/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.23 - (show annotations) (download)
Sat Jul 30 22:07:00 2005 UTC (18 years, 10 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint57p_post, checkpoint57q_post
Changes since 1.22: +253 -274 lines
dissipation & Hydrostatic-Phi gradient are always added to gU,gV in timestep.F
 (was already the case for dissipation with mom_vecinv,
  and also the case for grad.PhiHyd if staggered-timeStep)
This allows to put dissipation out-off the AB time-stepping.

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.21 2004/10/29 16:25:37 jmc Exp $
2 C $Name: $
3
4 CBOI
5 C !TITLE: pkg/mom\_advdiff
6 C !AUTHORS: adcroft@mit.edu
7 C !INTRODUCTION: Flux-form Momentum Equations Package
8 C
9 C Package "mom\_fluxform" provides methods for calculating explicit terms
10 C in the momentum equation cast in flux-form:
11 C \begin{eqnarray*}
12 C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13 C -\nabla \cdot {\bf v} u
14 C -fv
15 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16 C + \mbox{metrics}
17 C \\
18 C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19 C -\nabla \cdot {\bf v} v
20 C +fu
21 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22 C + \mbox{metrics}
23 C \end{eqnarray*}
24 C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25 C stresses as well as internal viscous stresses.
26 CEOI
27
28 #include "MOM_FLUXFORM_OPTIONS.h"
29
30 CBOP
31 C !ROUTINE: MOM_FLUXFORM
32
33 C !INTERFACE: ==========================================================
34 SUBROUTINE MOM_FLUXFORM(
35 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 I KappaRU, KappaRV,
37 U fVerU, fVerV,
38 O guDiss, gvDiss,
39 I myTime, myIter, myThid)
40
41 C !DESCRIPTION:
42 C Calculates all the horizontal accelerations except for the implicit surface
43 C pressure gradient and implciit vertical viscosity.
44
45 C !USES: ===============================================================
46 C == Global variables ==
47 IMPLICIT NONE
48 #include "SIZE.h"
49 #include "DYNVARS.h"
50 #include "FFIELDS.h"
51 #include "EEPARAMS.h"
52 #include "PARAMS.h"
53 #include "GRID.h"
54 #include "SURFACE.h"
55
56 C !INPUT PARAMETERS: ===================================================
57 C bi,bj :: tile indices
58 C iMin,iMax,jMin,jMAx :: loop ranges
59 C k :: vertical level
60 C kUp :: =1 or 2 for consecutive k
61 C kDown :: =2 or 1 for consecutive k
62 C KappaRU :: vertical viscosity
63 C KappaRV :: vertical viscosity
64 C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
65 C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
66 C guDiss :: dissipation tendency (all explicit terms), u component
67 C gvDiss :: dissipation tendency (all explicit terms), v component
68 C myTime :: current time
69 C myIter :: current time-step number
70 C myThid :: thread number
71 INTEGER bi,bj,iMin,iMax,jMin,jMax
72 INTEGER k,kUp,kDown
73 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
76 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
77 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL myTime
80 INTEGER myIter
81 INTEGER myThid
82
83 C !OUTPUT PARAMETERS: ==================================================
84 C None - updates gU() and gV() in common blocks
85
86 C !LOCAL VARIABLES: ====================================================
87 C i,j :: loop indices
88 C vF :: viscous flux
89 C v4F :: bi-harmonic viscous flux
90 C cF :: Coriolis acceleration
91 C mT :: Metric terms
92 C fZon :: zonal fluxes
93 C fMer :: meridional fluxes
94 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
95 INTEGER i,j
96 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 C afFacMom - Tracer parameters for turning terms
