/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.24 - (show annotations) (download)
Sun Sep 4 19:29:03 2005 UTC (18 years, 8 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint57r_post
Changes since 1.23: +62 -3 lines
add diagnostics for (almost) each term in momentun Eq.

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.23 2005/07/30 22:07:00 jmc Exp $
2 C $Name: $
3
4 CBOI
5 C !TITLE: pkg/mom\_advdiff
6 C !AUTHORS: adcroft@mit.edu
7 C !INTRODUCTION: Flux-form Momentum Equations Package
8 C
9 C Package "mom\_fluxform" provides methods for calculating explicit terms
10 C in the momentum equation cast in flux-form:
11 C \begin{eqnarray*}
12 C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13 C -\nabla \cdot {\bf v} u
14 C -fv
15 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16 C + \mbox{metrics}
17 C \\
18 C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19 C -\nabla \cdot {\bf v} v
20 C +fu
21 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22 C + \mbox{metrics}
23 C \end{eqnarray*}
24 C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25 C stresses as well as internal viscous stresses.
26 CEOI
27
28 #include "MOM_FLUXFORM_OPTIONS.h"
29
30 CBOP
31 C !ROUTINE: MOM_FLUXFORM
32
33 C !INTERFACE: ==========================================================
34 SUBROUTINE MOM_FLUXFORM(
35 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 I KappaRU, KappaRV,
37 U fVerU, fVerV,
38 O guDiss, gvDiss,
39 I myTime, myIter, myThid)
40
41 C !DESCRIPTION:
42 C Calculates all the horizontal accelerations except for the implicit surface
43 C pressure gradient and implciit vertical viscosity.
44
45 C !USES: ===============================================================
46 C == Global variables ==
47 IMPLICIT NONE
48 #include "SIZE.h"
49 #include "DYNVARS.h"
50 #include "FFIELDS.h"
51 #include "EEPARAMS.h"
52 #include "PARAMS.h"
53 #include "GRID.h"
54 #include "SURFACE.h"
55
56 C !INPUT PARAMETERS: ===================================================
57 C bi,bj :: tile indices
58 C iMin,iMax,jMin,jMAx :: loop ranges
59 C k :: vertical level
60 C kUp :: =1 or 2 for consecutive k
61 C kDown :: =2 or 1 for consecutive k
62 C KappaRU :: vertical viscosity
63 C KappaRV :: vertical viscosity
64 C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
65 C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
66 C guDiss :: dissipation tendency (all explicit terms), u component
67 C gvDiss :: dissipation tendency (all explicit terms), v component
68 C myTime :: current time
69 C myIter :: current time-step number
70 C myThid :: thread number
71 INTEGER bi,bj,iMin,iMax,jMin,jMax
72 INTEGER k,kUp,kDown
73 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
76 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
77 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL myTime
80 INTEGER myIter
81 INTEGER myThid
82
83 C !OUTPUT PARAMETERS: ==================================================
84 C None - updates gU() and gV() in common blocks
85
86 C !LOCAL VARIABLES: ====================================================
87 C i,j :: loop indices
88 C vF :: viscous flux
89 C v4F :: bi-harmonic viscous flux
90 C cF :: Coriolis acceleration
91 C mT :: Metric terms
92 C fZon :: zonal fluxes
93 C fMer :: meridional fluxes
94 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
95 INTEGER i,j
96 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 C afFacMom - Tracer parameters for turning terms
105 C vfFacMom on and off.
106 C pfFacMom afFacMom - Advective terms
107 C cfFacMom vfFacMom - Eddy viscosity terms
108 C mTFacMom pfFacMom - Pressure terms
109 C cfFacMom - Coriolis terms
110 C foFacMom - Forcing
111 C mTFacMom - Metric term
112 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
113 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 c _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 c _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 c _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 c _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 c _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 c _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 _RL uDudxFac
133 _RL AhDudxFac
134 _RL vDudyFac
135 _RL AhDudyFac
136 _RL rVelDudrFac
137 _RL ArDudrFac
138 _RL fuFac
139 _RL mtFacU
140 _RL uDvdxFac
141 _RL AhDvdxFac
142 _RL vDvdyFac
143 _RL AhDvdyFac
144 _RL rVelDvdrFac
145 _RL ArDvdrFac
146 _RL fvFac
147 _RL mtFacV
148 LOGICAL bottomDragTerms
149 CEOP
150
151 C Initialise intermediate terms
152 DO j=1-OLy,sNy+OLy
153 DO i=1-OLx,sNx+OLx
154 vF(i,j) = 0.
