/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.29 - (show annotations) (download)
Wed Oct 12 01:10:10 2005 UTC (18 years, 7 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint57v_post, checkpoint57w_post
Changes since 1.28: +32 -9 lines
apply free-slip / no-slip BC on vorticity & strain.

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.28 2005/09/27 13:38:21 baylor Exp $
2 C $Name: $
3
4 CBOI
5 C !TITLE: pkg/mom\_advdiff
6 C !AUTHORS: adcroft@mit.edu
7 C !INTRODUCTION: Flux-form Momentum Equations Package
8 C
9 C Package "mom\_fluxform" provides methods for calculating explicit terms
10 C in the momentum equation cast in flux-form:
11 C \begin{eqnarray*}
12 C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13 C -\nabla \cdot {\bf v} u
14 C -fv
15 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16 C + \mbox{metrics}
17 C \\
18 C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19 C -\nabla \cdot {\bf v} v
20 C +fu
21 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22 C + \mbox{metrics}
23 C \end{eqnarray*}
24 C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25 C stresses as well as internal viscous stresses.
26 CEOI
27
28 #include "MOM_FLUXFORM_OPTIONS.h"
29
30 CBOP
31 C !ROUTINE: MOM_FLUXFORM
32
33 C !INTERFACE: ==========================================================
34 SUBROUTINE MOM_FLUXFORM(
35 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 I KappaRU, KappaRV,
37 U fVerU, fVerV,
38 O guDiss, gvDiss,
39 I myTime, myIter, myThid)
40
41 C !DESCRIPTION:
42 C Calculates all the horizontal accelerations except for the implicit surface
43 C pressure gradient and implciit vertical viscosity.
44
45 C !USES: ===============================================================
46 C == Global variables ==
47 IMPLICIT NONE
48 #include "SIZE.h"
49 #include "DYNVARS.h"
50 #include "FFIELDS.h"
51 #include "EEPARAMS.h"
52 #include "PARAMS.h"
53 #include "GRID.h"
54 #include "SURFACE.h"
55
56 C !INPUT PARAMETERS: ===================================================
57 C bi,bj :: tile indices
58 C iMin,iMax,jMin,jMAx :: loop ranges
59 C k :: vertical level
60 C kUp :: =1 or 2 for consecutive k
61 C kDown :: =2 or 1 for consecutive k
62 C KappaRU :: vertical viscosity
63 C KappaRV :: vertical viscosity
64 C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
65 C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
66 C guDiss :: dissipation tendency (all explicit terms), u component
67 C gvDiss :: dissipation tendency (all explicit terms), v component
68 C myTime :: current time
69 C myIter :: current time-step number
70 C myThid :: thread number
71 INTEGER bi,bj,iMin,iMax,jMin,jMax
72 INTEGER k,kUp,kDown
73 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
76 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
77 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL myTime
80 INTEGER myIter
81 INTEGER myThid
82
83 C !OUTPUT PARAMETERS: ==================================================
84 C None - updates gU() and gV() in common blocks
85
86 C !LOCAL VARIABLES: ====================================================
87 C i,j :: loop indices
88 C vF :: viscous flux
89 C v4F :: bi-harmonic viscous flux
90 C cF :: Coriolis acceleration
91 C mT :: Metric terms
92 C fZon :: zonal fluxes
93 C fMer :: meridional fluxes
94 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
95 INTEGER i,j
96 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 C afFacMom - Tracer parameters for turning terms
105 C vfFacMom on and off.
106 C pfFacMom afFacMom - Advective terms
107 C cfFacMom vfFacMom - Eddy viscosity terms
108 C mTFacMom pfFacMom - Pressure terms
109 C cfFacMom - Coriolis terms
110 C foFacMom - Forcing
111 C mTFacMom - Metric term
112 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
113 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 _RL uDudxFac
133 _RL AhDudxFac
134 _RL vDudyFac
135 _RL AhDudyFac
136 _RL rVelDudrFac
137 _RL ArDudrFac
138 _RL fuFac
139 _RL mtFacU
140 _RL uDvdxFac
141 _RL AhDvdxFac
142 _RL vDvdyFac
143 _RL AhDvdyFac
144 _RL rVelDvdrFac
145 _RL ArDvdrFac
146 _RL fvFac
147 _RL mtFacV
148 _RL sideMaskFac
149 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
150 CEOP
151
152 C Initialise intermediate terms
153 DO j=1-OLy,sNy+OLy
154 DO i=1-OLx,sNx+OLx
155 vF(i,j) = 0.
