/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.31 - (show annotations) (download)
Thu Dec 8 15:44:34 2005 UTC (18 years, 5 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint57y_post, checkpoint58, checkpoint57z_post
Changes since 1.30: +5 -1 lines
First step for a NLFS adjoint
o initially suppress rStar (new flag DISABLE_RSTAR_CODE)
o new init. routines for calc_r_star, calc_surf_dr
o still need to deal with ini_masks_etc
o testreport seemed happy

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.30 2005/11/24 00:06:38 heimbach Exp $
2 C $Name: $
3
4 CBOI
5 C !TITLE: pkg/mom\_advdiff
6 C !AUTHORS: adcroft@mit.edu
7 C !INTRODUCTION: Flux-form Momentum Equations Package
8 C
9 C Package "mom\_fluxform" provides methods for calculating explicit terms
10 C in the momentum equation cast in flux-form:
11 C \begin{eqnarray*}
12 C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13 C -\nabla \cdot {\bf v} u
14 C -fv
15 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16 C + \mbox{metrics}
17 C \\
18 C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19 C -\nabla \cdot {\bf v} v
20 C +fu
21 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22 C + \mbox{metrics}
23 C \end{eqnarray*}
24 C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25 C stresses as well as internal viscous stresses.
26 CEOI
27
28 #include "MOM_FLUXFORM_OPTIONS.h"
29
30 CBOP
31 C !ROUTINE: MOM_FLUXFORM
32
33 C !INTERFACE: ==========================================================
34 SUBROUTINE MOM_FLUXFORM(
35 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 I KappaRU, KappaRV,
37 U fVerU, fVerV,
38 O guDiss, gvDiss,
39 I myTime, myIter, myThid)
40
41 C !DESCRIPTION:
42 C Calculates all the horizontal accelerations except for the implicit surface
43 C pressure gradient and implciit vertical viscosity.
44
45 C !USES: ===============================================================
46 C == Global variables ==
47 IMPLICIT NONE
48 #include "SIZE.h"
49 #include "DYNVARS.h"
50 #include "FFIELDS.h"
51 #include "EEPARAMS.h"
52 #include "PARAMS.h"
53 #include "GRID.h"
54 #include "SURFACE.h"
55
56 C !INPUT PARAMETERS: ===================================================
57 C bi,bj :: tile indices
58 C iMin,iMax,jMin,jMAx :: loop ranges
59 C k :: vertical level
60 C kUp :: =1 or 2 for consecutive k
61 C kDown :: =2 or 1 for consecutive k
62 C KappaRU :: vertical viscosity
63 C KappaRV :: vertical viscosity
64 C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
65 C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
66 C guDiss :: dissipation tendency (all explicit terms), u component
67 C gvDiss :: dissipation tendency (all explicit terms), v component
68 C myTime :: current time
69 C myIter :: current time-step number
70 C myThid :: thread number
71 INTEGER bi,bj,iMin,iMax,jMin,jMax
72 INTEGER k,kUp,kDown
73 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
76 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
77 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL myTime
80 INTEGER myIter
81 INTEGER myThid
82
83 C !OUTPUT PARAMETERS: ==================================================
84 C None - updates gU() and gV() in common blocks
85
86 C !LOCAL VARIABLES: ====================================================
87 C i,j :: loop indices
88 C vF :: viscous flux
89 C v4F :: bi-harmonic viscous flux
90 C cF :: Coriolis acceleration
91 C mT :: Metric terms
92 C fZon :: zonal fluxes
93 C fMer :: meridional fluxes
94 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
95 INTEGER i,j
96 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 C afFacMom - Tracer parameters for turning terms
105 C vfFacMom on and off.
106 C pfFacMom afFacMom - Advective terms
107 C cfFacMom vfFacMom - Eddy viscosity terms
108 C mTFacMom pfFacMom - Pressure terms
109 C cfFacMom - Coriolis terms
110 C foFacMom - Forcing
111 C mTFacMom - Metric term
112 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
113 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 _RL uDudxFac
133 _RL AhDudxFac
134 _RL vDudyFac
135 _RL AhDudyFac
136 _RL rVelDudrFac
137 _RL ArDudrFac
138 _RL fuFac
139 _RL mtFacU
140 _RL uDvdxFac
141 _RL AhDvdxFac
142 _RL vDvdyFac
143 _RL AhDvdyFac
144 _RL rVelDvdrFac
145 _RL ArDvdrFac
146 _RL fvFac
147 _RL mtFacV
148 _RL sideMaskFac
149 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
150 CEOP
151
152 C Initialise intermediate terms
153 DO j=1-OLy,sNy+OLy
154 DO i=1-OLx,sNx+OLx
155 vF(i,j) = 0.