155 v4F(i,j) = 0.
156 cF(i,j) = 0.
157 mT(i,j) = 0.
158 fZon(i,j) = 0.
159 fMer(i,j) = 0.
160 fVrUp(i,j)= 0.
161 fVrDw(i,j)= 0.
162 rTransU(i,j)= 0.
163 rTransV(i,j)= 0.
164 strain(i,j) = 0.
165 tension(i,j)= 0.
166 guDiss(i,j) = 0.
167 gvDiss(i,j) = 0.
168 ENDDO
169 ENDDO
170
171 C-- Term by term tracer parmeters
172 C o U momentum equation
173 uDudxFac = afFacMom*1.
174 AhDudxFac = vfFacMom*1.
175 vDudyFac = afFacMom*1.
176 AhDudyFac = vfFacMom*1.
177 rVelDudrFac = afFacMom*1.
178 ArDudrFac = vfFacMom*1.
179 mTFacU = mtFacMom*1.
180 fuFac = cfFacMom*1.
181 C o V momentum equation
182 uDvdxFac = afFacMom*1.
183 AhDvdxFac = vfFacMom*1.
184 vDvdyFac = afFacMom*1.
185 AhDvdyFac = vfFacMom*1.
186 rVelDvdrFac = afFacMom*1.
187 ArDvdrFac = vfFacMom*1.
188 mTFacV = mtFacMom*1.
189 fvFac = cfFacMom*1.
190
191 IF (implicitViscosity) THEN
192 ArDudrFac = 0.
193 ArDvdrFac = 0.
194 ENDIF
195
196 IF ( no_slip_bottom
197 & .OR. bottomDragQuadratic.NE.0.
198 & .OR. bottomDragLinear.NE.0.) THEN
199 bottomDragTerms=.TRUE.
200 ELSE
201 bottomDragTerms=.FALSE.
202 ENDIF
203
204 C-- Calculate open water fraction at vorticity points
205 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
206
207 C---- Calculate common quantities used in both U and V equations
208 C Calculate tracer cell face open areas
209 DO j=1-OLy,sNy+OLy
210 DO i=1-OLx,sNx+OLx
211 xA(i,j) = _dyG(i,j,bi,bj)
212 & *drF(k)*_hFacW(i,j,k,bi,bj)
213 yA(i,j) = _dxG(i,j,bi,bj)
214 & *drF(k)*_hFacS(i,j,k,bi,bj)
215 ENDDO
216 ENDDO
217
218 C Make local copies of horizontal flow field
219 DO j=1-OLy,sNy+OLy
220 DO i=1-OLx,sNx+OLx
221 uFld(i,j) = uVel(i,j,k,bi,bj)
222 vFld(i,j) = vVel(i,j,k,bi,bj)
223 ENDDO
224 ENDDO
225
226 C Calculate velocity field "volume transports" through tracer cell faces.
227 DO j=1-OLy,sNy+OLy
228 DO i=1-OLx,sNx+OLx
229 uTrans(i,j) = uFld(i,j)*xA(i,j)
230 vTrans(i,j) = vFld(i,j)*yA(i,j)
231 ENDDO
232 ENDDO
233
234 IF (bottomDragTerms) THEN
235 CALL MOM_CALC_KE(bi,bj,k,3,uFld,vFld,KE,myThid)
236 ENDIF
237
238 IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN
239 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,
240 O tension,
241 I myThid)
242 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,
243 O strain,
244 I myThid)
245 ENDIF
246
247 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
248 IF (momAdvection.AND.k.EQ.1) THEN
249
250 C- Calculate vertical transports above U & V points (West & South face):
251 CALL MOM_CALC_RTRANS( k, bi, bj,
252 O rTransU, rTransV,
253 I myTime, myIter, myThid)
254
255 C- Free surface correction term (flux at k=1)
256 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
257 O fVerU(1-OLx,1-OLy,kUp), myThid )
258
259 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
260 O fVerV(1-OLx,1-OLy,kUp), myThid )
261
262 C--- endif momAdvection & k=1
263 ENDIF
264
265
266 C--- Calculate vertical transports (at k+1) below U & V points :
267 IF (momAdvection) THEN
268 CALL MOM_CALC_RTRANS( k+1, bi, bj,
269 O rTransU, rTransV,
270 I myTime, myIter, myThid)
271 ENDIF
272
273 c IF (momViscosity) THEN
274 c & CALL MOM_CALC_VISCOSITY(bi,bj,k,
275 c I uFld,vFld,
276 c O viscAh_D,viscAh_Z,myThid)