105 C vfFacMom on and off.
106 C pfFacMom afFacMom - Advective terms
107 C cfFacMom vfFacMom - Eddy viscosity terms
108 C mTFacMom pfFacMom - Pressure terms
109 C cfFacMom - Coriolis terms
110 C foFacMom - Forcing
111 C mTFacMom - Metric term
112 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
113 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 c _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 c _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 c _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 c _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 c _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 c _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 _RL uDudxFac
133 _RL AhDudxFac
134 _RL vDudyFac
135 _RL AhDudyFac
136 _RL rVelDudrFac
137 _RL ArDudrFac
138 _RL fuFac
139 _RL mtFacU
140 _RL uDvdxFac
141 _RL AhDvdxFac
142 _RL vDvdyFac
143 _RL AhDvdyFac
144 _RL rVelDvdrFac
145 _RL ArDvdrFac
146 _RL fvFac
147 _RL mtFacV
148 LOGICAL bottomDragTerms
149 CEOP
150
151 C Initialise intermediate terms
152 DO j=1-OLy,sNy+OLy
153 DO i=1-OLx,sNx+OLx
154 vF(i,j) = 0.
155 v4F(i,j) = 0.
156 cF(i,j) = 0.
157 mT(i,j) = 0.
158 fZon(i,j) = 0.
159 fMer(i,j) = 0.
160 fVrUp(i,j)= 0.
161 fVrDw(i,j)= 0.
162 rTransU(i,j)= 0.
163 rTransV(i,j)= 0.
164 strain(i,j) = 0.
165 tension(i,j)= 0.
166 guDiss(i,j) = 0.
167 gvDiss(i,j) = 0.
168 ENDDO
169 ENDDO
170
171 C-- Term by term tracer parmeters
172 C o U momentum equation
173 uDudxFac = afFacMom*1.
174 AhDudxFac = vfFacMom*1.
175 vDudyFac = afFacMom*1.
176 AhDudyFac = vfFacMom*1.
177 rVelDudrFac = afFacMom*1.
178 ArDudrFac = vfFacMom*1.
179 mTFacU = mtFacMom*1.
180 fuFac = cfFacMom*1.
181 C o V momentum equation
182 uDvdxFac = afFacMom*1.
183 AhDvdxFac = vfFacMom*1.
184 vDvdyFac = afFacMom*1.
185 AhDvdyFac = vfFacMom*1.
186 rVelDvdrFac = afFacMom*1.
187 ArDvdrFac = vfFacMom*1.
188 mTFacV = mtFacMom*1.
189 fvFac = cfFacMom*1.
190
191 IF (implicitViscosity) THEN
192 ArDudrFac = 0.
193 ArDvdrFac = 0.
194 ENDIF
195
196 IF ( no_slip_bottom
197 & .OR. bottomDragQuadratic.NE.0.
198 & .OR. bottomDragLinear.NE.0.) THEN
199 bottomDragTerms=.TRUE.
200 ELSE
201 bottomDragTerms=.FALSE.
202 ENDIF
203
204 C-- Calculate open water fraction at vorticity points
205 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
206
207 C---- Calculate common quantities used in both U and V equations
208 C Calculate tracer cell face open areas
209 DO j=1-OLy,sNy+OLy
210 DO i=1-OLx,sNx+OLx
211 xA(i,j) = _dyG(i,j,bi,bj)
212 & *drF(k)*_hFacW(i,j,k,bi,bj)
213 yA(i,j) = _dxG(i,j,bi,bj)
214 & *drF(k)*_hFacS(i,j,k,bi,bj)
215 ENDDO
216 ENDDO
217
218 C Make local copies of horizontal flow field
219 DO j=1-OLy,sNy+OLy
220 DO i=1-OLx,sNx+OLx
221 uFld(i,j) = uVel(i,j,k,bi,bj)
222 vFld(i,j) = vVel(i,j,k,bi,bj)
