/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Diff of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.48 by jmc, Mon Feb 3 22:55:44 2014 UTC revision 1.49 by jmc, Sun Feb 9 18:51:46 2014 UTC
# Line 128  C                     foFacMom - Forcing Line 128  C                     foFacMom - Forcing
128  C                     mtFacMom - Metric term  C                     mtFacMom - Metric term
129  C     uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off  C     uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
130        _RS    hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RS    hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131          _RS   h0FacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132        _RS  r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RS  r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
133        _RS      xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RS      xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
134        _RS      yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RS      yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
# Line 257  C       vorticity at a no-slip boundary Line 258  C       vorticity at a no-slip boundary
258        ENDIF        ENDIF
259    
260  C--   Calculate open water fraction at vorticity points  C--   Calculate open water fraction at vorticity points
261        CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)        CALL MOM_CALC_HFACZ( bi,bj,k,hFacZ,r_hFacZ,myThid )
262    
263  C---- Calculate common quantities used in both U and V equations  C---- Calculate common quantities used in both U and V equations
264  C     Calculate tracer cell face open areas  C     Calculate tracer cell face open areas
# Line 267  C     Calculate tracer cell face open ar Line 268  C     Calculate tracer cell face open ar
268       &          *drF(k)*_hFacW(i,j,k,bi,bj)       &          *drF(k)*_hFacW(i,j,k,bi,bj)
269          yA(i,j) = _dxG(i,j,bi,bj)*deepFacC(k)          yA(i,j) = _dxG(i,j,bi,bj)*deepFacC(k)
270       &          *drF(k)*_hFacS(i,j,k,bi,bj)       &          *drF(k)*_hFacS(i,j,k,bi,bj)
271            h0FacZ(i,j) = hFacZ(i,j)
272         ENDDO         ENDDO
273        ENDDO        ENDDO
274    #ifdef NONLIN_FRSURF
275          IF ( momViscosity .AND. no_slip_sides
276         &                  .AND. nonlinFreeSurf.GT.0 ) THEN
277            DO j=2-OLy,sNy+OLy
278             DO i=2-OLx,sNx+OLx
279              h0FacZ(i,j) = MIN(
280         &       MIN( h0FacW(i,j,k,bi,bj), h0FacW(i,j-1,k,bi,bj) ),
281         &       MIN( h0FacS(i,j,k,bi,bj), h0FacS(i-1,j,k,bi,bj) ) )
282             ENDDO
283            ENDDO
284           ENDIF
285    #endif /* NONLIN_FRSURF */
286    
287  C     Make local copies of horizontal flow field  C     Make local copies of horizontal flow field
288        DO j=1-OLy,sNy+OLy        DO j=1-OLy,sNy+OLy
# Line 287  C     anelastic: transports are scaled b Line 301  C     anelastic: transports are scaled b
301         ENDDO         ENDDO
302        ENDDO        ENDDO
303    
304        CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)        CALL MOM_CALC_KE( bi,bj,k,2,uFld,vFld,KE,myThid )
305        IF ( momViscosity) THEN        IF ( momViscosity ) THEN
306          CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)          CALL MOM_CALC_HDIV( bi,bj,k,2,uFld,vFld,hDiv,myThid )
307          CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)          CALL MOM_CALC_RELVORT3( bi,bj,k,uFld,vFld,hFacZ,vort3,myThid )
308          CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)          CALL MOM_CALC_TENSION( bi,bj,k,uFld,vFld,tension,myThid )
309          CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)          CALL MOM_CALC_STRAIN( bi,bj,k,uFld,vFld,hFacZ,strain,myThid )
310          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
311           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
312             IF ( hFacZ(i,j).EQ.0. ) THEN             IF ( hFacZ(i,j).EQ.0. ) THEN