156 v4F(i,j) = 0.
157 cF(i,j) = 0.
158 mT(i,j) = 0.
159 fZon(i,j) = 0.
160 fMer(i,j) = 0.
161 fVrUp(i,j)= 0.
162 fVrDw(i,j)= 0.
163 rTransU(i,j)= 0.
164 rTransV(i,j)= 0.
165 strain(i,j) = 0.
166 tension(i,j)= 0.
167 guDiss(i,j) = 0.
168 gvDiss(i,j) = 0.
169 #ifdef ALLOW_AUTODIFF_TAMC
170 vort3(i,j) = 0. _d 0
171 strain(i,j) = 0. _d 0
172 tension(i,j) = 0. _d 0
173 #endif
174 ENDDO
175 ENDDO
176
177 C-- Term by term tracer parmeters
178 C o U momentum equation
179 uDudxFac = afFacMom*1.
180 AhDudxFac = vfFacMom*1.
181 vDudyFac = afFacMom*1.
182 AhDudyFac = vfFacMom*1.
183 rVelDudrFac = afFacMom*1.
184 ArDudrFac = vfFacMom*1.
185 mTFacU = mtFacMom*1.
186 fuFac = cfFacMom*1.
187 C o V momentum equation
188 uDvdxFac = afFacMom*1.
189 AhDvdxFac = vfFacMom*1.
190 vDvdyFac = afFacMom*1.
191 AhDvdyFac = vfFacMom*1.
192 rVelDvdrFac = afFacMom*1.
193 ArDvdrFac = vfFacMom*1.
194 mTFacV = mtFacMom*1.
195 fvFac = cfFacMom*1.
196
197 IF (implicitViscosity) THEN
198 ArDudrFac = 0.
199 ArDvdrFac = 0.
200 ENDIF
201
202 C note: using standard stencil (no mask) results in under-estimating
203 C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
204 IF ( no_slip_sides ) THEN
205 sideMaskFac = sideDragFactor
206 ELSE
207 sideMaskFac = 0. _d 0
208 ENDIF
209
210 IF ( no_slip_bottom
211 & .OR. bottomDragQuadratic.NE.0.
212 & .OR. bottomDragLinear.NE.0.) THEN
213 bottomDragTerms=.TRUE.
214 ELSE
215 bottomDragTerms=.FALSE.
216 ENDIF
217
218 C-- Calculate open water fraction at vorticity points
219 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
220
221 C---- Calculate common quantities used in both U and V equations
222 C Calculate tracer cell face open areas
223 DO j=1-OLy,sNy+OLy
224 DO i=1-OLx,sNx+OLx
225 xA(i,j) = _dyG(i,j,bi,bj)
226 & *drF(k)*_hFacW(i,j,k,bi,bj)
227 yA(i,j) = _dxG(i,j,bi,bj)
228 & *drF(k)*_hFacS(i,j,k,bi,bj)
229 ENDDO
230 ENDDO
231
232 C Make local copies of horizontal flow field
233 DO j=1-OLy,sNy+OLy
234 DO i=1-OLx,sNx+OLx
235 uFld(i,j) = uVel(i,j,k,bi,bj)
236 vFld(i,j) = vVel(i,j,k,bi,bj)
