/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.45 - (show annotations) (download)
Mon Oct 1 15:46:33 2012 UTC (12 years, 9 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint64, checkpoint64i, checkpoint64h, checkpoint64k, checkpoint64j, checkpoint64a, checkpoint64c, checkpoint64b, checkpoint64e, checkpoint64d, checkpoint64g, checkpoint64f
Changes since 1.44: +2 -2 lines
#ifdef ALLOW_SHELFICE
CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRU,vF,myThid)
Bug fix KappaRU -> KappaRV

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.44 2012/03/18 22:21:31 jmc Exp $
2 C $Name: $
3
4 CBOI
5 C !TITLE: pkg/mom\_advdiff
6 C !AUTHORS: adcroft@mit.edu
7 C !INTRODUCTION: Flux-form Momentum Equations Package
8 C
9 C Package "mom\_fluxform" provides methods for calculating explicit terms
10 C in the momentum equation cast in flux-form:
11 C \begin{eqnarray*}
12 C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13 C -\nabla \cdot {\bf v} u
14 C -fv
15 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16 C + \mbox{metrics}
17 C \\
18 C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19 C -\nabla \cdot {\bf v} v
20 C +fu
21 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22 C + \mbox{metrics}
23 C \end{eqnarray*}
24 C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25 C stresses as well as internal viscous stresses.
26 CEOI
27
28 #include "MOM_FLUXFORM_OPTIONS.h"
29
30 CBOP
31 C !ROUTINE: MOM_FLUXFORM
32
33 C !INTERFACE: ==========================================================
34 SUBROUTINE MOM_FLUXFORM(
35 I bi,bj,k,iMin,iMax,jMin,jMax,
36 I KappaRU, KappaRV,
37 U fVerUkm, fVerVkm,
38 O fVerUkp, fVerVkp,
39 O guDiss, gvDiss,
40 I myTime, myIter, myThid )
41
42 C !DESCRIPTION:
43 C Calculates all the horizontal accelerations except for the implicit surface
44 C pressure gradient and implicit vertical viscosity.
45
46 C !USES: ===============================================================
47 C == Global variables ==
48 IMPLICIT NONE
49 #include "SIZE.h"
50 #include "DYNVARS.h"
51 #include "FFIELDS.h"
52 #include "EEPARAMS.h"
53 #include "PARAMS.h"
54 #include "GRID.h"
55 #include "SURFACE.h"
56 #ifdef ALLOW_AUTODIFF_TAMC
57 # include "tamc.h"
58 # include "tamc_keys.h"
59 # include "MOM_FLUXFORM.h"
60 #endif
61
62 C !INPUT PARAMETERS: ===================================================
63 C bi,bj :: current tile indices
64 C k :: current vertical level
65 C iMin,iMax,jMin,jMax :: loop ranges
66 C KappaRU :: vertical viscosity
67 C KappaRV :: vertical viscosity
68 C fVerUkm :: vertical advective flux of U, interface above (k-1/2)
69 C fVerVkm :: vertical advective flux of V, interface above (k-1/2)
70 C fVerUkp :: vertical advective flux of U, interface below (k+1/2)
71 C fVerVkp :: vertical advective flux of V, interface below (k+1/2)
72 C guDiss :: dissipation tendency (all explicit terms), u component
73 C gvDiss :: dissipation tendency (all explicit terms), v component
74 C myTime :: current time
75 C myIter :: current time-step number
76 C myThid :: my Thread Id number
77 INTEGER bi,bj,k
78 INTEGER iMin,iMax,jMin,jMax
79 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
80 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
81 _RL fVerUkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL fVerVkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL fVerUkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL fVerVkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL myTime
88 INTEGER myIter
89 INTEGER myThid
90
91 C !OUTPUT PARAMETERS: ==================================================
92 C None - updates gU() and gV() in common blocks
93
94 C !LOCAL VARIABLES: ====================================================
95 C i,j :: loop indices
96 C vF :: viscous flux
97 C v4F :: bi-harmonic viscous flux
98 C cF :: Coriolis acceleration
99 C mT :: Metric terms
100 C fZon :: zonal fluxes
101 C fMer :: meridional fluxes
102 C fVrUp,fVrDw :: vertical viscous fluxes at interface k & k+1
103 INTEGER i,j
104 #ifdef ALLOW_AUTODIFF_TAMC
105 INTEGER imomkey
106 #endif
107 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108 _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109 _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111 _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 C afFacMom :: Tracer parameters for turning terms on and off.