# Line 338  CADJ &     comlev1_bibj_k, key = imomkey Line 352  CADJ &     comlev1_bibj_k, key = imomkey
352  #endif /* ALLOW_AUTODIFF_TAMC */  #endif /* ALLOW_AUTODIFF_TAMC */
353          CALL MOM_CALC_RTRANS( k, bi, bj,          CALL MOM_CALC_RTRANS( k, bi, bj,
354       O                        rTransU, rTransV,       O                        rTransU, rTransV,
355       I                        myTime, myIter, myThid)       I                        myTime, myIter, myThid )
356    
357  C-    Free surface correction term (flux at k=1)  C-    Free surface correction term (flux at k=1)
358          CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,          CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
# Line 354  C---  Calculate vertical transports (at Line 368  C---  Calculate vertical transports (at
368        IF (momAdvection) THEN        IF (momAdvection) THEN
369          CALL MOM_CALC_RTRANS( k+1, bi, bj,          CALL MOM_CALC_RTRANS( k+1, bi, bj,
370       O                        rTransU, rTransV,       O                        rTransU, rTransV,
371       I                        myTime, myIter, myThid)       I                        myTime, myIter, myThid )
372        ENDIF        ENDIF
373    
374  #ifdef MOM_BOUNDARY_CONSERVE  #ifdef MOM_BOUNDARY_CONSERVE
# Line 402  C---  Calculate mean fluxes (advection) Line 416  C---  Calculate mean fluxes (advection)
416  #else /* MOM_BOUNDARY_CONSERVE */  #else /* MOM_BOUNDARY_CONSERVE */
417  C--   Zonal flux (fZon is at east face of "u" cell)  C--   Zonal flux (fZon is at east face of "u" cell)
418  C     Mean flow component of zonal flux -> fZon  C     Mean flow component of zonal flux -> fZon
419          CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)          CALL MOM_U_ADV_UU( bi,bj,k,uTrans,uFld,fZon,myThid )
420    
421  C--   Meridional flux (fMer is at south face of "u" cell)  C--   Meridional flux (fMer is at south face of "u" cell)
422  C     Mean flow component of meridional flux -> fMer  C     Mean flow component of meridional flux -> fMer
423          CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)          CALL MOM_U_ADV_VU( bi,bj,k,vTrans,uFld,fMer,myThid )
424    
425  C--   Vertical flux (fVer is at upper face of "u" cell)  C--   Vertical flux (fVer is at upper face of "u" cell)
426  C     Mean flow component of vertical flux (at k+1) -> fVer  C     Mean flow component of vertical flux (at k+1) -> fVer
# Line 494  C---  Calculate eddy fluxes (dissipation Line 508  C---  Calculate eddy fluxes (dissipation
508    
509  C     Bi-harmonic term del^2 U -> v4F  C     Bi-harmonic term del^2 U -> v4F
510          IF ( useBiharmonicVisc )          IF ( useBiharmonicVisc )
511       &  CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)       &  CALL MOM_U_DEL2U( bi, bj, k, uFld, hFacZ, h0FacZ,
512         O                    v4f, myThid )
513    
514  C     Laplacian and bi-harmonic terms, Zonal  Fluxes -> fZon  C     Laplacian and bi-harmonic terms, Zonal  Fluxes -> fZon
515          CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,          CALL MOM_U_XVISCFLUX( bi,bj,k,uFld,v4F,fZon,
516       I    viscAh_D,viscA4_D,myThid)       I                        viscAh_D,viscA4_D,myThid )
517    
518  C     Laplacian and bi-harmonic termis, Merid Fluxes -> fMer  C     Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
519          CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,          CALL MOM_U_YVISCFLUX( bi,bj,k,uFld,v4F,hFacZ,fMer,
520       I    viscAh_Z,viscA4_Z,myThid)       I                        viscAh_Z,viscA4_Z,myThid )
521    
522  C     Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw  C     Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
523         IF (.NOT.implicitViscosity) THEN         IF (.NOT.implicitViscosity) THEN
524          CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)          CALL MOM_U_RVISCFLUX( bi,bj, k, uVel,KappaRU,fVrUp,myThid )
525          CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)          CALL MOM_U_RVISCFLUX( bi,bj,k+1,uVel,KappaRU,fVrDw,myThid )