237 ENDDO
238 ENDDO
239
240 C Calculate velocity field "volume transports" through tracer cell faces.
241 DO j=1-OLy,sNy+OLy
242 DO i=1-OLx,sNx+OLx
243 uTrans(i,j) = uFld(i,j)*xA(i,j)
244 vTrans(i,j) = vFld(i,j)*yA(i,j)
245 ENDDO
246 ENDDO
247
248 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
249 IF ( momViscosity) THEN
250 CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
251 CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
252 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
253 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
254 DO j=1-Oly,sNy+Oly
255 DO i=1-Olx,sNx+Olx
256 IF ( hFacZ(i,j).EQ.0. ) THEN
257 vort3(i,j) = sideMaskFac*vort3(i,j)
258 strain(i,j) = sideMaskFac*strain(i,j)
259 ENDIF
260 ENDDO
261 ENDDO
262 #ifdef ALLOW_DIAGNOSTICS
263 IF ( useDiagnostics ) THEN
264 CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
265 CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
266 CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
267 CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
268 ENDIF
269 #endif
270 ENDIF
271
272 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
273 IF (momAdvection.AND.k.EQ.1) THEN
274
275 C- Calculate vertical transports above U & V points (West & South face):
276 CALL MOM_CALC_RTRANS( k, bi, bj,
277 O rTransU, rTransV,
278 I myTime, myIter, myThid)
279
280 C- Free surface correction term (flux at k=1)
281 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
282 O fVerU(1-OLx,1-OLy,kUp), myThid )
283
284 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
285 O fVerV(1-OLx,1-OLy,kUp), myThid )
286
287 C--- endif momAdvection & k=1
288 ENDIF
289
290
291 C--- Calculate vertical transports (at k+1) below U & V points :
292 IF (momAdvection) THEN
293 CALL MOM_CALC_RTRANS( k+1, bi, bj,
294 O rTransU, rTransV,
295 I myTime, myIter, myThid)
296 ENDIF
297
298 IF (momViscosity) THEN
299 CALL MOM_CALC_VISC(
300 I bi,bj,k,
301 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
302 O harmonic,biharmonic,useVariableViscosity,
303 I hDiv,vort3,tension,strain,KE,hFacZ,
304 I myThid)
305 ENDIF
306
307 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
308
309 C---- Zonal momentum equation starts here
310
311 IF (momAdvection) THEN
312 C--- Calculate mean fluxes (advection) between cells for zonal flow.
313
314 C-- Zonal flux (fZon is at east face of "u" cell)
315 C Mean flow component of zonal flux -> fZon
316 CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
317
318 C-- Meridional flux (fMer is at south face of "u" cell)
319 C Mean flow component of meridional flux -> fMer
320 CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
321
322 C-- Vertical flux (fVer is at upper face of "u" cell)
323 C Mean flow component of vertical flux (at k+1) -> fVer
324 CALL MOM_U_ADV_WU(
325 I bi,bj,k+1,uVel,wVel,rTransU,
326 O fVerU(1-OLx,1-OLy,kDown), myThid )
327
328 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
329 DO j=jMin,jMax
330 DO i=iMin,iMax
331 gU(i,j,k,bi,bj) =
332 #ifdef OLD_UV_GEOM
333 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
334 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
335 #else
336 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
337 & *recip_rAw(i,j,bi,bj)
338 #endif
339 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
340 & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
341 & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
342 & )
343 ENDDO
344 ENDDO
345
346 #ifdef ALLOW_DIAGNOSTICS
347 IF ( useDiagnostics ) THEN
348 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)
349 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)
350 CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),
351 & 'ADVrE_Um',k,1,2,bi,bj,myThid)
352 ENDIF
353 #endif
354
355 #ifdef NONLIN_FRSURF
356 C-- account for 3.D divergence of the flow in rStar coordinate:
357 # ifndef DISABLE_RSTAR_CODE
358 IF ( select_rStar.GT.0 ) THEN
359 DO j=jMin,jMax
360 DO i=iMin,iMax
361 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
362 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
363 & *uVel(i,j,k,bi,bj)
364 ENDDO
365 ENDDO
366 ENDIF
367 IF ( select_rStar.LT.0 ) THEN
368 DO j=jMin,jMax
369 DO i=iMin,iMax
370 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
371 & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
372 ENDDO
373 ENDDO
374 ENDIF
375 # endif /* DISABLE_RSTAR_CODE */
376 #endif /* NONLIN_FRSURF */
377
378 ELSE
379 C- if momAdvection / else
380 DO j=1-OLy,sNy+OLy
381 DO i=1-OLx,sNx+OLx
382 gU(i,j,k,bi,bj) = 0. _d 0
383 ENDDO
384 ENDDO
385
386 C- endif momAdvection.
387 ENDIF
388
389 IF (momViscosity) THEN
390 C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
391
392 C Bi-harmonic term del^2 U -> v4F
393 IF (biharmonic)
394 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
395
396 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
397 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
398 I viscAh_D,viscA4_D,myThid)
399
400 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
401 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
402 I viscAh_Z,viscA4_Z,myThid)
403
404 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
405 IF (.NOT.implicitViscosity) THEN
406 CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
407 CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
408 ENDIF
409
410 C-- Tendency is minus divergence of the fluxes
411 DO j=jMin,jMax
412 DO i=iMin,iMax
413 guDiss(i,j) =
414 #ifdef OLD_UV_GEOM
415 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
416 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
417 #else
418 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
419 & *recip_rAw(i,j,bi,bj)
420 #endif
421 & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
422 & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
423 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
424 & )
