/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Diff of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.5 by adcroft, Tue Nov 5 18:49:02 2002 UTC revision 1.15 by jmc, Sat Oct 11 16:37:55 2003 UTC
# Line 25  C where ${\bf v}=(u,v,w)$ and $\tau$, th Line 25  C where ${\bf v}=(u,v,w)$ and $\tau$, th
25  C stresses as well as internal viscous stresses.  C stresses as well as internal viscous stresses.
26  CEOI  CEOI
27    
28  #include "CPP_OPTIONS.h"  #include "MOM_FLUXFORM_OPTIONS.h"
29    
30  CBOP  CBOP
31  C !ROUTINE: MOM_FLUXFORM  C !ROUTINE: MOM_FLUXFORM
# Line 33  C !ROUTINE: MOM_FLUXFORM Line 33  C !ROUTINE: MOM_FLUXFORM
33  C !INTERFACE: ==========================================================  C !INTERFACE: ==========================================================
34        SUBROUTINE MOM_FLUXFORM(        SUBROUTINE MOM_FLUXFORM(
35       I        bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,       I        bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36       I        phi_hyd,KappaRU,KappaRV,       I        dPhihydX,dPhiHydY,KappaRU,KappaRV,
37       U        fVerU, fVerV,       U        fVerU, fVerV,
38       I        myCurrentTime,myIter,myThid)       I        myTime,myIter,myThid)
39    
40  C !DESCRIPTION:  C !DESCRIPTION:
41  C Calculates all the horizontal accelerations except for the implicit surface  C Calculates all the horizontal accelerations except for the implicit surface
# Line 58  C  iMin,iMax,jMin,jMAx  :: loop ranges Line 58  C  iMin,iMax,jMin,jMAx  :: loop ranges
58  C  k                    :: vertical level  C  k                    :: vertical level
59  C  kUp                  :: =1 or 2 for consecutive k  C  kUp                  :: =1 or 2 for consecutive k
60  C  kDown                :: =2 or 1 for consecutive k  C  kDown                :: =2 or 1 for consecutive k
61  C  phi_hyd              :: hydrostatic pressure (perturbation)  C  dPhiHydX,Y           :: Gradient (X & Y dir.) of Hydrostatic Potential
62  C  KappaRU              :: vertical viscosity  C  KappaRU              :: vertical viscosity
63  C  KappaRV              :: vertical viscosity  C  KappaRV              :: vertical viscosity
64  C  fVerU                :: vertical flux of U, 2 1/2 dim for pipe-lining  C  fVerU                :: vertical flux of U, 2 1/2 dim for pipe-lining
65  C  fVerV                :: vertical flux of V, 2 1/2 dim for pipe-lining  C  fVerV                :: vertical flux of V, 2 1/2 dim for pipe-lining
66  C  myCurrentTime        :: current time  C  myTime               :: current time
67  C  myIter               :: current time-step number  C  myIter               :: current time-step number
68  C  myThid               :: thread number  C  myThid               :: thread number
69        INTEGER bi,bj,iMin,iMax,jMin,jMax        INTEGER bi,bj,iMin,iMax,jMin,jMax
70        INTEGER k,kUp,kDown        INTEGER k,kUp,kDown
71        _RL phi_hyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72          _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73        _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74        _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75        _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
76        _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
77        _RL     myCurrentTime        _RL     myTime
78        INTEGER myIter        INTEGER myIter
79        INTEGER myThid        INTEGER myThid
80    
# Line 119  C     uDudxFac, AhDudxFac, etc ... indiv Line 120  C     uDudxFac, AhDudxFac, etc ... indiv
120        _RL  vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL  vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121        _RL  uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL  uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122        _RL  vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL  vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123          _RL  rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124          _RL  rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125  C     I,J,K - Loop counters  C     I,J,K - Loop counters
126  C     rVelMaskOverride - Factor for imposing special surface boundary conditions  C     rVelMaskOverride - Factor for imposing special surface boundary conditions
127  C                        ( set according to free-surface condition ).  C                        ( set according to free-surface condition ).
