/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.33 - (show annotations) (download)
Fri Mar 17 23:18:05 2006 UTC (18 years, 2 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint58c_post
Changes since 1.32: +36 -28 lines
clarify when metric-terms are applied regarding flags metricTerms & useNHMTerms

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.32 2006/02/07 11:46:18 mlosch Exp $
2 C $Name: $
3
4 CBOI
5 C !TITLE: pkg/mom\_advdiff
6 C !AUTHORS: adcroft@mit.edu
7 C !INTRODUCTION: Flux-form Momentum Equations Package
8 C
9 C Package "mom\_fluxform" provides methods for calculating explicit terms
10 C in the momentum equation cast in flux-form:
11 C \begin{eqnarray*}
12 C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13 C -\nabla \cdot {\bf v} u
14 C -fv
15 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16 C + \mbox{metrics}
17 C \\
18 C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19 C -\nabla \cdot {\bf v} v
20 C +fu
21 C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22 C + \mbox{metrics}
23 C \end{eqnarray*}
24 C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25 C stresses as well as internal viscous stresses.
26 CEOI
27
28 #include "MOM_FLUXFORM_OPTIONS.h"
29
30 CBOP
31 C !ROUTINE: MOM_FLUXFORM
32
33 C !INTERFACE: ==========================================================
34 SUBROUTINE MOM_FLUXFORM(
35 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 I KappaRU, KappaRV,
37 U fVerU, fVerV,
38 O guDiss, gvDiss,
39 I myTime, myIter, myThid)
40
41 C !DESCRIPTION:
42 C Calculates all the horizontal accelerations except for the implicit surface
43 C pressure gradient and implciit vertical viscosity.
44
45 C !USES: ===============================================================
46 C == Global variables ==
47 IMPLICIT NONE
48 #include "SIZE.h"
49 #include "DYNVARS.h"
50 #include "FFIELDS.h"
51 #include "EEPARAMS.h"
52 #include "PARAMS.h"
53 #include "GRID.h"
54 #include "SURFACE.h"
55
56 C !INPUT PARAMETERS: ===================================================
57 C bi,bj :: tile indices
58 C iMin,iMax,jMin,jMAx :: loop ranges
59 C k :: vertical level
60 C kUp :: =1 or 2 for consecutive k
61 C kDown :: =2 or 1 for consecutive k
62 C KappaRU :: vertical viscosity
63 C KappaRV :: vertical viscosity
64 C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
65 C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
66 C guDiss :: dissipation tendency (all explicit terms), u component
67 C gvDiss :: dissipation tendency (all explicit terms), v component
68 C myTime :: current time
69 C myIter :: current time-step number
70 C myThid :: thread number
71 INTEGER bi,bj,iMin,iMax,jMin,jMax
72 INTEGER k,kUp,kDown
73 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
76 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
77 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL myTime
80 INTEGER myIter
81 INTEGER myThid
82
83 C !OUTPUT PARAMETERS: ==================================================
84 C None - updates gU() and gV() in common blocks
85
86 C !LOCAL VARIABLES: ====================================================
87 C i,j :: loop indices
88 C vF :: viscous flux
89 C v4F :: bi-harmonic viscous flux
90 C cF :: Coriolis acceleration
91 C mT :: Metric terms
92 C fZon :: zonal fluxes
93 C fMer :: meridional fluxes
94 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
95 INTEGER i,j
96 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 C afFacMom :: Tracer parameters for turning terms on and off.
105 C vfFacMom
106 C pfFacMom afFacMom - Advective terms
107 C cfFacMom vfFacMom - Eddy viscosity terms
108 C mtFacMom pfFacMom - Pressure terms
109 C cfFacMom - Coriolis terms
110 C foFacMom - Forcing
111 C mtFacMom - Metric term
112 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
113 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 _RL uDudxFac
133 _RL AhDudxFac
134 _RL vDudyFac
135 _RL AhDudyFac
136 _RL rVelDudrFac
137 _RL ArDudrFac
138 _RL fuFac
139 _RL mtFacU
140 _RL mtNHFacU
141 _RL uDvdxFac
142 _RL AhDvdxFac
143 _RL vDvdyFac
144 _RL AhDvdyFac
145 _RL rVelDvdrFac
146 _RL ArDvdrFac
147 _RL fvFac
148 _RL mtFacV
149 _RL mtNHFacV
150 _RL sideMaskFac
151 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
152 CEOP
153
154 C Initialise intermediate terms
155 DO j=1-OLy,sNy+OLy
156 DO i=1-OLx,sNx+OLx
157 vF(i,j) = 0.
158 v4F(i,j) = 0.
159 cF(i,j) = 0.
160 mT(i,j) = 0.
161 fZon(i,j) = 0.
162 fMer(i,j) = 0.
163 fVrUp(i,j)= 0.
164 fVrDw(i,j)= 0.
165 rTransU(i,j)= 0.