277
278 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
279
280 C---- Zonal momentum equation starts here
281
282 IF (momAdvection) THEN
283 C--- Calculate mean fluxes (advection) between cells for zonal flow.
284
285 C-- Zonal flux (fZon is at east face of "u" cell)
286 C Mean flow component of zonal flux -> fZon
287 CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
288
289 C-- Meridional flux (fMer is at south face of "u" cell)
290 C Mean flow component of meridional flux -> fMer
291 CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
292
293 C-- Vertical flux (fVer is at upper face of "u" cell)
294 C Mean flow component of vertical flux (at k+1) -> fVer
295 CALL MOM_U_ADV_WU(
296 I bi,bj,k+1,uVel,wVel,rTransU,
297 O fVerU(1-OLx,1-OLy,kDown), myThid )
298
299 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
300 DO j=jMin,jMax
301 DO i=iMin,iMax
302 gU(i,j,k,bi,bj) =
303 #ifdef OLD_UV_GEOM
304 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
305 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
306 #else
307 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
308 & *recip_rAw(i,j,bi,bj)
309 #endif
310 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
311 & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
312 & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
313 & )
314 ENDDO
315 ENDDO
316
317 #ifdef ALLOW_DIAGNOSTICS
318 IF ( useDiagnostics ) THEN
319 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)
320 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)
321 CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),
322 & 'ADVrE_Um',k,1,2,bi,bj,myThid)
323 ENDIF
324 #endif
325
326 #ifdef NONLIN_FRSURF
327 C-- account for 3.D divergence of the flow in rStar coordinate:
328 IF ( select_rStar.GT.0 ) THEN
329 DO j=jMin,jMax
330 DO i=iMin,iMax
331 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
332 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
333 & *uVel(i,j,k,bi,bj)
334 ENDDO
335 ENDDO
336 ENDIF
337 IF ( select_rStar.LT.0 ) THEN
338 DO j=jMin,jMax
339 DO i=iMin,iMax
340 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
341 & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
342 ENDDO
343 ENDDO
344 ENDIF
345 #endif /* NONLIN_FRSURF */
346
347 ELSE
348 C- if momAdvection / else
349 DO j=1-OLy,sNy+OLy
350 DO i=1-OLx,sNx+OLx
351 gU(i,j,k,bi,bj) = 0. _d 0
352 ENDDO
353 ENDDO
354
355 C- endif momAdvection.
356 ENDIF
357
358 IF (momViscosity) THEN
359 C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
360
361 C Bi-harmonic term del^2 U -> v4F
362 IF ( viscA4.NE.0. )
363 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
364
365 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
366 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,myThid)
367
368 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
369 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,myThid)
370
371 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
372 IF (.NOT.implicitViscosity) THEN
373 CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
374 CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
375 ENDIF
376
377 C-- Tendency is minus divergence of the fluxes
378 DO j=jMin,jMax
379 DO i=iMin,iMax
380 guDiss(i,j) =
381 #ifdef OLD_UV_GEOM
382 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
383 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
384 #else
385 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
386 & *recip_rAw(i,j,bi,bj)
387 #endif
388 & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
389 & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
390 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
391 & )
