
169 DO J=1-OLy,sNy+OLy
170 DO I=1-OLx,sNx+OLx
171 aF(i,j) = 0.
172 vF(i,j) = 0.
173 v4F(i,j) = 0.
174 vrF(i,j) = 0.
175 cF(i,j) = 0.
176 mT(i,j) = 0.
177 pF(i,j) = 0.
178 fZon(i,j) = 0.
179 fMer(i,j) = 0.
180 rTransU(i,j) = 0.
181 rTransV(i,j) = 0.
182 ENDDO
183 ENDDO
184
185 C-- Term by term tracer parmeters
186 C o U momentum equation
187 uDudxFac = afFacMom*1.
188 AhDudxFac = vfFacMom*1.
189 A4DuxxdxFac = vfFacMom*1.
190 vDudyFac = afFacMom*1.
191 AhDudyFac = vfFacMom*1.
192 A4DuyydyFac = vfFacMom*1.
193 rVelDudrFac = afFacMom*1.
194 ArDudrFac = vfFacMom*1.
195 mTFacU = mtFacMom*1.
196 fuFac = cfFacMom*1.
197 phxFac = pfFacMom*1.
198 C o V momentum equation
199 uDvdxFac = afFacMom*1.
200 AhDvdxFac = vfFacMom*1.
201 A4DvxxdxFac = vfFacMom*1.
202 vDvdyFac = afFacMom*1.
203 AhDvdyFac = vfFacMom*1.
204 A4DvyydyFac = vfFacMom*1.
205 rVelDvdrFac = afFacMom*1.
206 ArDvdrFac = vfFacMom*1.
207 mTFacV = mtFacMom*1.
208 fvFac = cfFacMom*1.
209 phyFac = pfFacMom*1.
210 vForcFac = foFacMom*1.
211
212 IF ( no_slip_bottom
213 & .OR. bottomDragQuadratic.NE.0.
214 & .OR. bottomDragLinear.NE.0.) THEN
215 bottomDragTerms=.TRUE.
216 ELSE
217 bottomDragTerms=.FALSE.
218 ENDIF
219
220 C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP
221 IF (staggerTimeStep) THEN
222 phxFac = 0.
223 phyFac = 0.
224 ENDIF
225
226 C-- Calculate open water fraction at vorticity points
227 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
228
229 C---- Calculate common quantities used in both U and V equations
230 C Calculate tracer cell face open areas
231 DO j=1-OLy,sNy+OLy
232 DO i=1-OLx,sNx+OLx
233 xA(i,j) = _dyG(i,j,bi,bj)
234 & *drF(k)*_hFacW(i,j,k,bi,bj)
235 yA(i,j) = _dxG(i,j,bi,bj)
236 & *drF(k)*_hFacS(i,j,k,bi,bj)
237 ENDDO
238 ENDDO
239
240 C Make local copies of horizontal flow field
241 DO j=1-OLy,sNy+OLy
242 DO i=1-OLx,sNx+OLx
243 uFld(i,j) = uVel(i,j,k,bi,bj)
244 vFld(i,j) = vVel(i,j,k,bi,bj)