# Line 174  C     Initialise intermediate terms Line 177  C     Initialise intermediate terms
177          pF(i,j)   = 0.          pF(i,j)   = 0.
178          fZon(i,j) = 0.          fZon(i,j) = 0.
179          fMer(i,j) = 0.          fMer(i,j) = 0.
180            rTransU(i,j) = 0.
181            rTransV(i,j) = 0.
182    #ifdef ALLOW_AUTODIFF_TAMC
183    C- jmc: this is wrong, but at least with #ifdef/endif TAMC, it does not break
184    C       the forward code ; (same thing in mom_vectinv)
185            fVerU(i,j,1) = 0. _d 0
186            fVerU(i,j,2) = 0. _d 0
187            fVerV(i,j,1) = 0. _d 0
188            fVerV(i,j,2) = 0. _d 0
189    #endif
190         ENDDO         ENDDO
191        ENDDO        ENDDO
192    
# Line 250  C     Calculate velocity field "volume t Line 263  C     Calculate velocity field "volume t
263    
264        CALL MOM_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid)        CALL MOM_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid)
265    
266    C---  First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
267          IF (momAdvection.AND.k.EQ.1) THEN
268    
269    C-    Calculate vertical transports above U & V points (West & South face):
270           CALL MOM_CALC_RTRANS( k, bi, bj,
271         O                       rTransU, rTransV,
272         I                       myTime, myIter, myThid)
273    
274    C-    Free surface correction term (flux at k=1)
275           CALL MOM_U_ADV_WU(bi,bj,k,uVel,wVel,rTransU,af,myThid)
276           DO j=jMin,jMax
277            DO i=iMin,iMax
278             fVerU(i,j,kUp) = af(i,j)
279            ENDDO
280           ENDDO
281    
282           CALL MOM_V_ADV_WV(bi,bj,k,vVel,wVel,rTransV,af,myThid)
283           DO j=jMin,jMax
284            DO i=iMin,iMax
285             fVerV(i,j,kUp) = af(i,j)
286            ENDDO
287           ENDDO
288    
289    C---  endif momAdvection & k=1
290          ENDIF
291    
292    
293    C---  Calculate vertical transports (at k+1) below U & V points :
294          IF (momAdvection) THEN
295           CALL MOM_CALC_RTRANS( k+1, bi, bj,
296         O                       rTransU, rTransV,
297         I                       myTime, myIter, myThid)
298          ENDIF
299    
300    
301  C---- Zonal momentum equation starts here  C---- Zonal momentum equation starts here
302    
303  C     Bi-harmonic term del^2 U -> v4F  C     Bi-harmonic term del^2 U -> v4F
304        IF (momViscosity)        IF (momViscosity .AND. viscA4.NE.0. )
305       & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)       & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
306    
307  C---  Calculate mean and eddy fluxes between cells for zonal flow.  C---  Calculate mean and eddy fluxes between cells for zonal flow.