392 ENDDO
393 ENDDO
394
395 #ifdef ALLOW_DIAGNOSTICS
396 IF ( useDiagnostics ) THEN
397 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
398 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
399 IF (.NOT.implicitViscosity)
400 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
401 ENDIF
402 #endif
403
404 C-- No-slip and drag BCs appear as body forces in cell abutting topography
405 IF (no_slip_sides) THEN
406 C- No-slip BCs impose a drag at walls...
407 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,v4F,hFacZ,vF,myThid)
408 DO j=jMin,jMax
409 DO i=iMin,iMax
410 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
411 ENDDO
412 ENDDO
413 ENDIF
414 C- No-slip BCs impose a drag at bottom
415 IF (bottomDragTerms) THEN
416 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
417 DO j=jMin,jMax
418 DO i=iMin,iMax
419 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
420 ENDDO
421 ENDDO
422 ENDIF
423
424 C- endif momViscosity
425 ENDIF
426
427 C-- Forcing term (moved to timestep.F)
428 c IF (momForcing)
429 c & CALL EXTERNAL_FORCING_U(
430 c I iMin,iMax,jMin,jMax,bi,bj,k,
431 c I myTime,myThid)
432
433 C-- Metric terms for curvilinear grid systems
434 IF (useNHMTerms) THEN
435 C o Non-hydrosatic metric terms
436 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
437 DO j=jMin,jMax
438 DO i=iMin,iMax
439 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
440 ENDDO
441 ENDDO
442 ENDIF
443 IF (usingSphericalPolarMTerms) THEN
444 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
445 DO j=jMin,jMax
446 DO i=iMin,iMax
447 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
448 ENDDO
449 ENDDO
450 ENDIF
451 IF (usingCylindricalGrid) THEN
452 CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
453 DO j=jMin,jMax
454 DO i=iMin,iMax
455 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
456 ENDDO
457 ENDDO
458 ENDIF
459
460 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
461
462 C---- Meridional momentum equation starts here
463
464 IF (momAdvection) THEN
465 C--- Calculate mean fluxes (advection) between cells for meridional flow.
466 C Mean flow component of zonal flux -> fZon
467 CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
468
469 C-- Meridional flux (fMer is at north face of "v" cell)
470 C Mean flow component of meridional flux -> fMer
471 CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
472
473 C-- Vertical flux (fVer is at upper face of "v" cell)
474 C Mean flow component of vertical flux (at k+1) -> fVerV
475 CALL MOM_V_ADV_WV(
476 I bi,bj,k+1,vVel,wVel,rTransV,
477 O fVerV(1-OLx,1-OLy,kDown), myThid )
478
479 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
480 DO j=jMin,jMax
481 DO i=iMin,iMax
482 gV(i,j,k,bi,bj) =
483 #ifdef OLD_UV_GEOM
484 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
485 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
486 #else
487 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
488 & *recip_rAs(i,j,bi,bj)
489 #endif
490 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
491 & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
492 & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
493 & )
494 ENDDO
495 ENDDO
496
497 #ifdef ALLOW_DIAGNOSTICS
498 IF ( useDiagnostics ) THEN
499 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)
500 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)
501 CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),
502 & 'ADVrE_Vm',k,1,2,bi,bj,myThid)
503 ENDIF
504 #endif
505
506 #ifdef NONLIN_FRSURF
507 C-- account for 3.D divergence of the flow in rStar coordinate:
508 IF ( select_rStar.GT.0 ) THEN
509 DO j=jMin,jMax
510 DO i=iMin,iMax
511 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
512 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
513 & *vVel(i,j,k,bi,bj)