156 v4F(i,j) = 0.
157 cF(i,j) = 0.
158 mT(i,j) = 0.
159 fZon(i,j) = 0.
160 fMer(i,j) = 0.
161 fVrUp(i,j)= 0.
162 fVrDw(i,j)= 0.
163 rTransU(i,j)= 0.
164 rTransV(i,j)= 0.
165 strain(i,j) = 0.
166 tension(i,j)= 0.
167 guDiss(i,j) = 0.
168 gvDiss(i,j) = 0.
169 ENDDO
170 ENDDO
171
172 C-- Term by term tracer parmeters
173 C o U momentum equation
174 uDudxFac = afFacMom*1.
175 AhDudxFac = vfFacMom*1.
176 vDudyFac = afFacMom*1.
177 AhDudyFac = vfFacMom*1.
178 rVelDudrFac = afFacMom*1.
179 ArDudrFac = vfFacMom*1.
180 mTFacU = mtFacMom*1.
181 fuFac = cfFacMom*1.
182 C o V momentum equation
183 uDvdxFac = afFacMom*1.
184 AhDvdxFac = vfFacMom*1.
185 vDvdyFac = afFacMom*1.
186 AhDvdyFac = vfFacMom*1.
187 rVelDvdrFac = afFacMom*1.
188 ArDvdrFac = vfFacMom*1.
189 mTFacV = mtFacMom*1.
190 fvFac = cfFacMom*1.
191
192 IF (implicitViscosity) THEN
193 ArDudrFac = 0.
194 ArDvdrFac = 0.
195 ENDIF
196
197 C note: using standard stencil (no mask) results in under-estimating
198 C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
199 IF ( no_slip_sides ) THEN
200 sideMaskFac = sideDragFactor
201 ELSE
202 sideMaskFac = 0. _d 0
203 ENDIF
204
205 IF ( no_slip_bottom
206 & .OR. bottomDragQuadratic.NE.0.
207 & .OR. bottomDragLinear.NE.0.) THEN
208 bottomDragTerms=.TRUE.
209 ELSE
210 bottomDragTerms=.FALSE.
211 ENDIF
212
213 C-- Calculate open water fraction at vorticity points
214 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
215
216 C---- Calculate common quantities used in both U and V equations
217 C Calculate tracer cell face open areas
218 DO j=1-OLy,sNy+OLy
219 DO i=1-OLx,sNx+OLx
220 xA(i,j) = _dyG(i,j,bi,bj)
221 & *drF(k)*_hFacW(i,j,k,bi,bj)
222 yA(i,j) = _dxG(i,j,bi,bj)
223 & *drF(k)*_hFacS(i,j,k,bi,bj)
224 ENDDO
225 ENDDO
226
227 C Make local copies of horizontal flow field
228 DO j=1-OLy,sNy+OLy
229 DO i=1-OLx,sNx+OLx
230 uFld(i,j) = uVel(i,j,k,bi,bj)
231 vFld(i,j) = vVel(i,j,k,bi,bj)
232 ENDDO
233 ENDDO
234
235 C Calculate velocity field "volume transports" through tracer cell faces.
236 DO j=1-OLy,sNy+OLy
237 DO i=1-OLx,sNx+OLx
238 uTrans(i,j) = uFld(i,j)*xA(i,j)
239 vTrans(i,j) = vFld(i,j)*yA(i,j)
240 ENDDO
241 ENDDO
242
243 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
244 IF ( momViscosity) THEN
245 CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
246 CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
247 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
248 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
249 DO j=1-Oly,sNy+Oly
250 DO i=1-Olx,sNx+Olx
251 IF ( hFacZ(i,j).EQ.0. ) THEN
252 vort3(i,j) = sideMaskFac*vort3(i,j)
253 strain(i,j) = sideMaskFac*strain(i,j)