245 ENDDO
246 ENDDO
247
248 C Calculate velocity field "volume transports" through tracer cell faces.
249 DO j=1-OLy,sNy+OLy
250 DO i=1-OLx,sNx+OLx
251 uTrans(i,j) = uFld(i,j)*xA(i,j)
252 vTrans(i,j) = vFld(i,j)*yA(i,j)
253 ENDDO
254 ENDDO
255
256 CALL MOM_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid)
257
258 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
259 IF (momAdvection.AND.k.EQ.1) THEN
260
261 C- Calculate vertical transports above U & V points (West & South face):
262 CALL MOM_CALC_RTRANS( k, bi, bj,
263 O rTransU, rTransV,
264 I myTime, myIter, myThid)
265
266 C- Free surface correction term (flux at k=1)
267 CALL MOM_U_ADV_WU(bi,bj,k,uVel,wVel,rTransU,af,myThid)
268 DO j=jMin,jMax
269 DO i=iMin,iMax
270 fVerU(i,j,kUp) = af(i,j)
271 ENDDO
272 ENDDO
273
274 CALL MOM_V_ADV_WV(bi,bj,k,vVel,wVel,rTransV,af,myThid)
275 DO j=jMin,jMax
276 DO i=iMin,iMax
277 fVerV(i,j,kUp) = af(i,j)
278 ENDDO
279 ENDDO
280
281 C--- endif momAdvection & k=1
282 ENDIF
283
284
285 C--- Calculate vertical transports (at k+1) below U & V points :
286 IF (momAdvection) THEN
287 CALL MOM_CALC_RTRANS( k+1, bi, bj,
288 O rTransU, rTransV,
289 I myTime, myIter, myThid)
290 ENDIF
291
292
293 C---- Zonal momentum equation starts here
294
295 C Bi-harmonic term del^2 U -> v4F
296 IF (momViscosity .AND. viscA4.NE.0. )
297 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
298
299 C--- Calculate mean and eddy fluxes between cells for zonal flow.
300
301 C-- Zonal flux (fZon is at east face of "u" cell)
302
303 C Mean flow component of zonal flux -> aF
304 IF (momAdvection)
305 & CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,aF,myThid)
306
307 C Laplacian and bi-harmonic terms -> vF
308 IF (momViscosity)
309 & CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,vF,myThid)
310
311 C Combine fluxes -> fZon
312 DO j=jMin,jMax
313 DO i=iMin,iMax
314 fZon(i,j) = uDudxFac*aF(i,j) + AhDudxFac*vF(i,j)
315 ENDDO
316 ENDDO
317
318 C-- Meridional flux (fMer is at south face of "u" cell)
319
320 C Mean flow component of meridional flux
321 IF (momAdvection)
322 & CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,aF,myThid)
323
324 C Laplacian and bi-harmonic term
325 IF (momViscosity)
326 & CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,vF,myThid)
327
328 C Combine fluxes -> fMer
329 DO j=jMin,jMax+1
330 DO i=iMin,iMax
331 fMer(i,j) = vDudyFac*aF(i,j) + AhDudyFac*vF(i,j)
332 ENDDO
333 ENDDO
334
335 C-- Vertical flux (fVer is at upper face of "u" cell)
336
337 C Mean flow component of vertical flux (at k+1) -> aF
338 IF (momAdvection)
339 & CALL MOM_U_ADV_WU(bi,bj,k+1,uVel,wVel,rTransU,af,myThid)
340
341 C Eddy component of vertical flux (interior component only) -> vrF
342 IF (momViscosity.AND..NOT.implicitViscosity)
343 & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid)
344
345 C Combine fluxes
346 DO j=jMin,jMax
347 DO i=iMin,iMax
348 fVerU(i,j,kDown) = rVelDudrFac*aF(i,j) + ArDudrFac*vrF(i,j)
349 ENDDO
350 ENDDO
351
352 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
353 DO j=jMin,jMax
354 DO i=iMin,iMax
355 gU(i,j,k,bi,bj) =
356 #ifdef OLD_UV_GEOM
357 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
358 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
359 #else
360 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
361 & *recip_rAw(i,j,bi,bj)
362 #endif
363 & *(fZon(i,j ) - fZon(i-1,j)
364 & +fMer(i,j+1) - fMer(i ,j)
365 & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
366 & )
367 & - phxFac*dPhiHydX(i,j)
368 ENDDO
369 ENDDO
370
371 #ifdef NONLIN_FRSURF
372 C-- account for 3.D divergence of the flow in rStar coordinate:
373 IF ( momAdvection .AND. select_rStar.GT.0 ) THEN
374 DO j=jMin,jMax
375 DO i=iMin,iMax
376 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
377 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
378 & *uVel(i,j,k,bi,bj)