514 ENDDO
515 ENDDO
516 ENDIF
517 IF ( select_rStar.LT.0 ) THEN
518 DO j=jMin,jMax
519 DO i=iMin,iMax
520 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
521 & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
522 ENDDO
523 ENDDO
524 ENDIF
525 #endif /* NONLIN_FRSURF */
526
527 ELSE
528 C- if momAdvection / else
529 DO j=1-OLy,sNy+OLy
530 DO i=1-OLx,sNx+OLx
531 gV(i,j,k,bi,bj) = 0. _d 0
532 ENDDO
533 ENDDO
534
535 C- endif momAdvection.
536 ENDIF
537
538 IF (momViscosity) THEN
539 C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
540 C Bi-harmonic term del^2 V -> v4F
541 IF ( viscA4.NE.0. )
542 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
543
544 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
545 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,myThid)
546
547 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
548 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,myThid)
549
550 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
551 IF (.NOT.implicitViscosity) THEN
552 CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
553 CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
554 ENDIF
555
556 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
557 DO j=jMin,jMax
558 DO i=iMin,iMax
559 gvDiss(i,j) =
560 #ifdef OLD_UV_GEOM
561 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
562 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
563 #else
564 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
565 & *recip_rAs(i,j,bi,bj)
566 #endif
567 & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
568 & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
569 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
570 & )
571 ENDDO
572 ENDDO
573
574 #ifdef ALLOW_DIAGNOSTICS
575 IF ( useDiagnostics ) THEN
576 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
577 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
578 IF (.NOT.implicitViscosity)
579 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
580 ENDIF
581 #endif
582
583 C-- No-slip and drag BCs appear as body forces in cell abutting topography
584 IF (no_slip_sides) THEN
585 C- No-slip BCs impose a drag at walls...
586 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,v4F,hFacZ,vF,myThid)
587 DO j=jMin,jMax
588 DO i=iMin,iMax
589 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
590 ENDDO
591 ENDDO
592 ENDIF
593 C- No-slip BCs impose a drag at bottom
594 IF (bottomDragTerms) THEN
595 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
596 DO j=jMin,jMax
597 DO i=iMin,iMax
598 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
599 ENDDO
600 ENDDO
601 ENDIF
602
603 C- endif momViscosity
604 ENDIF
605
606 C-- Forcing term (moved to timestep.F)
607 c IF (momForcing)
608 c & CALL EXTERNAL_FORCING_V(
609 c I iMin,iMax,jMin,jMax,bi,bj,k,
610 c I myTime,myThid)
611
612 C-- Metric terms for curvilinear grid systems
613 IF (useNHMTerms) THEN
614 C o Spherical polar grid metric terms
615 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
616 DO j=jMin,jMax
617 DO i=iMin,iMax
618 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
619 ENDDO
620 ENDDO
621 ENDIF
622 IF (usingSphericalPolarMTerms) THEN
623 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
624 DO j=jMin,jMax
625 DO i=iMin,iMax
626 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
627 ENDDO
628 ENDDO
629 ENDIF
630 IF (usingCylindricalGrid) THEN
631 CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
632 DO j=jMin,jMax
633 DO i=iMin,iMax
634 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
635 ENDDO
636 ENDDO
637 ENDIF
638
639 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
640
641 C-- Coriolis term
642 C Note. As coded here, coriolis will not work with "thin walls"
643 c IF (useCDscheme) THEN
644 c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
645 c ELSE
646 IF (.NOT.useCDscheme) THEN
647 CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
648 DO j=jMin,jMax
649 DO i=iMin,iMax
650 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
651 ENDDO
652 ENDDO
653 #ifdef ALLOW_DIAGNOSTICS
654 IF ( useDiagnostics )
655 & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
656 #endif
657 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
658 DO j=jMin,jMax
659 DO i=iMin,iMax
660 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
661 ENDDO
662 ENDDO
663 #ifdef ALLOW_DIAGNOSTICS
664 IF ( useDiagnostics )
665 & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
666 #endif
667 ENDIF
668
669 IF (nonHydrostatic.OR.quasiHydrostatic) THEN
670 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
671 DO j=jMin,jMax
672 DO i=iMin,iMax
673 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
674 ENDDO
675 ENDDO
676 ENDIF
677
678 C-- Set du/dt & dv/dt on boundaries to zero
679 DO j=jMin,jMax
680 DO i=iMin,iMax
681 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
682 guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
683 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
684 gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
685 ENDDO
686 ENDDO
687
688 #ifdef ALLOW_DIAGNOSTICS
689 IF ( useDiagnostics ) THEN
690 IF (bottomDragTerms)
691 & CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
692 CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),
693 & 'Um_Advec',k,1,2,bi,bj,myThid)
694 CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),
695 & 'Vm_Advec',k,1,2,bi,bj,myThid)
696 IF (momViscosity) THEN
697 CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
698 CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
699 ENDIF
700 ENDIF
701 #endif /* ALLOW_DIAGNOSTICS */
702
703 RETURN
704 END

  ViewVC Help
Powered by ViewVC 1.1.22