116 C vfFacMom
117 C pfFacMom afFacMom - Advective terms
118 C cfFacMom vfFacMom - Eddy viscosity terms
119 C mtFacMom pfFacMom - Pressure terms
120 C cfFacMom - Coriolis terms
121 C foFacMom - Forcing
122 C mtFacMom - Metric term
123 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
124 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
133 _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
134 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
135 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
136 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
137 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
138 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
139 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
140 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
141 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
142 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
143 _RL uDudxFac
144 _RL AhDudxFac
145 _RL vDudyFac
146 _RL AhDudyFac
147 _RL rVelDudrFac
148 _RL ArDudrFac
149 _RL fuFac
150 _RL mtFacU
151 _RL mtNHFacU
152 _RL uDvdxFac
153 _RL AhDvdxFac
154 _RL vDvdyFac
155 _RL AhDvdyFac
156 _RL rVelDvdrFac
157 _RL ArDvdrFac
158 _RL fvFac
159 _RL mtFacV
160 _RL mtNHFacV
161 _RL sideMaskFac
162 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
163 CEOP
164 #ifdef MOM_BOUNDARY_CONSERVE
165 COMMON / MOM_FLUXFORM_LOCAL / uBnd, vBnd
166 _RL uBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
167 _RL vBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
168 #endif /* MOM_BOUNDARY_CONSERVE */
169
170 #ifdef ALLOW_AUTODIFF_TAMC
171 act0 = k - 1
172 max0 = Nr
173 act1 = bi - myBxLo(myThid)
174 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
175 act2 = bj - myByLo(myThid)
176 max2 = myByHi(myThid) - myByLo(myThid) + 1
177 act3 = myThid - 1
178 max3 = nTx*nTy
179 act4 = ikey_dynamics - 1
180 imomkey = (act0 + 1)
181 & + act1*max0
182 & + act2*max0*max1
183 & + act3*max0*max1*max2
184 & + act4*max0*max1*max2*max3
185 #endif /* ALLOW_AUTODIFF_TAMC */
186
187 C Initialise intermediate terms
188 DO j=1-OLy,sNy+OLy
189 DO i=1-OLx,sNx+OLx
190 vF(i,j) = 0.
191 v4F(i,j) = 0.
192 cF(i,j) = 0.
193 mT(i,j) = 0.
194 fZon(i,j) = 0.
195 fMer(i,j) = 0.
196 fVrUp(i,j)= 0.
197 fVrDw(i,j)= 0.
198 rTransU(i,j)= 0.
199 rTransV(i,j)= 0.
200 c KE(i,j) = 0.
201 hDiv(i,j) = 0.
202 vort3(i,j) = 0.
203 strain(i,j) = 0.
204 tension(i,j)= 0.
205 guDiss(i,j) = 0.
206 gvDiss(i,j) = 0.
207 ENDDO
208 ENDDO
209
210 C-- Term by term tracer parmeters
211 C o U momentum equation
212 uDudxFac = afFacMom*1.
213 AhDudxFac = vfFacMom*1.
214 vDudyFac = afFacMom*1.
215 AhDudyFac = vfFacMom*1.
216 rVelDudrFac = afFacMom*1.
217 ArDudrFac = vfFacMom*1.
218 mtFacU = mtFacMom*1.
219 mtNHFacU = 1.
220 fuFac = cfFacMom*1.
221 C o V momentum equation
222 uDvdxFac = afFacMom*1.
223 AhDvdxFac = vfFacMom*1.
224 vDvdyFac = afFacMom*1.
225 AhDvdyFac = vfFacMom*1.
226 rVelDvdrFac = afFacMom*1.
227 ArDvdrFac = vfFacMom*1.
228 mtFacV = mtFacMom*1.
229 mtNHFacV = 1.
230 fvFac = cfFacMom*1.
231
232 IF (implicitViscosity) THEN
233 ArDudrFac = 0.
234 ArDvdrFac = 0.
235 ENDIF
236
237 C note: using standard stencil (no mask) results in under-estimating
238 C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
239 IF ( no_slip_sides ) THEN
240 sideMaskFac = sideDragFactor
241 ELSE
242 sideMaskFac = 0. _d 0
243 ENDIF
244
245 IF ( no_slip_bottom
246 & .OR. bottomDragQuadratic.NE.0.