379 ENDDO
380 ENDDO
381 ENDIF
382 IF ( momAdvection .AND. select_rStar.LT.0 ) THEN
383 DO j=jMin,jMax
384 DO i=iMin,iMax
385 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
386 & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
387 ENDDO
388 ENDDO
389 ENDIF
390 #endif /* NONLIN_FRSURF */
391
392 C-- No-slip and drag BCs appear as body forces in cell abutting topography
393 IF (momViscosity.AND.no_slip_sides) THEN
394 C- No-slip BCs impose a drag at walls...
395 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,v4F,hFacZ,vF,myThid)
396 DO j=jMin,jMax
397 DO i=iMin,iMax
398 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
399 ENDDO
400 ENDDO
401 ENDIF
402 C- No-slip BCs impose a drag at bottom
403 IF (momViscosity.AND.bottomDragTerms) THEN
404 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
405 DO j=jMin,jMax
406 DO i=iMin,iMax
407 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
408 ENDDO
409 ENDDO
410 ENDIF
411
412 C-- Forcing term (moved to timestep.F)
413 c IF (momForcing)
414 c & CALL EXTERNAL_FORCING_U(
415 c I iMin,iMax,jMin,jMax,bi,bj,k,
416 c I myTime,myThid)
417
418 C-- Metric terms for curvilinear grid systems
419 IF (useNHMTerms) THEN
420 C o Non-hydrosatic metric terms
421 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
422 DO j=jMin,jMax
423 DO i=iMin,iMax
424 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
425 ENDDO
426 ENDDO
427 ENDIF
428 IF (usingSphericalPolarMTerms) THEN
429 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
430 DO j=jMin,jMax
431 DO i=iMin,iMax
432 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
433 ENDDO
434 ENDDO
435 ENDIF
436
437 C-- Set du/dt on boundaries to zero
438 DO j=jMin,jMax
439 DO i=iMin,iMax
440 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
441 ENDDO
442 ENDDO
443
444
445 C---- Meridional momentum equation starts here
446
447 C Bi-harmonic term del^2 V -> v4F
448 IF (momViscosity .AND. viscA4.NE.0. )
449 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
450
451 C--- Calculate mean and eddy fluxes between cells for meridional flow.
452
453 C-- Zonal flux (fZon is at west face of "v" cell)
454
455 C Mean flow component of zonal flux -> aF
456 IF (momAdvection)
457 & CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,af,myThid)
458
459 C Laplacian and bi-harmonic terms -> vF
460 IF (momViscosity)
461 & CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,vf,myThid)
462
463 C Combine fluxes -> fZon
464 DO j=jMin,jMax
465 DO i=iMin,iMax+1
466 fZon(i,j) = uDvdxFac*aF(i,j) + AhDvdxFac*vF(i,j)
467 ENDDO
468 ENDDO
469
470 C-- Meridional flux (fMer is at north face of "v" cell)
471
472 C Mean flow component of meridional flux
473 IF (momAdvection)
474 & CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,af,myThid)
475
476 C Laplacian and bi-harmonic term
477 IF (momViscosity)
478 & CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,vf,myThid)
479
480 C Combine fluxes -> fMer
481 DO j=jMin,jMax
482 DO i=iMin,iMax
483 fMer(i,j) = vDvdyFac*aF(i,j) + AhDvdyFac*vF(i,j)
484 ENDDO
485 ENDDO
486
487 C-- Vertical flux (fVer is at upper face of "v" cell)
488
489 C o Mean flow component of vertical flux
490 IF (momAdvection)
491 & CALL MOM_V_ADV_WV(bi,bj,k+1,vVel,wVel,rTransV,af,myThid)
492
493 C Eddy component of vertical flux (interior component only) -> vrF
494 IF (momViscosity.AND..NOT.implicitViscosity)
495 & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid)
496
497 C Combine fluxes -> fVerV
498 DO j=jMin,jMax
499 DO i=iMin,iMax
500 fVerV(i,j,kDown) = rVelDvdrFac*aF(i,j) + ArDvdrFac*vrF(i,j)
501 ENDDO