526         ENDIF         ENDIF
527    
528  C--   Tendency is minus divergence of the fluxes  C--   Tendency is minus divergence of the fluxes
# Line 543  C-- No-slip and drag BCs appear as body Line 558  C-- No-slip and drag BCs appear as body
558          IF (no_slip_sides) THEN          IF (no_slip_sides) THEN
559  C-     No-slip BCs impose a drag at walls...  C-     No-slip BCs impose a drag at walls...
560           CALL MOM_U_SIDEDRAG( bi, bj, k,           CALL MOM_U_SIDEDRAG( bi, bj, k,
561       I        uFld, v4f, hFacZ,       I        uFld, v4f, h0FacZ,
562       I        viscAh_Z, viscA4_Z,       I        viscAh_Z, viscA4_Z,
563       I        useHarmonicVisc, useBiharmonicVisc, useVariableVisc,       I        useHarmonicVisc, useBiharmonicVisc, useVariableVisc,
564       O        vF,       O        vF,
# Line 556  C-     No-slip BCs impose a drag at wall Line 571  C-     No-slip BCs impose a drag at wall
571          ENDIF          ENDIF
572  C-    No-slip BCs impose a drag at bottom  C-    No-slip BCs impose a drag at bottom
573          IF (bottomDragTerms) THEN          IF (bottomDragTerms) THEN
574           CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)           CALL MOM_U_BOTTOMDRAG( bi,bj,k,uFld,KE,KappaRU,vF,myThid )
575           DO j=jMin,jMax           DO j=jMin,jMax
576            DO i=iMin,iMax            DO i=iMin,iMax
577             gUdiss(i,j) = gUdiss(i,j) + vF(i,j)             gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
# Line 566  C-    No-slip BCs impose a drag at botto Line 581  C-    No-slip BCs impose a drag at botto
581    
582  #ifdef ALLOW_SHELFICE  #ifdef ALLOW_SHELFICE
583          IF (useShelfIce) THEN          IF (useShelfIce) THEN
584           CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)           CALL SHELFICE_U_DRAG( bi,bj,k,uFld,KE,KappaRU,vF,myThid )
585           DO j=jMin,jMax           DO j=jMin,jMax
586            DO i=iMin,iMax            DO i=iMin,iMax
587             gUdiss(i,j) = gUdiss(i,j) + vF(i,j)             gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
# Line 587  c    I     myTime,myThid) Line 602  c    I     myTime,myThid)
602  C--   Metric terms for curvilinear grid systems  C--   Metric terms for curvilinear grid systems
603        IF (useNHMTerms) THEN        IF (useNHMTerms) THEN
604  C      o Non-Hydrostatic (spherical) metric terms  C      o Non-Hydrostatic (spherical) metric terms
605         CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)         CALL MOM_U_METRIC_NH( bi,bj,k,uFld,wVel,mT,myThid )
606         DO j=jMin,jMax         DO j=jMin,jMax
607          DO i=iMin,iMax          DO i=iMin,iMax
608           gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j)           gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j)
# Line 596  C      o Non-Hydrostatic (spherical) met Line 611  C      o Non-Hydrostatic (spherical) met
611        ENDIF        ENDIF
612        IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN        IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
613  C      o Spherical polar grid metric terms  C      o Spherical polar grid metric terms
614         CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)         CALL MOM_U_METRIC_SPHERE( bi,bj,k,uFld,vFld,mT,myThid )
615         DO j=jMin,jMax         DO j=jMin,jMax
616          DO i=iMin,iMax          DO i=iMin,iMax
617           gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)           gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
# Line 605  C      o Spherical polar grid metric ter Line 620  C      o Spherical polar grid metric ter
620        ENDIF        ENDIF
621        IF ( usingCylindricalGrid .AND. metricTerms ) THEN        IF ( usingCylindricalGrid .AND. metricTerms ) THEN
622  C      o Cylindrical grid metric terms  C      o Cylindrical grid metric terms
623         CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)         CALL MOM_U_METRIC_CYLINDER( bi,bj,k,uFld,vFld,mT,myThid )
624         DO j=jMin,jMax         DO j=jMin,jMax
625          DO i=iMin,iMax          DO i=iMin,iMax
626           gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)           gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
# Line 719  C-    endif momAdvection. Line 734  C-    endif momAdvection.
734  C---  Calculate eddy fluxes (dissipation) between cells for meridional flow.  C---  Calculate eddy fluxes (dissipation) between cells for meridional flow.