425 ENDDO
426 ENDDO
427
428 #ifdef ALLOW_DIAGNOSTICS
429 IF ( useDiagnostics ) THEN
430 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
431 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
432 IF (.NOT.implicitViscosity)
433 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
434 ENDIF
435 #endif
436
437 C-- No-slip and drag BCs appear as body forces in cell abutting topography
438 IF (no_slip_sides) THEN
439 C- No-slip BCs impose a drag at walls...
440 CALL MOM_U_SIDEDRAG(
441 I bi,bj,k,
442 I uFld, v4f, hFacZ,
443 I viscAh_Z,viscA4_Z,
444 I harmonic,biharmonic,useVariableViscosity,
445 O vF,
446 I myThid)
447 DO j=jMin,jMax
448 DO i=iMin,iMax
449 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
450 ENDDO
451 ENDDO
452 ENDIF
453 C- No-slip BCs impose a drag at bottom
454 IF (bottomDragTerms) THEN
455 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
456 DO j=jMin,jMax
457 DO i=iMin,iMax
458 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
459 ENDDO
460 ENDDO
461 ENDIF
462
463 C- endif momViscosity
464 ENDIF
465
466 C-- Forcing term (moved to timestep.F)
467 c IF (momForcing)
468 c & CALL EXTERNAL_FORCING_U(
469 c I iMin,iMax,jMin,jMax,bi,bj,k,
470 c I myTime,myThid)
471
472 C-- Metric terms for curvilinear grid systems
473 IF (useNHMTerms) THEN
474 C o Non-hydrosatic metric terms
475 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
476 DO j=jMin,jMax
477 DO i=iMin,iMax
478 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
479 ENDDO
480 ENDDO
481 ENDIF
482 IF (usingSphericalPolarMTerms) THEN
483 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
484 DO j=jMin,jMax
485 DO i=iMin,iMax
486 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
487 ENDDO
488 ENDDO
489 ENDIF
490 IF (usingCylindricalGrid) THEN
491 CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
492 DO j=jMin,jMax
493 DO i=iMin,iMax
494 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
495 ENDDO
496 ENDDO
497 ENDIF
498
499 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
500
501 C---- Meridional momentum equation starts here
502
503 IF (momAdvection) THEN
504 C--- Calculate mean fluxes (advection) between cells for meridional flow.
505 C Mean flow component of zonal flux -> fZon
506 CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
507
508 C-- Meridional flux (fMer is at north face of "v" cell)
509 C Mean flow component of meridional flux -> fMer
510 CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
511
512 C-- Vertical flux (fVer is at upper face of "v" cell)
513 C Mean flow component of vertical flux (at k+1) -> fVerV
514 CALL MOM_V_ADV_WV(
515 I bi,bj,k+1,vVel,wVel,rTransV,
516 O fVerV(1-OLx,1-OLy,kDown), myThid )
517
518 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
519 DO j=jMin,jMax
520 DO i=iMin,iMax
521 gV(i,j,k,bi,bj) =
522 #ifdef OLD_UV_GEOM
523 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
524 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
525 #else
526 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
527 & *recip_rAs(i,j,bi,bj)
528 #endif
529 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
530 & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
531 & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
532 & )
533 ENDDO
534 ENDDO
535
536 #ifdef ALLOW_DIAGNOSTICS
537 IF ( useDiagnostics ) THEN
538 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)
539 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)
540 CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),
541 & 'ADVrE_Vm',k,1,2,bi,bj,myThid)
542 ENDIF
543 #endif
544
545 #ifdef NONLIN_FRSURF
546 C-- account for 3.D divergence of the flow in rStar coordinate:
547 # ifndef DISABLE_RSTAR_CODE
548 IF ( select_rStar.GT.0 ) THEN
549 DO j=jMin,jMax
550 DO i=iMin,iMax
551 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
552 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
553 & *vVel(i,j,k,bi,bj)