254 ENDIF
255 ENDDO
256 ENDDO
257 #ifdef ALLOW_DIAGNOSTICS
258 IF ( useDiagnostics ) THEN
259 CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
260 CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
261 CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
262 CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
263 ENDIF
264 #endif
265 ENDIF
266
267 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
268 IF (momAdvection.AND.k.EQ.1) THEN
269
270 C- Calculate vertical transports above U & V points (West & South face):
271 CALL MOM_CALC_RTRANS( k, bi, bj,
272 O rTransU, rTransV,
273 I myTime, myIter, myThid)
274
275 C- Free surface correction term (flux at k=1)
276 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
277 O fVerU(1-OLx,1-OLy,kUp), myThid )
278
279 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
280 O fVerV(1-OLx,1-OLy,kUp), myThid )
281
282 C--- endif momAdvection & k=1
283 ENDIF
284
285
286 C--- Calculate vertical transports (at k+1) below U & V points :
287 IF (momAdvection) THEN
288 CALL MOM_CALC_RTRANS( k+1, bi, bj,
289 O rTransU, rTransV,
290 I myTime, myIter, myThid)
291 ENDIF
292
293 IF (momViscosity) THEN
294 CALL MOM_CALC_VISC(
295 I bi,bj,k,
296 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
297 O harmonic,biharmonic,useVariableViscosity,
298 I hDiv,vort3,tension,strain,KE,hFacZ,
299 I myThid)
300 ENDIF
301
302 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
303
304 C---- Zonal momentum equation starts here
305
306 IF (momAdvection) THEN
307 C--- Calculate mean fluxes (advection) between cells for zonal flow.
308
309 C-- Zonal flux (fZon is at east face of "u" cell)
310 C Mean flow component of zonal flux -> fZon
311 CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
312
313 C-- Meridional flux (fMer is at south face of "u" cell)
314 C Mean flow component of meridional flux -> fMer
315 CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
316
317 C-- Vertical flux (fVer is at upper face of "u" cell)
318 C Mean flow component of vertical flux (at k+1) -> fVer
319 CALL MOM_U_ADV_WU(
320 I bi,bj,k+1,uVel,wVel,rTransU,
321 O fVerU(1-OLx,1-OLy,kDown), myThid )
322
323 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
324 DO j=jMin,jMax
325 DO i=iMin,iMax
326 gU(i,j,k,bi,bj) =
327 #ifdef OLD_UV_GEOM
328 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
329 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
330 #else
331 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
332 & *recip_rAw(i,j,bi,bj)
333 #endif
334 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
335 & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
336 & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
337 & )
338 ENDDO
339 ENDDO
340
341 #ifdef ALLOW_DIAGNOSTICS
342 IF ( useDiagnostics ) THEN
343 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)
344 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)
345 CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),
346 & 'ADVrE_Um',k,1,2,bi,bj,myThid)
347 ENDIF
348 #endif
349
350 #ifdef NONLIN_FRSURF
351 C-- account for 3.D divergence of the flow in rStar coordinate:
352 IF ( select_rStar.GT.0 ) THEN
353 DO j=jMin,jMax
354 DO i=iMin,iMax
355 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
356 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
357 & *uVel(i,j,k,bi,bj)
358 ENDDO
359 ENDDO
360 ENDIF
361 IF ( select_rStar.LT.0 ) THEN
362 DO j=jMin,jMax
363 DO i=iMin,iMax
364 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
365 & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
366 ENDDO
367 ENDDO
368 ENDIF
369 #endif /* NONLIN_FRSURF */
370
371 ELSE
372 C- if momAdvection / else
373 DO j=1-OLy,sNy+OLy
374 DO i=1-OLx,sNx+OLx
375 gU(i,j,k,bi,bj) = 0. _d 0
376 ENDDO
377 ENDDO
378
379 C- endif momAdvection.
380 ENDIF
381
382 IF (momViscosity) THEN
383 C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
384
385 C Bi-harmonic term del^2 U -> v4F
386 IF (biharmonic)
387 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
388
389 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
390 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
391 I viscAh_D,viscA4_D,myThid)
392
393 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
394 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
395 I viscAh_Z,viscA4_Z,myThid)
396
397 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
398 IF (.NOT.implicitViscosity) THEN
399 CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
400 CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
401 ENDIF
402
403 C-- Tendency is minus divergence of the fluxes
404 DO j=jMin,jMax
405 DO i=iMin,iMax
406 guDiss(i,j) =
407 #ifdef OLD_UV_GEOM
408 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
409 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
410 #else
411 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
412 & *recip_rAw(i,j,bi,bj)
413 #endif
414 & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
415 & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
416 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
417 & )