735  C     Bi-harmonic term del^2 V -> v4F  C     Bi-harmonic term del^2 V -> v4F
736          IF ( useBiharmonicVisc )          IF ( useBiharmonicVisc )
737       &  CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)       &  CALL MOM_V_DEL2V( bi, bj, k, vFld, hFacZ, h0FacZ,
738         O                    v4f, myThid )
739    
740  C     Laplacian and bi-harmonic terms, Zonal  Fluxes -> fZon  C     Laplacian and bi-harmonic terms, Zonal  Fluxes -> fZon
741          CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,          CALL MOM_V_XVISCFLUX( bi,bj,k,vFld,v4f,hFacZ,fZon,
742       I    viscAh_Z,viscA4_Z,myThid)       I                        viscAh_Z,viscA4_Z,myThid )
743    
744  C     Laplacian and bi-harmonic termis, Merid Fluxes -> fMer  C     Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
745          CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,          CALL MOM_V_YVISCFLUX( bi,bj,k,vFld,v4f,fMer,
746       I    viscAh_D,viscA4_D,myThid)       I                        viscAh_D,viscA4_D,myThid )
747    
748  C     Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw  C     Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
749         IF (.NOT.implicitViscosity) THEN         IF (.NOT.implicitViscosity) THEN
750          CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)          CALL MOM_V_RVISCFLUX( bi,bj, k, vVel,KappaRV,fVrUp,myThid )
751          CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)          CALL MOM_V_RVISCFLUX( bi,bj,k+1,vVel,KappaRV,fVrDw,myThid )
752         ENDIF         ENDIF
753    
754  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term
# Line 768  C-- No-slip and drag BCs appear as body Line 784  C-- No-slip and drag BCs appear as body
784          IF (no_slip_sides) THEN          IF (no_slip_sides) THEN
785  C-     No-slip BCs impose a drag at walls...  C-     No-slip BCs impose a drag at walls...
786           CALL MOM_V_SIDEDRAG( bi, bj, k,           CALL MOM_V_SIDEDRAG( bi, bj, k,
787       I        vFld, v4f, hFacZ,       I        vFld, v4f, h0FacZ,
788       I        viscAh_Z,viscA4_Z,       I        viscAh_Z, viscA4_Z,
789       I        useHarmonicVisc, useBiharmonicVisc, useVariableVisc,       I        useHarmonicVisc, useBiharmonicVisc, useVariableVisc,
790       O        vF,       O        vF,
791       I        myThid )       I        myThid )
# Line 781  C-     No-slip BCs impose a drag at wall Line 797  C-     No-slip BCs impose a drag at wall
797          ENDIF          ENDIF
798  C-    No-slip BCs impose a drag at bottom  C-    No-slip BCs impose a drag at bottom
799          IF (bottomDragTerms) THEN          IF (bottomDragTerms) THEN
800           CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)           CALL MOM_V_BOTTOMDRAG( bi,bj,k,vFld,KE,KappaRV,vF,myThid )
801           DO j=jMin,jMax           DO j=jMin,jMax
802            DO i=iMin,iMax            DO i=iMin,iMax
803             gvDiss(i,j) = gvDiss(i,j) + vF(i,j)             gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
# Line 791  C-    No-slip BCs impose a drag at botto Line 807  C-    No-slip BCs impose a drag at botto
807    
808  #ifdef ALLOW_SHELFICE  #ifdef ALLOW_SHELFICE
809          IF (useShelfIce) THEN          IF (useShelfIce) THEN
810           CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)           CALL SHELFICE_V_DRAG( bi,bj,k,vFld,KE,KappaRV,vF,myThid )
811           DO j=jMin,jMax           DO j=jMin,jMax
812            DO i=iMin,iMax            DO i=iMin,iMax
813             gvDiss(i,j) = gvDiss(i,j) + vF(i,j)             gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
# Line 812  c    I     myTime,myThid) Line 828  c    I     myTime,myThid)
828  C--   Metric terms for curvilinear grid systems  C--   Metric terms for curvilinear grid systems
829        IF (useNHMTerms) THEN        IF (useNHMTerms) THEN
830  C      o Non-Hydrostatic (spherical) metric terms  C      o Non-Hydrostatic (spherical) metric terms
831         CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)         CALL MOM_V_METRIC_NH( bi,bj,k,vFld,wVel,mT,myThid )
832         DO j=jMin,jMax         DO j=jMin,jMax
833          DO i=iMin,iMax          DO i=iMin,iMax
834           gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j)           gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j)