# Line 286  C     Laplacian and bi-harmonic term Line 334  C     Laplacian and bi-harmonic term
334       & CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,vF,myThid)       & CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,vF,myThid)
335    
336  C     Combine fluxes -> fMer  C     Combine fluxes -> fMer
337        DO j=jMin,jMax        DO j=jMin,jMax+1
338         DO i=iMin,iMax         DO i=iMin,iMax
339          fMer(i,j) = vDudyFac*aF(i,j) + AhDudyFac*vF(i,j)          fMer(i,j) = vDudyFac*aF(i,j) + AhDudyFac*vF(i,j)
340         ENDDO         ENDDO
# Line 294  C     Combine fluxes -> fMer Line 342  C     Combine fluxes -> fMer
342    
343  C--   Vertical flux (fVer is at upper face of "u" cell)  C--   Vertical flux (fVer is at upper face of "u" cell)
344    
 C--   Free surface correction term (flux at k=1)  
       IF (momAdvection.AND.k.EQ.1) THEN  
        CALL MOM_U_ADV_WU(bi,bj,k,uVel,wVel,af,myThid)  
        DO j=jMin,jMax  
         DO i=iMin,iMax  
          fVerU(i,j,kUp) = af(i,j)  
         ENDDO  
        ENDDO  
       ENDIF  
345  C     Mean flow component of vertical flux (at k+1) -> aF  C     Mean flow component of vertical flux (at k+1) -> aF
346        IF (momAdvection)        IF (momAdvection)
347       & CALL MOM_U_ADV_WU(bi,bj,k+1,uVel,wVel,af,myThid)       & CALL MOM_U_ADV_WU(bi,bj,k+1,uVel,wVel,rTransU,af,myThid)
348    
349  C     Eddy component of vertical flux (interior component only) -> vrF  C     Eddy component of vertical flux (interior component only) -> vrF
350        IF (momViscosity.AND..NOT.implicitViscosity)        IF (momViscosity.AND..NOT.implicitViscosity)
# Line 318  C     Combine fluxes Line 357  C     Combine fluxes
357         ENDDO         ENDDO
358        ENDDO        ENDDO
359    
 C---  Hydrostatic term ( -1/rhoConst . dphi/dx )  
       IF (momPressureForcing) THEN  
        DO j=jMin,jMax  
         DO i=iMin,iMax  
          pf(i,j) = - _recip_dxC(i,j,bi,bj)  
      &    *(phi_hyd(i,j,k)-phi_hyd(i-1,j,k))  
         ENDDO  
        ENDDO  
       ENDIF  
   
360  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term
361        DO j=jMin,jMax        DO j=jMin,jMax
362         DO i=iMin,iMax         DO i=iMin,iMax
# Line 343  C--   Tendency is minus divergence of th Line 372  C--   Tendency is minus divergence of th
372       &   +fMer(i,j+1)          - fMer(i  ,j)       &   +fMer(i,j+1)          - fMer(i  ,j)
373       &   +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac       &   +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
374       &   )       &   )
375       & _PHM( +phxFac * pf(i,j) )       &  - phxFac*dPhiHydX(i,j)
376         ENDDO         ENDDO
377        ENDDO        ENDDO
378    
379    #ifdef NONLIN_FRSURF
380    C-- account for 3.D divergence of the flow in rStar coordinate:
381          IF ( momAdvection .AND. select_rStar.GT.0 ) THEN
382           DO j=jMin,jMax
383            DO i=iMin,iMax
384             gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
385         &     - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
386         &       *uVel(i,j,k,bi,bj)
387            ENDDO
388           ENDDO
389          ENDIF
390          IF ( momAdvection .AND. select_rStar.LT.0 ) THEN
391           DO j=jMin,jMax
392            DO i=iMin,iMax
393             gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
394         &     - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
395            ENDDO
396           ENDDO
397          ENDIF
398    #endif /* NONLIN_FRSURF */
399    
400  C-- No-slip and drag BCs appear as body forces in cell abutting topography  C-- No-slip and drag BCs appear as body forces in cell abutting topography