247 & .OR. bottomDragLinear.NE.0.) THEN
248 bottomDragTerms=.TRUE.
249 ELSE
250 bottomDragTerms=.FALSE.
251 ENDIF
252
253 C-- Calculate open water fraction at vorticity points
254 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
255
256 C---- Calculate common quantities used in both U and V equations
257 C Calculate tracer cell face open areas
258 DO j=1-OLy,sNy+OLy
259 DO i=1-OLx,sNx+OLx
260 xA(i,j) = _dyG(i,j,bi,bj)*deepFacC(k)
261 & *drF(k)*_hFacW(i,j,k,bi,bj)
262 yA(i,j) = _dxG(i,j,bi,bj)*deepFacC(k)
263 & *drF(k)*_hFacS(i,j,k,bi,bj)
264 ENDDO
265 ENDDO
266
267 C Make local copies of horizontal flow field
268 DO j=1-OLy,sNy+OLy
269 DO i=1-OLx,sNx+OLx
270 uFld(i,j) = uVel(i,j,k,bi,bj)
271 vFld(i,j) = vVel(i,j,k,bi,bj)
272 ENDDO
273 ENDDO
274
275 C Calculate velocity field "volume transports" through tracer cell faces.
276 C anelastic: transports are scaled by rhoFacC (~ mass transport)
277 DO j=1-OLy,sNy+OLy
278 DO i=1-OLx,sNx+OLx
279 uTrans(i,j) = uFld(i,j)*xA(i,j)*rhoFacC(k)
280 vTrans(i,j) = vFld(i,j)*yA(i,j)*rhoFacC(k)
281 ENDDO
282 ENDDO
283
284 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
285 IF ( momViscosity) THEN
286 CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
287 CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
288 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
289 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
290 DO j=1-OLy,sNy+OLy
291 DO i=1-OLx,sNx+OLx
292 IF ( hFacZ(i,j).EQ.0. ) THEN
293 vort3(i,j) = sideMaskFac*vort3(i,j)
294 strain(i,j) = sideMaskFac*strain(i,j)