418 ENDDO
419 ENDDO
420
421 #ifdef ALLOW_DIAGNOSTICS
422 IF ( useDiagnostics ) THEN
423 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
424 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
425 IF (.NOT.implicitViscosity)
426 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
427 ENDIF
428 #endif
429
430 C-- No-slip and drag BCs appear as body forces in cell abutting topography
431 IF (no_slip_sides) THEN
432 C- No-slip BCs impose a drag at walls...
433 CALL MOM_U_SIDEDRAG(
434 I bi,bj,k,
435 I uFld, v4f, hFacZ,
436 I viscAh_Z,viscA4_Z,
437 I harmonic,biharmonic,useVariableViscosity,
438 O vF,
439 I myThid)
440 DO j=jMin,jMax
441 DO i=iMin,iMax
442 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
443 ENDDO
444 ENDDO
445 ENDIF
446 C- No-slip BCs impose a drag at bottom
447 IF (bottomDragTerms) THEN
448 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
449 DO j=jMin,jMax
450 DO i=iMin,iMax
451 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
452 ENDDO
453 ENDDO
454 ENDIF
455
456 C- endif momViscosity
457 ENDIF
458
459 C-- Forcing term (moved to timestep.F)
460 c IF (momForcing)
461 c & CALL EXTERNAL_FORCING_U(
462 c I iMin,iMax,jMin,jMax,bi,bj,k,
463 c I myTime,myThid)
464
465 C-- Metric terms for curvilinear grid systems
466 IF (useNHMTerms) THEN
467 C o Non-hydrosatic metric terms
468 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
469 DO j=jMin,jMax
470 DO i=iMin,iMax
471 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
472 ENDDO
473 ENDDO
474 ENDIF
475 IF (usingSphericalPolarMTerms) THEN
476 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
477 DO j=jMin,jMax
478 DO i=iMin,iMax
479 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
480 ENDDO
481 ENDDO
482 ENDIF
483 IF (usingCylindricalGrid) THEN
484 CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
485 DO j=jMin,jMax
486 DO i=iMin,iMax
487 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
488 ENDDO
489 ENDDO
490 ENDIF
491
492 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
493
494 C---- Meridional momentum equation starts here
495
496 IF (momAdvection) THEN
497 C--- Calculate mean fluxes (advection) between cells for meridional flow.
498 C Mean flow component of zonal flux -> fZon
499 CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
500
501 C-- Meridional flux (fMer is at north face of "v" cell)
502 C Mean flow component of meridional flux -> fMer
503 CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
504
505 C-- Vertical flux (fVer is at upper face of "v" cell)
506 C Mean flow component of vertical flux (at k+1) -> fVerV
507 CALL MOM_V_ADV_WV(
508 I bi,bj,k+1,vVel,wVel,rTransV,
509 O fVerV(1-OLx,1-OLy,kDown), myThid )
510
511 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
512 DO j=jMin,jMax
513 DO i=iMin,iMax
514 gV(i,j,k,bi,bj) =
515 #ifdef OLD_UV_GEOM
516 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
517 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
518 #else
519 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
520 & *recip_rAs(i,j,bi,bj)
521 #endif
522 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
523 & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
524 & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
525 & )
526 ENDDO
527 ENDDO
528
529 #ifdef ALLOW_DIAGNOSTICS
530 IF ( useDiagnostics ) THEN
531 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)
532 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)
533 CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),
534 & 'ADVrE_Vm',k,1,2,bi,bj,myThid)
535 ENDIF
536 #endif
537
538 #ifdef NONLIN_FRSURF
539 C-- account for 3.D divergence of the flow in rStar coordinate:
540 IF ( select_rStar.GT.0 ) THEN
541 DO j=jMin,jMax
542 DO i=iMin,iMax
543 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
544 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
545 & *vVel(i,j,k,bi,bj)