223 ENDDO
224 ENDDO
225
226 C Calculate velocity field "volume transports" through tracer cell faces.
227 DO j=1-OLy,sNy+OLy
228 DO i=1-OLx,sNx+OLx
229 uTrans(i,j) = uFld(i,j)*xA(i,j)
230 vTrans(i,j) = vFld(i,j)*yA(i,j)
231 ENDDO
232 ENDDO
233
234 IF (bottomDragTerms) THEN
235 CALL MOM_CALC_KE(bi,bj,k,3,uFld,vFld,KE,myThid)
236 ENDIF
237
238 IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN
239 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,
240 O tension,
241 I myThid)
242 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,
243 O strain,
244 I myThid)
245 ENDIF
246
247 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
248 IF (momAdvection.AND.k.EQ.1) THEN
249
250 C- Calculate vertical transports above U & V points (West & South face):
251 CALL MOM_CALC_RTRANS( k, bi, bj,
252 O rTransU, rTransV,
253 I myTime, myIter, myThid)
254
255 C- Free surface correction term (flux at k=1)
256 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
257 O fVerU(1-OLx,1-OLy,kUp), myThid )
258
259 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
260 O fVerV(1-OLx,1-OLy,kUp), myThid )
261
262 C--- endif momAdvection & k=1
263 ENDIF
264
265
266 C--- Calculate vertical transports (at k+1) below U & V points :
267 IF (momAdvection) THEN
268 CALL MOM_CALC_RTRANS( k+1, bi, bj,
269 O rTransU, rTransV,
270 I myTime, myIter, myThid)
271 ENDIF
272
273 c IF (momViscosity) THEN
274 c & CALL MOM_CALC_VISCOSITY(bi,bj,k,
275 c I uFld,vFld,
276 c O viscAh_D,viscAh_Z,myThid)
277
278 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
279
280 C---- Zonal momentum equation starts here
281
282 IF (momAdvection) THEN
283 C--- Calculate mean fluxes (advection) between cells for zonal flow.
284
285 C-- Zonal flux (fZon is at east face of "u" cell)
286 C Mean flow component of zonal flux -> fZon
287 CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
288
289 C-- Meridional flux (fMer is at south face of "u" cell)
290 C Mean flow component of meridional flux -> fMer
291 CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
292
293 C-- Vertical flux (fVer is at upper face of "u" cell)
294 C Mean flow component of vertical flux (at k+1) -> fVer
295 CALL MOM_U_ADV_WU(
296 I bi,bj,k+1,uVel,wVel,rTransU,
297 O fVerU(1-OLx,1-OLy,kDown), myThid )
298
299 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
300 DO j=jMin,jMax
301 DO i=iMin,iMax
302 gU(i,j,k,bi,bj) =
303 #ifdef OLD_UV_GEOM
304 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
305 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
306 #else
307 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
308 & *recip_rAw(i,j,bi,bj)
309 #endif
310 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
311 & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
312 & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
313 & )
314 ENDDO
315 ENDDO
316
317 #ifdef NONLIN_FRSURF
318 C-- account for 3.D divergence of the flow in rStar coordinate:
319 IF ( select_rStar.GT.0 ) THEN
320 DO j=jMin,jMax
321 DO i=iMin,iMax
322 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
323 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
324 & *uVel(i,j,k,bi,bj)