295 ENDIF
296 ENDDO
297 ENDDO
298 #ifdef ALLOW_DIAGNOSTICS
299 IF ( useDiagnostics ) THEN
300 CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
301 CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
302 CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
303 CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
304 ENDIF
305 #endif
306 ENDIF
307
308 C--- First call (k=1): compute vertical adv. flux fVerUkm & fVerVkm
309 IF (momAdvection.AND.k.EQ.1) THEN
310
311 #ifdef MOM_BOUNDARY_CONSERVE
312 CALL MOM_UV_BOUNDARY( bi, bj, k,
313 I uVel, vVel,
314 O uBnd(1-OLx,1-OLy,k,bi,bj),
315 O vBnd(1-OLx,1-OLy,k,bi,bj),
316 I myTime, myIter, myThid )
317 #endif /* MOM_BOUNDARY_CONSERVE */
318
319 C- Calculate vertical transports above U & V points (West & South face):
320
321 #ifdef ALLOW_AUTODIFF_TAMC
322 # ifdef NONLIN_FRSURF
323 # ifndef DISABLE_RSTAR_CODE
324 CADJ STORE dwtransc(:,:,bi,bj) =
325 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
326 CADJ STORE dwtransu(:,:,bi,bj) =
327 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
328 CADJ STORE dwtransv(:,:,bi,bj) =
329 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
330 # endif
331 # endif /* NONLIN_FRSURF */
332 #endif /* ALLOW_AUTODIFF_TAMC */
333 CALL MOM_CALC_RTRANS( k, bi, bj,
334 O rTransU, rTransV,
335 I myTime, myIter, myThid)
336
337 C- Free surface correction term (flux at k=1)
338 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
339 O fVerUkm, myThid )
340
341 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
342 O fVerVkm, myThid )
343
344 C--- endif momAdvection & k=1
345 ENDIF
346
347
348 C--- Calculate vertical transports (at k+1) below U & V points :
349 IF (momAdvection) THEN
350 CALL MOM_CALC_RTRANS( k+1, bi, bj,
351 O rTransU, rTransV,
352 I myTime, myIter, myThid)
353 ENDIF
354
355 #ifdef MOM_BOUNDARY_CONSERVE
356 IF ( momAdvection .AND. k.LT.Nr ) THEN
357 CALL MOM_UV_BOUNDARY( bi, bj, k+1,
358 I uVel, vVel,
359 O uBnd(1-OLx,1-OLy,k+1,bi,bj),
360 O vBnd(1-OLx,1-OLy,k+1,bi,bj),
361 I myTime, myIter, myThid )
362 ENDIF
363 #endif /* MOM_BOUNDARY_CONSERVE */
364
365 IF (momViscosity) THEN
366 CALL MOM_CALC_VISC(
367 I bi,bj,k,
368 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
369 O harmonic,biharmonic,useVariableViscosity,
370 I hDiv,vort3,tension,strain,KE,hFacZ,
371 I myThid)
372 ENDIF
373
374 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
375
376 C---- Zonal momentum equation starts here
377
378 IF (momAdvection) THEN
379 C--- Calculate mean fluxes (advection) between cells for zonal flow.
380
381 #ifdef MOM_BOUNDARY_CONSERVE
382 CALL MOM_U_ADV_UU( bi,bj,k,uTrans,uBnd(1-OLx,1-OLy,k,bi,bj),
383 O fZon,myThid )
384 CALL MOM_U_ADV_VU( bi,bj,k,vTrans,uBnd(1-OLx,1-OLy,k,bi,bj),
385 O fMer,myThid )
386 CALL MOM_U_ADV_WU(
387 I bi,bj,k+1,uBnd,wVel,rTransU,
388 O fVerUkp, myThid )
389 #else /* MOM_BOUNDARY_CONSERVE */
390 C-- Zonal flux (fZon is at east face of "u" cell)
391 C Mean flow component of zonal flux -> fZon
392 CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
393
394 C-- Meridional flux (fMer is at south face of "u" cell)
395 C Mean flow component of meridional flux -> fMer
396 CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
397
398 C-- Vertical flux (fVer is at upper face of "u" cell)
399 C Mean flow component of vertical flux (at k+1) -> fVer
400 CALL MOM_U_ADV_WU(
401 I bi,bj,k+1,uVel,wVel,rTransU,
402 O fVerUkp, myThid )
403 #endif /* MOM_BOUNDARY_CONSERVE */
404
405 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
406 DO j=jMin,jMax
407 DO i=iMin,iMax
408 gU(i,j,k,bi,bj) =
409 #ifdef OLD_UV_GEOM
410 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
411 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
412 #else
413 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
414 & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k)
415 #endif
416 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
417 & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
418 & +( fVerUkp(i,j) - fVerUkm(i,j) )*rkSign*rVelDudrFac
419 & )
420 ENDDO
421 ENDDO
422
423 #ifdef ALLOW_DIAGNOSTICS
424 IF ( useDiagnostics ) THEN
425 CALL DIAGNOSTICS_FILL( fZon, 'ADVx_Um ',k,1,2,bi,bj,myThid)
426 CALL DIAGNOSTICS_FILL( fMer, 'ADVy_Um ',k,1,2,bi,bj,myThid)
427 CALL DIAGNOSTICS_FILL(fVerUkm,'ADVrE_Um',k,1,2,bi,bj,myThid)
428 ENDIF
429 #endif
430
431 #ifdef NONLIN_FRSURF
432 C-- account for 3.D divergence of the flow in rStar coordinate:
433 # ifndef DISABLE_RSTAR_CODE
434 IF ( select_rStar.GT.0 ) THEN
435 DO j=jMin,jMax
436 DO i=iMin,iMax
437 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
438 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
439 & *uVel(i,j,k,bi,bj)
440 ENDDO
441 ENDDO
442 ENDIF
443 IF ( select_rStar.LT.0 ) THEN
444 DO j=jMin,jMax
445 DO i=iMin,iMax
446 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
447 & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
448 ENDDO
449 ENDDO
450 ENDIF
451 # endif /* DISABLE_RSTAR_CODE */
452 #endif /* NONLIN_FRSURF */
453
454 #ifdef ALLOW_ADDFLUID
455 IF ( selectAddFluid.GE.1 ) THEN
456 DO j=jMin,jMax
457 DO i=iMin,iMax
458 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
459 & + uVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0
460 & *( addMass(i-1,j,k,bi,bj) + addMass(i,j,k,bi,bj) )
461 & *_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k)
462 & * recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)