546 ENDDO
547 ENDDO
548 ENDIF
549 IF ( select_rStar.LT.0 ) THEN
550 DO j=jMin,jMax
551 DO i=iMin,iMax
552 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
553 & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
554 ENDDO
555 ENDDO
556 ENDIF
557 #endif /* NONLIN_FRSURF */
558
559 ELSE
560 C- if momAdvection / else
561 DO j=1-OLy,sNy+OLy
562 DO i=1-OLx,sNx+OLx
563 gV(i,j,k,bi,bj) = 0. _d 0
564 ENDDO
565 ENDDO
566
567 C- endif momAdvection.
568 ENDIF
569
570 IF (momViscosity) THEN
571 C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
572 C Bi-harmonic term del^2 V -> v4F
573 IF (biharmonic)
574 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
575
576 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
577 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
578 I viscAh_Z,viscA4_Z,myThid)
579
580 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
581 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
582 I viscAh_D,viscA4_D,myThid)
583
584 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
585 IF (.NOT.implicitViscosity) THEN
586 CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
587 CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
588 ENDIF
589
590 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
591 DO j=jMin,jMax
592 DO i=iMin,iMax
593 gvDiss(i,j) =
594 #ifdef OLD_UV_GEOM
595 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
596 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
597 #else
598 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
599 & *recip_rAs(i,j,bi,bj)
600 #endif
601 & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
602 & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
603 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
604 & )
605 ENDDO
606 ENDDO
607
608 #ifdef ALLOW_DIAGNOSTICS
609 IF ( useDiagnostics ) THEN
610 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
611 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
612 IF (.NOT.implicitViscosity)
613 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
614 ENDIF
615 #endif
616
617 C-- No-slip and drag BCs appear as body forces in cell abutting topography
618 IF (no_slip_sides) THEN
619 C- No-slip BCs impose a drag at walls...
620 CALL MOM_V_SIDEDRAG(
621 I bi,bj,k,
622 I vFld, v4f, hFacZ,
623 I viscAh_Z,viscA4_Z,
624 I harmonic,biharmonic,useVariableViscosity,
625 O vF,
626 I myThid)
627 DO j=jMin,jMax
628 DO i=iMin,iMax
629 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
630 ENDDO
631 ENDDO
632 ENDIF
633 C- No-slip BCs impose a drag at bottom
634 IF (bottomDragTerms) THEN
635 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
636 DO j=jMin,jMax
637 DO i=iMin,iMax
638 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
639 ENDDO
640 ENDDO
641 ENDIF
642
643 C- endif momViscosity
644 ENDIF
645
646 C-- Forcing term (moved to timestep.F)
647 c IF (momForcing)
648 c & CALL EXTERNAL_FORCING_V(
649 c I iMin,iMax,jMin,jMax,bi,bj,k,
650 c I myTime,myThid)
651
652 C-- Metric terms for curvilinear grid systems
653 IF (useNHMTerms) THEN
654 C o Spherical polar grid metric terms
655 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
656 DO j=jMin,jMax
657 DO i=iMin,iMax
658 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
659 ENDDO
660 ENDDO
661 ENDIF
662 IF (usingSphericalPolarMTerms) THEN
663 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
664 DO j=jMin,jMax
665 DO i=iMin,iMax
666 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
667 ENDDO
668 ENDDO
669 ENDIF
670 IF (usingCylindricalGrid) THEN
671 CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
672 DO j=jMin,jMax
673 DO i=iMin,iMax
674 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
675 ENDDO
676 ENDDO
677 ENDIF
678
679 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
680
681 C-- Coriolis term
682 C Note. As coded here, coriolis will not work with "thin walls"
683 c IF (useCDscheme) THEN
684 c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
685 c ELSE
686 IF (.NOT.useCDscheme) THEN
687 CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
688 DO j=jMin,jMax
689 DO i=iMin,iMax
690 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
691 ENDDO
692 ENDDO
693 #ifdef ALLOW_DIAGNOSTICS
694 IF ( useDiagnostics )
695 & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
696 #endif
697 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
698 DO j=jMin,jMax
699 DO i=iMin,iMax
700 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
701 ENDDO
702 ENDDO
703 #ifdef ALLOW_DIAGNOSTICS
704 IF ( useDiagnostics )
705 & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
706 #endif
707 ENDIF
708
709 IF (nonHydrostatic.OR.quasiHydrostatic) THEN
710 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
711 DO j=jMin,jMax
712 DO i=iMin,iMax
713 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
714 ENDDO
715 ENDDO
716 ENDIF
717
718 C-- Set du/dt & dv/dt on boundaries to zero
719 DO j=jMin,jMax
720 DO i=iMin,iMax
721 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
722 guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
723 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
724 gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
725 ENDDO
726 ENDDO
727
728 #ifdef ALLOW_DIAGNOSTICS
729 IF ( useDiagnostics ) THEN
730 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
731 CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),
732 & 'Um_Advec',k,1,2,bi,bj,myThid)
733 CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),
734 & 'Vm_Advec',k,1,2,bi,bj,myThid)
735 IF (momViscosity) THEN
736 CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
737 CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
738 ENDIF
739 ENDIF
740 #endif /* ALLOW_DIAGNOSTICS */
741
742 RETURN
743 END

  ViewVC Help
Powered by ViewVC 1.1.22