166 rTransV(i,j)= 0.
167 strain(i,j) = 0.
168 tension(i,j)= 0.
169 guDiss(i,j) = 0.
170 gvDiss(i,j) = 0.
171 #ifdef ALLOW_AUTODIFF_TAMC
172 vort3(i,j) = 0. _d 0
173 strain(i,j) = 0. _d 0
174 tension(i,j) = 0. _d 0
175 #endif
176 ENDDO
177 ENDDO
178
179 C-- Term by term tracer parmeters
180 C o U momentum equation
181 uDudxFac = afFacMom*1.
182 AhDudxFac = vfFacMom*1.
183 vDudyFac = afFacMom*1.
184 AhDudyFac = vfFacMom*1.
185 rVelDudrFac = afFacMom*1.
186 ArDudrFac = vfFacMom*1.
187 mtFacU = mtFacMom*1.
188 mtNHFacU = 1.
189 fuFac = cfFacMom*1.
190 C o V momentum equation
191 uDvdxFac = afFacMom*1.
192 AhDvdxFac = vfFacMom*1.
193 vDvdyFac = afFacMom*1.
194 AhDvdyFac = vfFacMom*1.
195 rVelDvdrFac = afFacMom*1.
196 ArDvdrFac = vfFacMom*1.
197 mtFacV = mtFacMom*1.
198 mtNHFacV = 1.
199 fvFac = cfFacMom*1.
200
201 IF (implicitViscosity) THEN
202 ArDudrFac = 0.
203 ArDvdrFac = 0.
204 ENDIF
205
206 C note: using standard stencil (no mask) results in under-estimating
207 C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
208 IF ( no_slip_sides ) THEN
209 sideMaskFac = sideDragFactor
210 ELSE
211 sideMaskFac = 0. _d 0
212 ENDIF
213
214 IF ( no_slip_bottom
215 & .OR. bottomDragQuadratic.NE.0.
216 & .OR. bottomDragLinear.NE.0.) THEN
217 bottomDragTerms=.TRUE.
218 ELSE
219 bottomDragTerms=.FALSE.
220 ENDIF
221
222 C-- Calculate open water fraction at vorticity points
223 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
224
225 C---- Calculate common quantities used in both U and V equations
226 C Calculate tracer cell face open areas
227 DO j=1-OLy,sNy+OLy
228 DO i=1-OLx,sNx+OLx
229 xA(i,j) = _dyG(i,j,bi,bj)
230 & *drF(k)*_hFacW(i,j,k,bi,bj)
231 yA(i,j) = _dxG(i,j,bi,bj)
232 & *drF(k)*_hFacS(i,j,k,bi,bj)
233 ENDDO
234 ENDDO
235
236 C Make local copies of horizontal flow field
237 DO j=1-OLy,sNy+OLy
238 DO i=1-OLx,sNx+OLx
239 uFld(i,j) = uVel(i,j,k,bi,bj)
240 vFld(i,j) = vVel(i,j,k,bi,bj)
241 ENDDO
242 ENDDO
243
244 C Calculate velocity field "volume transports" through tracer cell faces.
245 DO j=1-OLy,sNy+OLy
246 DO i=1-OLx,sNx+OLx
247 uTrans(i,j) = uFld(i,j)*xA(i,j)
248 vTrans(i,j) = vFld(i,j)*yA(i,j)
249 ENDDO
250 ENDDO
251
252 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
253 IF ( momViscosity) THEN
254 CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
255 CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
256 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
257 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
258 DO j=1-Oly,sNy+Oly
259 DO i=1-Olx,sNx+Olx
260 IF ( hFacZ(i,j).EQ.0. ) THEN
261 vort3(i,j) = sideMaskFac*vort3(i,j)
262 strain(i,j) = sideMaskFac*strain(i,j)