# Line 821  C      o Non-Hydrostatic (spherical) met Line 837  C      o Non-Hydrostatic (spherical) met
837        ENDIF        ENDIF
838        IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN        IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
839  C      o Spherical polar grid metric terms  C      o Spherical polar grid metric terms
840         CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)         CALL MOM_V_METRIC_SPHERE( bi,bj,k,uFld,mT,myThid )
841         DO j=jMin,jMax         DO j=jMin,jMax
842          DO i=iMin,iMax          DO i=iMin,iMax
843           gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)           gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
# Line 830  C      o Spherical polar grid metric ter Line 846  C      o Spherical polar grid metric ter
846        ENDIF        ENDIF
847        IF ( usingCylindricalGrid .AND. metricTerms ) THEN        IF ( usingCylindricalGrid .AND. metricTerms ) THEN
848  C      o Cylindrical grid metric terms  C      o Cylindrical grid metric terms
849         CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)         CALL MOM_V_METRIC_CYLINDER( bi,bj,k,uFld,vFld,mT,myThid )
850         DO j=jMin,jMax         DO j=jMin,jMax
851          DO i=iMin,iMax          DO i=iMin,iMax
852           gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)           gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
# Line 842  C---+----1----+----2----+----3----+----4 Line 858  C---+----1----+----2----+----3----+----4
858    
859  C--   Coriolis term (call to CD_CODE_SCHEME has been moved to timestep.F)  C--   Coriolis term (call to CD_CODE_SCHEME has been moved to timestep.F)
860        IF (.NOT.useCDscheme) THEN        IF (.NOT.useCDscheme) THEN
861          CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)          CALL MOM_U_CORIOLIS( bi,bj,k,vFld,cf,myThid )
862          DO j=jMin,jMax          DO j=jMin,jMax
863           DO i=iMin,iMax           DO i=iMin,iMax
864            gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)            gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
# Line 852  C--   Coriolis term (call to CD_CODE_SCH Line 868  C--   Coriolis term (call to CD_CODE_SCH
868          IF ( useDiagnostics )          IF ( useDiagnostics )
869       &    CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)       &    CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
870  #endif  #endif
871          CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)          CALL MOM_V_CORIOLIS( bi,bj,k,uFld,cf,myThid )
872          DO j=jMin,jMax          DO j=jMin,jMax
873           DO i=iMin,iMax           DO i=iMin,iMax
874            gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)            gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
# Line 866  C--   Coriolis term (call to CD_CODE_SCH Line 882  C--   Coriolis term (call to CD_CODE_SCH
882    
883  C--   3.D Coriolis term (horizontal momentum, Eastward component: -fprime*w)  C--   3.D Coriolis term (horizontal momentum, Eastward component: -fprime*w)
884        IF ( use3dCoriolis ) THEN        IF ( use3dCoriolis ) THEN
885          CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)          CALL MOM_U_CORIOLIS_NH( bi,bj,k,wVel,cf,myThid )
886          DO j=jMin,jMax          DO j=jMin,jMax
887           DO i=iMin,iMax           DO i=iMin,iMax
888            gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)            gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
# Line 874  C--   3.D Coriolis term (horizontal mome Line 890  C--   3.D Coriolis term (horizontal mome
890          ENDDO          ENDDO
891         IF ( usingCurvilinearGrid ) THEN         IF ( usingCurvilinearGrid ) THEN
892  C-     presently, non zero angleSinC array only supported with Curvilinear-Grid  C-     presently, non zero angleSinC array only supported with Curvilinear-Grid
893          CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)          CALL MOM_V_CORIOLIS_NH( bi,bj,k,wVel,cf,myThid )
894          DO j=jMin,jMax          DO j=jMin,jMax
895           DO i=iMin,iMax           DO i=iMin,iMax
896            gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)            gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)

Legend:
Removed from v.1.48  
changed lines
  Added in v.1.49

  ViewVC Help
Powered by ViewVC 1.1.22