554 ENDDO
555 ENDDO
556 ENDIF
557 IF ( select_rStar.LT.0 ) THEN
558 DO j=jMin,jMax
559 DO i=iMin,iMax
560 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
561 & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
562 ENDDO
563 ENDDO
564 ENDIF
565 # endif /* DISABLE_RSTAR_CODE */
566 #endif /* NONLIN_FRSURF */
567
568 ELSE
569 C- if momAdvection / else
570 DO j=1-OLy,sNy+OLy
571 DO i=1-OLx,sNx+OLx
572 gV(i,j,k,bi,bj) = 0. _d 0
573 ENDDO
574 ENDDO
575
576 C- endif momAdvection.
577 ENDIF
578
579 IF (momViscosity) THEN
580 C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
581 C Bi-harmonic term del^2 V -> v4F
582 IF (biharmonic)
583 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
584
585 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
586 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
587 I viscAh_Z,viscA4_Z,myThid)
588
589 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
590 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
591 I viscAh_D,viscA4_D,myThid)
592
593 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
594 IF (.NOT.implicitViscosity) THEN
595 CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
596 CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
597 ENDIF
598
599 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
600 DO j=jMin,jMax
601 DO i=iMin,iMax
602 gvDiss(i,j) =
603 #ifdef OLD_UV_GEOM
604 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
605 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
606 #else
607 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
608 & *recip_rAs(i,j,bi,bj)
609 #endif
610 & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
611 & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
612 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
613 & )
614 ENDDO
615 ENDDO
616
617 #ifdef ALLOW_DIAGNOSTICS
618 IF ( useDiagnostics ) THEN
619 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
620 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
621 IF (.NOT.implicitViscosity)
622 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
623 ENDIF
624 #endif
625
626 C-- No-slip and drag BCs appear as body forces in cell abutting topography
627 IF (no_slip_sides) THEN
628 C- No-slip BCs impose a drag at walls...
629 CALL MOM_V_SIDEDRAG(
630 I bi,bj,k,
631 I vFld, v4f, hFacZ,
632 I viscAh_Z,viscA4_Z,
633 I harmonic,biharmonic,useVariableViscosity,
634 O vF,
635 I myThid)
636 DO j=jMin,jMax
637 DO i=iMin,iMax
638 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
639 ENDDO
640 ENDDO
641 ENDIF
642 C- No-slip BCs impose a drag at bottom
643 IF (bottomDragTerms) THEN
644 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
645 DO j=jMin,jMax
646 DO i=iMin,iMax
647 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
648 ENDDO
649 ENDDO
650 ENDIF
651
652 C- endif momViscosity
653 ENDIF
654
655 C-- Forcing term (moved to timestep.F)
656 c IF (momForcing)
657 c & CALL EXTERNAL_FORCING_V(
658 c I iMin,iMax,jMin,jMax,bi,bj,k,
659 c I myTime,myThid)
660
661 C-- Metric terms for curvilinear grid systems
662 IF (useNHMTerms) THEN
663 C o Spherical polar grid metric terms
664 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
665 DO j=jMin,jMax
666 DO i=iMin,iMax
667 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
668 ENDDO
669 ENDDO
670 ENDIF
671 IF (usingSphericalPolarMTerms) THEN
672 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
673 DO j=jMin,jMax
674 DO i=iMin,iMax
675 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
676 ENDDO
677 ENDDO
678 ENDIF
679 IF (usingCylindricalGrid) THEN
680 CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
681 DO j=jMin,jMax
682 DO i=iMin,iMax
683 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
684 ENDDO
685 ENDDO
686 ENDIF
687
688 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
689
690 C-- Coriolis term
691 C Note. As coded here, coriolis will not work with "thin walls"
692 c IF (useCDscheme) THEN
693 c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
694 c ELSE
695 IF (.NOT.useCDscheme) THEN
696 CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
697 DO j=jMin,jMax
698 DO i=iMin,iMax
699 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
700 ENDDO
701 ENDDO
702 #ifdef ALLOW_DIAGNOSTICS
703 IF ( useDiagnostics )
704 & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
705 #endif
706 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
707 DO j=jMin,jMax
708 DO i=iMin,iMax
709 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
710 ENDDO
711 ENDDO
712 #ifdef ALLOW_DIAGNOSTICS
713 IF ( useDiagnostics )
714 & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
715 #endif
716 ENDIF
717
718 IF (nonHydrostatic.OR.quasiHydrostatic) THEN
719 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
720 DO j=jMin,jMax
721 DO i=iMin,iMax
722 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
723 ENDDO
724 ENDDO
725 ENDIF
726
727 C-- Set du/dt & dv/dt on boundaries to zero
728 DO j=jMin,jMax
729 DO i=iMin,iMax
730 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
731 guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
732 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
733 gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
734 ENDDO
735 ENDDO
736
737 #ifdef ALLOW_DIAGNOSTICS
738 IF ( useDiagnostics ) THEN
739 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
740 CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),
741 & 'Um_Advec',k,1,2,bi,bj,myThid)
742 CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),
743 & 'Vm_Advec',k,1,2,bi,bj,myThid)
744 IF (momViscosity) THEN
745 CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
746 CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
747 ENDIF
748 ENDIF
749 #endif /* ALLOW_DIAGNOSTICS */
750
751 RETURN
752 END

  ViewVC Help
Powered by ViewVC 1.1.22