463 ENDDO
464 ENDDO
465 ENDIF
466 #endif /* ALLOW_ADDFLUID */
467
468 ELSE
469 C- if momAdvection / else
470 DO j=1-OLy,sNy+OLy
471 DO i=1-OLx,sNx+OLx
472 gU(i,j,k,bi,bj) = 0. _d 0
473 ENDDO
474 ENDDO
475
476 C- endif momAdvection.
477 ENDIF
478
479 IF (momViscosity) THEN
480 C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
481
482 C Bi-harmonic term del^2 U -> v4F
483 IF (biharmonic)
484 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
485
486 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
487 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
488 I viscAh_D,viscA4_D,myThid)
489
490 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
491 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
492 I viscAh_Z,viscA4_Z,myThid)
493
494 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
495 IF (.NOT.implicitViscosity) THEN
496 CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
497 CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
498 ENDIF
499
500 C-- Tendency is minus divergence of the fluxes
501 C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is)
502 DO j=jMin,jMax
503 DO i=iMin,iMax
504 guDiss(i,j) =
505 #ifdef OLD_UV_GEOM
506 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
507 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
508 #else
509 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
510 & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)
511 #endif
512 & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
513 & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
514 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
515 & *recip_rhoFacC(k)
516 & )
517 ENDDO
518 ENDDO
519
520 #ifdef ALLOW_DIAGNOSTICS
521 IF ( useDiagnostics ) THEN
522 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
523 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
524 IF (.NOT.implicitViscosity)
525 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
526 ENDIF
527 #endif
528
529 C-- No-slip and drag BCs appear as body forces in cell abutting topography
530 IF (no_slip_sides) THEN
531 C- No-slip BCs impose a drag at walls...
532 CALL MOM_U_SIDEDRAG(
533 I bi,bj,k,
534 I uFld, v4f, hFacZ,
535 I viscAh_Z,viscA4_Z,
536 I harmonic,biharmonic,useVariableViscosity,
537 O vF,
538 I myThid)
539 DO j=jMin,jMax
540 DO i=iMin,iMax
541 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
542 ENDDO
543 ENDDO
544 ENDIF
545 C- No-slip BCs impose a drag at bottom
546 IF (bottomDragTerms) THEN
547 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
548 DO j=jMin,jMax
549 DO i=iMin,iMax
550 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
551 ENDDO
552 ENDDO
553 ENDIF
554
555 #ifdef ALLOW_SHELFICE
556 IF (useShelfIce) THEN
557 CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
558 DO j=jMin,jMax
559 DO i=iMin,iMax
560 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
561 ENDDO
562 ENDDO
563 ENDIF
564 #endif /* ALLOW_SHELFICE */
565
566 C- endif momViscosity
567 ENDIF
568
569 C-- Forcing term (moved to timestep.F)
570 c IF (momForcing)
571 c & CALL EXTERNAL_FORCING_U(
572 c I iMin,iMax,jMin,jMax,bi,bj,k,
573 c I myTime,myThid)
574
575 C-- Metric terms for curvilinear grid systems
576 IF (useNHMTerms) THEN
577 C o Non-Hydrostatic (spherical) metric terms
578 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
579 DO j=jMin,jMax
580 DO i=iMin,iMax
581 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j)