401        IF (momViscosity.AND.no_slip_sides) THEN        IF (momViscosity.AND.no_slip_sides) THEN
402  C-     No-slip BCs impose a drag at walls...  C-     No-slip BCs impose a drag at walls...
# Line 367  C-    No-slip BCs impose a drag at botto Line 417  C-    No-slip BCs impose a drag at botto
417         ENDDO         ENDDO
418        ENDIF        ENDIF
419    
420  C--   Forcing term  C--   Forcing term (moved to timestep.F)
421        IF (momForcing)  c     IF (momForcing)
422       &  CALL EXTERNAL_FORCING_U(  c    &  CALL EXTERNAL_FORCING_U(
423       I     iMin,iMax,jMin,jMax,bi,bj,k,  c    I     iMin,iMax,jMin,jMax,bi,bj,k,
424       I     myCurrentTime,myThid)  c    I     myTime,myThid)
425    
426  C--   Metric terms for curvilinear grid systems  C--   Metric terms for curvilinear grid systems
427        IF (useNHMTerms) THEN        IF (useNHMTerms) THEN
# Line 403  C--   Set du/dt on boundaries to zero Line 453  C--   Set du/dt on boundaries to zero
453  C---- Meridional momentum equation starts here  C---- Meridional momentum equation starts here
454    
455  C     Bi-harmonic term del^2 V -> v4F  C     Bi-harmonic term del^2 V -> v4F
456        IF (momViscosity)        IF (momViscosity .AND. viscA4.NE.0. )
457       & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)       & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
458    
459  C---  Calculate mean and eddy fluxes between cells for meridional flow.  C---  Calculate mean and eddy fluxes between cells for meridional flow.
# Line 420  C     Laplacian and bi-harmonic terms -> Line 470  C     Laplacian and bi-harmonic terms ->
470    
471  C     Combine fluxes -> fZon  C     Combine fluxes -> fZon
472        DO j=jMin,jMax        DO j=jMin,jMax
473         DO i=iMin,iMax         DO i=iMin,iMax+1
474          fZon(i,j) = uDvdxFac*aF(i,j) + AhDvdxFac*vF(i,j)          fZon(i,j) = uDvdxFac*aF(i,j) + AhDvdxFac*vF(i,j)
475         ENDDO         ENDDO
476        ENDDO        ENDDO
# Line 444  C     Combine fluxes -> fMer Line 494  C     Combine fluxes -> fMer
494    
495  C--   Vertical flux (fVer is at upper face of "v" cell)  C--   Vertical flux (fVer is at upper face of "v" cell)
496    
 C--   Free surface correction term (flux at k=1)  
       IF (momAdvection.AND.k.EQ.1) THEN  
        CALL MOM_V_ADV_WV(bi,bj,k,vVel,wVel,af,myThid)  
        DO j=jMin,jMax  
         DO i=iMin,iMax  
          fVerV(i,j,kUp) = af(i,j)  
         ENDDO  
        ENDDO  
       ENDIF  
497  C     o Mean flow component of vertical flux  C     o Mean flow component of vertical flux
498        IF (momAdvection)        IF (momAdvection)
499       & CALL MOM_V_ADV_WV(bi,bj,k+1,vVel,wVel,af,myThid)       & CALL MOM_V_ADV_WV(bi,bj,k+1,vVel,wVel,rTransV,af,myThid)
500    
501  C     Eddy component of vertical flux (interior component only) -> vrF  C     Eddy component of vertical flux (interior component only) -> vrF
502        IF (momViscosity.AND..NOT.implicitViscosity)        IF (momViscosity.AND..NOT.implicitViscosity)
# Line 468  C     Combine fluxes -> fVerV Line 509  C     Combine fluxes -> fVerV
509         ENDDO         ENDDO
510        ENDDO        ENDDO
511    
 C---  Hydorstatic term (-1/rhoConst . dphi/dy )  
       IF (momPressureForcing) THEN  
        DO j=jMin,jMax  
         DO i=iMin,iMax  
          pF(i,j) = -_recip_dyC(i,j,bi,bj)  
      &    *(phi_hyd(i,j,k)-phi_hyd(i,j-1,k))  
         ENDDO  
        ENDDO  
       ENDIF  
   
512  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term
513        DO j=jMin,jMax        DO j=jMin,jMax
514         DO i=iMin,iMax         DO i=iMin,iMax
# Line 493  C--   Tendency is minus divergence of th Line 524  C--   Tendency is minus divergence of th
524       &   +fMer(i,j  )          - fMer(i,j-1)       &   +fMer(i,j  )          - fMer(i,j-1)
525       &   +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac       &   +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