325 ENDDO
326 ENDDO
327 ENDIF
328 IF ( select_rStar.LT.0 ) THEN
329 DO j=jMin,jMax
330 DO i=iMin,iMax
331 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
332 & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
333 ENDDO
334 ENDDO
335 ENDIF
336 #endif /* NONLIN_FRSURF */
337
338 ELSE
339 C- if momAdvection / else
340 DO j=1-OLy,sNy+OLy
341 DO i=1-OLx,sNx+OLx
342 gU(i,j,k,bi,bj) = 0. _d 0
343 ENDDO
344 ENDDO
345
346 C- endif momAdvection.
347 ENDIF
348
349 IF (momViscosity) THEN
350 C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
351
352 C Bi-harmonic term del^2 U -> v4F
353 IF ( viscA4.NE.0. )
354 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
355
356 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
357 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,myThid)
358
359 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
360 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,myThid)
361
362 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
363 IF (.NOT.implicitViscosity) THEN
364 CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
365 CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
366 ENDIF
367
368 C-- Tendency is minus divergence of the fluxes
369 DO j=jMin,jMax
370 DO i=iMin,iMax
371 guDiss(i,j) =
372 #ifdef OLD_UV_GEOM
373 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
374 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
375 #else
376 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
377 & *recip_rAw(i,j,bi,bj)
378 #endif
379 & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
380 & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
381 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
382 & )
383 ENDDO
384 ENDDO
385
386 C-- No-slip and drag BCs appear as body forces in cell abutting topography
387 IF (no_slip_sides) THEN
388 C- No-slip BCs impose a drag at walls...
389 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,v4F,hFacZ,vF,myThid)
390 DO j=jMin,jMax
391 DO i=iMin,iMax
392 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
393 ENDDO
394 ENDDO
395 ENDIF
396 C- No-slip BCs impose a drag at bottom
397 IF (bottomDragTerms) THEN
398 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
399 DO j=jMin,jMax
400 DO i=iMin,iMax
401 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
402 ENDDO
403 ENDDO
404 ENDIF
405
406 C- endif momViscosity
407 ENDIF
408
409 C-- Forcing term (moved to timestep.F)
410 c IF (momForcing)
411 c & CALL EXTERNAL_FORCING_U(
412 c I iMin,iMax,jMin,jMax,bi,bj,k,
413 c I myTime,myThid)
414
415 C-- Metric terms for curvilinear grid systems
416 IF (useNHMTerms) THEN
417 C o Non-hydrosatic metric terms
418 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
419 DO j=jMin,jMax
420 DO i=iMin,iMax
421 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
422 ENDDO
423 ENDDO
424 ENDIF
425 IF (usingSphericalPolarMTerms) THEN
426 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
427 DO j=jMin,jMax
428 DO i=iMin,iMax
429 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
430 ENDDO
431 ENDDO
432 ENDIF
433 IF (usingCylindricalGrid) THEN
434 CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
435 DO j=jMin,jMax
436 DO i=iMin,iMax
437 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
438 ENDDO
439 ENDDO
440 ENDIF
441
442 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
443
444 C---- Meridional momentum equation starts here
445
446 IF (momAdvection) THEN
447 C--- Calculate mean fluxes (advection) between cells for meridional flow.
448 C Mean flow component of zonal flux -> fZon
449 CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
450
451 C-- Meridional flux (fMer is at north face of "v" cell)
452 C Mean flow component of meridional flux -> fMer
453 CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
454
455 C-- Vertical flux (fVer is at upper face of "v" cell)
456 C Mean flow component of vertical flux (at k+1) -> fVerV
457 CALL MOM_V_ADV_WV(
458 I bi,bj,k+1,vVel,wVel,rTransV,
459 O fVerV(1-OLx,1-OLy,kDown), myThid )
460
461 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
462 DO j=jMin,jMax
463 DO i=iMin,iMax
464 gV(i,j,k,bi,bj) =
465 #ifdef OLD_UV_GEOM
466 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
467 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
468 #else
469 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
470 & *recip_rAs(i,j,bi,bj)
471 #endif
472 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
473 & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
474 & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
475 & )
476 ENDDO
477 ENDDO
478
479 #ifdef NONLIN_FRSURF
480 C-- account for 3.D divergence of the flow in rStar coordinate:
481 IF ( select_rStar.GT.0 ) THEN
482 DO j=jMin,jMax
483 DO i=iMin,iMax
484 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
485 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
486 & *vVel(i,j,k,bi,bj)