582 ENDDO
583 ENDDO
584 ENDIF
585 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
586 C o Spherical polar grid metric terms
587 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
588 DO j=jMin,jMax
589 DO i=iMin,iMax
590 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
591 ENDDO
592 ENDDO
593 ENDIF
594 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
595 C o Cylindrical grid metric terms
596 CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
597 DO j=jMin,jMax
598 DO i=iMin,iMax
599 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
600 ENDDO
601 ENDDO
602 ENDIF
603
604 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
605
606 C---- Meridional momentum equation starts here
607
608 IF (momAdvection) THEN
609
610 #ifdef MOM_BOUNDARY_CONSERVE
611 CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vBnd(1-OLx,1-OLy,k,bi,bj),
612 O fZon,myThid )
613 CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vBnd(1-OLx,1-OLy,k,bi,bj),
614 O fMer,myThid )
615 CALL MOM_V_ADV_WV( bi,bj,k+1,vBnd,wVel,rTransV,
616 O fVerVkp, myThid )
617 #else /* MOM_BOUNDARY_CONSERVE */
618 C--- Calculate mean fluxes (advection) between cells for meridional flow.
619 C Mean flow component of zonal flux -> fZon
620 CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vFld,fZon,myThid )
621
622 C-- Meridional flux (fMer is at north face of "v" cell)
623 C Mean flow component of meridional flux -> fMer
624 CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vFld,fMer,myThid )
625
626 C-- Vertical flux (fVer is at upper face of "v" cell)
627 C Mean flow component of vertical flux (at k+1) -> fVerV
628 CALL MOM_V_ADV_WV( bi,bj,k+1,vVel,wVel,rTransV,
629 O fVerVkp, myThid )
630 #endif /* MOM_BOUNDARY_CONSERVE */
631
632 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
633 DO j=jMin,jMax
634 DO i=iMin,iMax
635 gV(i,j,k,bi,bj) =
636 #ifdef OLD_UV_GEOM
637 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
638 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
639 #else
640 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
641 & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k)
642 #endif
643 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
644 & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
645 & +( fVerVkp(i,j) - fVerVkm(i,j) )*rkSign*rVelDvdrFac
646 & )
647 ENDDO
648 ENDDO
649
650 #ifdef ALLOW_DIAGNOSTICS
651 IF ( useDiagnostics ) THEN
652 CALL DIAGNOSTICS_FILL( fZon, 'ADVx_Vm ',k,1,2,bi,bj,myThid)
653 CALL DIAGNOSTICS_FILL( fMer, 'ADVy_Vm ',k,1,2,bi,bj,myThid)
654 CALL DIAGNOSTICS_FILL(fVerVkm,'ADVrE_Vm',k,1,2,bi,bj,myThid)
655 ENDIF
656 #endif
657
658 #ifdef NONLIN_FRSURF
659 C-- account for 3.D divergence of the flow in rStar coordinate:
660 # ifndef DISABLE_RSTAR_CODE
661 IF ( select_rStar.GT.0 ) THEN
662 DO j=jMin,jMax
663 DO i=iMin,iMax
664 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
665 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
666 & *vVel(i,j,k,bi,bj)
667 ENDDO
668 ENDDO
669 ENDIF
670 IF ( select_rStar.LT.0 ) THEN
671 DO j=jMin,jMax
672 DO i=iMin,iMax
673 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
674 & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
675 ENDDO
676 ENDDO
677 ENDIF
678 # endif /* DISABLE_RSTAR_CODE */
679 #endif /* NONLIN_FRSURF */
680
681 #ifdef ALLOW_ADDFLUID
682 IF ( selectAddFluid.GE.1 ) THEN
683 DO j=jMin,jMax
684 DO i=iMin,iMax
685 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
686 & + vVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0
687 & *( addMass(i,j-1,k,bi,bj) + addMass(i,j,k,bi,bj) )
688 & *_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k)
689 & * recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)
690 ENDDO
691 ENDDO
692 ENDIF
693 #endif /* ALLOW_ADDFLUID */
694
695 ELSE
696 C- if momAdvection / else
697 DO j=1-OLy,sNy+OLy
698 DO i=1-OLx,sNx+OLx
699 gV(i,j,k,bi,bj) = 0. _d 0
700 ENDDO
701 ENDDO
702
703 C- endif momAdvection.
704 ENDIF
705
706 IF (momViscosity) THEN
707 C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
708 C Bi-harmonic term del^2 V -> v4F
709 IF (biharmonic)
710 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
711
712 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
713 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
714 I viscAh_Z,viscA4_Z,myThid)
715
716 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
717 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
718 I viscAh_D,viscA4_D,myThid)
719
720 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
721 IF (.NOT.implicitViscosity) THEN
722 CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
723 CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
724 ENDIF
725
726 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
727 C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is)
728 DO j=jMin,jMax
729 DO i=iMin,iMax
730 gvDiss(i,j) =
731 #ifdef OLD_UV_GEOM
732 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
733 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
734 #else
735 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
736 & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)
737 #endif
738 & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
739 & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
740 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
741 & *recip_rhoFacC(k)
742 & )