526       &   )       &   )
527       & _PHM( +phyFac*pf(i,j) )       &  - phyFac*dPhiHydY(i,j)
528         ENDDO         ENDDO
529        ENDDO        ENDDO
530    
531    #ifdef NONLIN_FRSURF
532    C-- account for 3.D divergence of the flow in rStar coordinate:
533          IF ( momAdvection .AND. select_rStar.GT.0 ) THEN
534           DO j=jMin,jMax
535            DO i=iMin,iMax
536             gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
537         &     - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
538         &       *vVel(i,j,k,bi,bj)
539            ENDDO
540           ENDDO
541          ENDIF
542          IF ( momAdvection .AND. select_rStar.LT.0 ) THEN
543           DO j=jMin,jMax
544            DO i=iMin,iMax
545             gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
546         &     - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
547            ENDDO
548           ENDDO
549          ENDIF
550    #endif /* NONLIN_FRSURF */
551    
552  C-- No-slip and drag BCs appear as body forces in cell abutting topography  C-- No-slip and drag BCs appear as body forces in cell abutting topography
553        IF (momViscosity.AND.no_slip_sides) THEN        IF (momViscosity.AND.no_slip_sides) THEN
554  C-     No-slip BCs impose a drag at walls...  C-     No-slip BCs impose a drag at walls...
# Line 517  C-    No-slip BCs impose a drag at botto Line 569  C-    No-slip BCs impose a drag at botto
569         ENDDO         ENDDO
570        ENDIF        ENDIF
571    
572  C--   Forcing term  C--   Forcing term (moved to timestep.F)
573        IF (momForcing)  c     IF (momForcing)
574       & CALL EXTERNAL_FORCING_V(  c    & CALL EXTERNAL_FORCING_V(
575       I     iMin,iMax,jMin,jMax,bi,bj,k,  c    I     iMin,iMax,jMin,jMax,bi,bj,k,
576       I     myCurrentTime,myThid)  c    I     myTime,myThid)
577    
578  C--   Metric terms for curvilinear grid systems  C--   Metric terms for curvilinear grid systems
579        IF (useNHMTerms) THEN        IF (useNHMTerms) THEN
# Line 551  C--   Set dv/dt on boundaries to zero Line 603  C--   Set dv/dt on boundaries to zero
603    
604  C--   Coriolis term  C--   Coriolis term
605  C     Note. As coded here, coriolis will not work with "thin walls"  C     Note. As coded here, coriolis will not work with "thin walls"
606  #ifdef INCLUDE_CD_CODE  c     IF (useCDscheme) THEN
607        CALL MOM_CDSCHEME(bi,bj,k,phi_hyd,myThid)  c       CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
608  #else  c     ELSE
609        CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)        IF (.NOT.useCDscheme) THEN
610        DO j=jMin,jMax          CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
611         DO i=iMin,iMax          DO j=jMin,jMax
612          gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)           DO i=iMin,iMax
613         ENDDO            gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
614        ENDDO           ENDDO
615        CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)          ENDDO
616        DO j=jMin,jMax          CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
617         DO i=iMin,iMax          DO j=jMin,jMax
618          gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)           DO i=iMin,iMax
619              gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
620             ENDDO
621            ENDDO
622          ENDIF
623    
624          IF (nonHydrostatic.OR.quasiHydrostatic) THEN
625           CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
626           DO j=jMin,jMax
627            DO i=iMin,iMax
628             gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
629            ENDDO
630         ENDDO         ENDDO
631        ENDDO        ENDIF
 #endif /* INCLUDE_CD_CODE */  
632    
633        RETURN        RETURN
634        END        END

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.15

  ViewVC Help
Powered by ViewVC 1.1.22