487 ENDDO
488 ENDDO
489 ENDIF
490 IF ( select_rStar.LT.0 ) THEN
491 DO j=jMin,jMax
492 DO i=iMin,iMax
493 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
494 & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
495 ENDDO
496 ENDDO
497 ENDIF
498 #endif /* NONLIN_FRSURF */
499
500 ELSE
501 C- if momAdvection / else
502 DO j=1-OLy,sNy+OLy
503 DO i=1-OLx,sNx+OLx
504 gV(i,j,k,bi,bj) = 0. _d 0
505 ENDDO
506 ENDDO
507
508 C- endif momAdvection.
509 ENDIF
510
511 IF (momViscosity) THEN
512 C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
513 C Bi-harmonic term del^2 V -> v4F
514 IF ( viscA4.NE.0. )
515 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
516
517 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
518 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,myThid)
519
520 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
521 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,myThid)
522
523 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
524 IF (.NOT.implicitViscosity) THEN
525 CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
526 CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
527 ENDIF
528
529 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
530 DO j=jMin,jMax
531 DO i=iMin,iMax
532 gvDiss(i,j) =
533 #ifdef OLD_UV_GEOM
534 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
535 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
536 #else
537 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
538 & *recip_rAs(i,j,bi,bj)
539 #endif
540 & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
541 & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
542 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
543 & )
544 ENDDO
545 ENDDO
546
547 C-- No-slip and drag BCs appear as body forces in cell abutting topography
548 IF (no_slip_sides) THEN
549 C- No-slip BCs impose a drag at walls...
550 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,v4F,hFacZ,vF,myThid)
551 DO j=jMin,jMax
552 DO i=iMin,iMax
553 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
554 ENDDO
555 ENDDO
556 ENDIF
557 C- No-slip BCs impose a drag at bottom
558 IF (bottomDragTerms) THEN
559 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
560 DO j=jMin,jMax
561 DO i=iMin,iMax
562 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
563 ENDDO
564 ENDDO
565 ENDIF
566
567 C- endif momViscosity
568 ENDIF
569
570 C-- Forcing term (moved to timestep.F)
571 c IF (momForcing)
572 c & CALL EXTERNAL_FORCING_V(
573 c I iMin,iMax,jMin,jMax,bi,bj,k,
574 c I myTime,myThid)
575
576 C-- Metric terms for curvilinear grid systems
577 IF (useNHMTerms) THEN
578 C o Spherical polar grid metric terms
579 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
580 DO j=jMin,jMax
581 DO i=iMin,iMax
582 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
583 ENDDO
584 ENDDO
585 ENDIF
586 IF (usingSphericalPolarMTerms) THEN
587 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
588 DO j=jMin,jMax
589 DO i=iMin,iMax
590 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
591 ENDDO
592 ENDDO
593 ENDIF
594 IF (usingCylindricalGrid) THEN
595 CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
596 DO j=jMin,jMax
597 DO i=iMin,iMax
598 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
599 ENDDO
600 ENDDO
601 ENDIF
602
603 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
604
605 C-- Coriolis term
606 C Note. As coded here, coriolis will not work with "thin walls"
607 c IF (useCDscheme) THEN
608 c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
609 c ELSE
610 IF (.NOT.useCDscheme) THEN
611 CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
612 DO j=jMin,jMax
613 DO i=iMin,iMax
614 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
615 ENDDO
616 ENDDO
617 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
618 DO j=jMin,jMax
619 DO i=iMin,iMax
620 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
621 ENDDO
622 ENDDO
623 ENDIF
624
625 IF (nonHydrostatic.OR.quasiHydrostatic) THEN
626 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
627 DO j=jMin,jMax
628 DO i=iMin,iMax
629 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
630 ENDDO
631 ENDDO
632 ENDIF
633
634 C-- Set du/dt & dv/dt on boundaries to zero
635 DO j=jMin,jMax
636 DO i=iMin,iMax
637 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
638 guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
639 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
640 gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
641 ENDDO
642 ENDDO
643
644 RETURN
645 END

  ViewVC Help
Powered by ViewVC 1.1.22