743 ENDDO
744 ENDDO
745
746 #ifdef ALLOW_DIAGNOSTICS
747 IF ( useDiagnostics ) THEN
748 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
749 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
750 IF (.NOT.implicitViscosity)
751 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
752 ENDIF
753 #endif
754
755 C-- No-slip and drag BCs appear as body forces in cell abutting topography
756 IF (no_slip_sides) THEN
757 C- No-slip BCs impose a drag at walls...
758 CALL MOM_V_SIDEDRAG(
759 I bi,bj,k,
760 I vFld, v4f, hFacZ,
761 I viscAh_Z,viscA4_Z,
762 I harmonic,biharmonic,useVariableViscosity,
763 O vF,
764 I myThid)
765 DO j=jMin,jMax
766 DO i=iMin,iMax
767 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
768 ENDDO
769 ENDDO
770 ENDIF
771 C- No-slip BCs impose a drag at bottom
772 IF (bottomDragTerms) THEN
773 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
774 DO j=jMin,jMax
775 DO i=iMin,iMax
776 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
777 ENDDO
778 ENDDO
779 ENDIF
780
781 #ifdef ALLOW_SHELFICE
782 IF (useShelfIce) THEN
783 CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
784 DO j=jMin,jMax
785 DO i=iMin,iMax
786 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
787 ENDDO
788 ENDDO
789 ENDIF
790 #endif /* ALLOW_SHELFICE */
791
792 C- endif momViscosity
793 ENDIF
794
795 C-- Forcing term (moved to timestep.F)
796 c IF (momForcing)
797 c & CALL EXTERNAL_FORCING_V(
798 c I iMin,iMax,jMin,jMax,bi,bj,k,
799 c I myTime,myThid)
800
801 C-- Metric terms for curvilinear grid systems
802 IF (useNHMTerms) THEN
803 C o Non-Hydrostatic (spherical) metric terms
804 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
805 DO j=jMin,jMax
806 DO i=iMin,iMax
807 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j)
808 ENDDO
809 ENDDO
810 ENDIF
811 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
812 C o Spherical polar grid metric terms
813 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
814 DO j=jMin,jMax
815 DO i=iMin,iMax
816 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
817 ENDDO
818 ENDDO
819 ENDIF
820 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
821 C o Cylindrical grid metric terms
822 CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
823 DO j=jMin,jMax
824 DO i=iMin,iMax
825 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
826 ENDDO
827 ENDDO
828 ENDIF
829
830 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
831
832 C-- Coriolis term
833 C Note. As coded here, coriolis will not work with "thin walls"
834 c IF (useCDscheme) THEN
835 c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
836 c ELSE
837 IF (.NOT.useCDscheme) THEN
838 CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
839 DO j=jMin,jMax
840 DO i=iMin,iMax
841 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
842 ENDDO
843 ENDDO
844 #ifdef ALLOW_DIAGNOSTICS
845 IF ( useDiagnostics )
846 & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
847 #endif
848 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
849 DO j=jMin,jMax
850 DO i=iMin,iMax
851 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
852 ENDDO
853 ENDDO
854 #ifdef ALLOW_DIAGNOSTICS
855 IF ( useDiagnostics )
856 & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
857 #endif
858 ENDIF
859
860 C-- 3.D Coriolis term (horizontal momentum, Eastward component: -fprime*w)
861 IF ( use3dCoriolis ) THEN
862 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
863 DO j=jMin,jMax
864 DO i=iMin,iMax
865 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
866 ENDDO
867 ENDDO
868 IF ( usingCurvilinearGrid ) THEN
869 C- presently, non zero angleSinC array only supported with Curvilinear-Grid
870 CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
871 DO j=jMin,jMax
872 DO i=iMin,iMax
873 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
874 ENDDO
875 ENDDO
876 ENDIF
877 ENDIF
878
879 C-- Set du/dt & dv/dt on boundaries to zero
880 DO j=jMin,jMax
881 DO i=iMin,iMax
882 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
883 guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
884 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
885 gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
886 ENDDO
887 ENDDO
888
889 #ifdef ALLOW_DIAGNOSTICS
890 IF ( useDiagnostics ) THEN
891 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
892 CALL DIAGNOSTICS_FILL(gU(1-OLx,1-OLy,k,bi,bj),
893 & 'Um_Advec',k,1,2,bi,bj,myThid)
894 CALL DIAGNOSTICS_FILL(gV(1-OLx,1-OLy,k,bi,bj),
895 & 'Vm_Advec',k,1,2,bi,bj,myThid)
896 IF (momViscosity) THEN
897 CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
898 CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
899 ENDIF
900 ENDIF
901 #endif /* ALLOW_DIAGNOSTICS */
902
903 RETURN
904 END

  ViewVC Help
Powered by ViewVC 1.1.22