502 ENDDO
503
504 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
505 DO j=jMin,jMax
506 DO i=iMin,iMax
507 gV(i,j,k,bi,bj) =
508 #ifdef OLD_UV_GEOM
509 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
510 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
511 #else
512 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
513 & *recip_rAs(i,j,bi,bj)
514 #endif
515 & *(fZon(i+1,j) - fZon(i,j )
516 & +fMer(i,j ) - fMer(i,j-1)
517 & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
518 & )
519 & - phyFac*dPhiHydY(i,j)
520 ENDDO
521 ENDDO
522
523 #ifdef NONLIN_FRSURF
524 C-- account for 3.D divergence of the flow in rStar coordinate:
525 IF ( momAdvection .AND. select_rStar.GT.0 ) THEN
526 DO j=jMin,jMax
527 DO i=iMin,iMax
528 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
529 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
530 & *vVel(i,j,k,bi,bj)
531 ENDDO
532 ENDDO
533 ENDIF
534 IF ( momAdvection .AND. select_rStar.LT.0 ) THEN
535 DO j=jMin,jMax
536 DO i=iMin,iMax
537 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
538 & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
539 ENDDO
540 ENDDO
541 ENDIF
542 #endif /* NONLIN_FRSURF */
543
544 C-- No-slip and drag BCs appear as body forces in cell abutting topography
545 IF (momViscosity.AND.no_slip_sides) THEN
546 C- No-slip BCs impose a drag at walls...
547 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,v4F,hFacZ,vF,myThid)
548 DO j=jMin,jMax
549 DO i=iMin,iMax
550 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
551 ENDDO
552 ENDDO
553 ENDIF
554 C- No-slip BCs impose a drag at bottom
555 IF (momViscosity.AND.bottomDragTerms) THEN
556 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
557 DO j=jMin,jMax
558 DO i=iMin,iMax
559 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
560 ENDDO
561 ENDDO
562 ENDIF
563
564 C-- Forcing term (moved to timestep.F)
565 c IF (momForcing)
566 c & CALL EXTERNAL_FORCING_V(
567 c I iMin,iMax,jMin,jMax,bi,bj,k,
568 c I myTime,myThid)
569
570 C-- Metric terms for curvilinear grid systems
571 IF (useNHMTerms) THEN
572 C o Spherical polar grid metric terms
573 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
574 DO j=jMin,jMax
575 DO i=iMin,iMax
576 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
577 ENDDO
578 ENDDO
579 ENDIF
580 IF (usingSphericalPolarMTerms) THEN
581 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
582 DO j=jMin,jMax
583 DO i=iMin,iMax
584 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
585 ENDDO
586 ENDDO
587 ENDIF
588
589 C-- Set dv/dt on boundaries to zero
590 DO j=jMin,jMax
591 DO i=iMin,iMax
592 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
593 ENDDO
594 ENDDO
595
596 C-- Coriolis term
597 C Note. As coded here, coriolis will not work with "thin walls"
598 c IF (useCDscheme) THEN
599 c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
600 c ELSE
601 IF (.NOT.useCDscheme) THEN
602 CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
603 DO j=jMin,jMax
604 DO i=iMin,iMax
605 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
606 ENDDO
607 ENDDO
608 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
609 DO j=jMin,jMax
610 DO i=iMin,iMax
611 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
612 ENDDO
613 ENDDO
614 ENDIF
615
616 IF (nonHydrostatic.OR.quasiHydrostatic) THEN
617 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
618 DO j=jMin,jMax
619 DO i=iMin,iMax
620 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
621 ENDDO
622 ENDDO
623 ENDIF
624
625 RETURN
626 END

  ViewVC Help
Powered by ViewVC 1.1.22