263 ENDIF
264 ENDDO
265 ENDDO
266 #ifdef ALLOW_DIAGNOSTICS
267 IF ( useDiagnostics ) THEN
268 CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
269 CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
270 CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
271 CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
272 ENDIF
273 #endif
274 ENDIF
275
276 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
277 IF (momAdvection.AND.k.EQ.1) THEN
278
279 C- Calculate vertical transports above U & V points (West & South face):
280 CALL MOM_CALC_RTRANS( k, bi, bj,
281 O rTransU, rTransV,
282 I myTime, myIter, myThid)
283
284 C- Free surface correction term (flux at k=1)
285 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
286 O fVerU(1-OLx,1-OLy,kUp), myThid )
287
288 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
289 O fVerV(1-OLx,1-OLy,kUp), myThid )
290
291 C--- endif momAdvection & k=1
292 ENDIF
293
294
295 C--- Calculate vertical transports (at k+1) below U & V points :
296 IF (momAdvection) THEN
297 CALL MOM_CALC_RTRANS( k+1, bi, bj,
298 O rTransU, rTransV,
299 I myTime, myIter, myThid)
300 ENDIF
301
302 IF (momViscosity) THEN
303 CALL MOM_CALC_VISC(
304 I bi,bj,k,
305 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
306 O harmonic,biharmonic,useVariableViscosity,
307 I hDiv,vort3,tension,strain,KE,hFacZ,
308 I myThid)
309 ENDIF
310
311 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
312
313 C---- Zonal momentum equation starts here
314
315 IF (momAdvection) THEN
316 C--- Calculate mean fluxes (advection) between cells for zonal flow.
317
318 C-- Zonal flux (fZon is at east face of "u" cell)
319 C Mean flow component of zonal flux -> fZon
320 CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
321
322 C-- Meridional flux (fMer is at south face of "u" cell)
323 C Mean flow component of meridional flux -> fMer
324 CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
325
326 C-- Vertical flux (fVer is at upper face of "u" cell)
327 C Mean flow component of vertical flux (at k+1) -> fVer
328 CALL MOM_U_ADV_WU(
329 I bi,bj,k+1,uVel,wVel,rTransU,
330 O fVerU(1-OLx,1-OLy,kDown), myThid )
331
332 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
333 DO j=jMin,jMax
334 DO i=iMin,iMax
335 gU(i,j,k,bi,bj) =
336 #ifdef OLD_UV_GEOM
337 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
338 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
339 #else
340 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
341 & *recip_rAw(i,j,bi,bj)
342 #endif
343 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
344 & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
345 & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
346 & )
347 ENDDO
348 ENDDO
349
350 #ifdef ALLOW_DIAGNOSTICS
351 IF ( useDiagnostics ) THEN
352 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)
353 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)
354 CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),
355 & 'ADVrE_Um',k,1,2,bi,bj,myThid)
356 ENDIF
357 #endif
358
359 #ifdef NONLIN_FRSURF
360 C-- account for 3.D divergence of the flow in rStar coordinate:
361 # ifndef DISABLE_RSTAR_CODE
362 IF ( select_rStar.GT.0 ) THEN
363 DO j=jMin,jMax
364 DO i=iMin,iMax
365 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
366 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
367 & *uVel(i,j,k,bi,bj)
368 ENDDO
369 ENDDO
370 ENDIF
371 IF ( select_rStar.LT.0 ) THEN
372 DO j=jMin,jMax
373 DO i=iMin,iMax
374 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
375 & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
376 ENDDO
377 ENDDO
378 ENDIF
379 # endif /* DISABLE_RSTAR_CODE */
380 #endif /* NONLIN_FRSURF */
381
382 ELSE
383 C- if momAdvection / else
384 DO j=1-OLy,sNy+OLy
385 DO i=1-OLx,sNx+OLx
386 gU(i,j,k,bi,bj) = 0. _d 0
387 ENDDO
388 ENDDO
389
390 C- endif momAdvection.
391 ENDIF
392
393 IF (momViscosity) THEN
394 C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
395
396 C Bi-harmonic term del^2 U -> v4F
397 IF (biharmonic)
398 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
399
400 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
401 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
402 I viscAh_D,viscA4_D,myThid)
403
404 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
405 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
406 I viscAh_Z,viscA4_Z,myThid)
407
408 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
409 IF (.NOT.implicitViscosity) THEN
410 CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
411 CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
412 ENDIF
413
414 C-- Tendency is minus divergence of the fluxes
415 DO j=jMin,jMax
416 DO i=iMin,iMax
417 guDiss(i,j) =
418 #ifdef OLD_UV_GEOM
419 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
420 & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
421 #else
422 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
423 & *recip_rAw(i,j,bi,bj)
424 #endif
425 & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
426 & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
427 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
428 & )
429 ENDDO
430 ENDDO
431
432 #ifdef ALLOW_DIAGNOSTICS
433 IF ( useDiagnostics ) THEN
434 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
435 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
436 IF (.NOT.implicitViscosity)
437 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
438 ENDIF
439 #endif
440
441 C-- No-slip and drag BCs appear as body forces in cell abutting topography
442 IF (no_slip_sides) THEN
443 C- No-slip BCs impose a drag at walls...
444 CALL MOM_U_SIDEDRAG(
445 I bi,bj,k,
446 I uFld, v4f, hFacZ,
447 I viscAh_Z,viscA4_Z,
448 I harmonic,biharmonic,useVariableViscosity,
449 O vF,
450 I myThid)
451 DO j=jMin,jMax
452 DO i=iMin,iMax
453 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
454 ENDDO
455 ENDDO
456 ENDIF
457 C- No-slip BCs impose a drag at bottom
458 IF (bottomDragTerms) THEN
459 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
460 DO j=jMin,jMax
461 DO i=iMin,iMax
462 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
463 ENDDO
464 ENDDO
465 ENDIF
466
467 #ifdef ALLOW_SHELFICE
468 IF (useShelfIce) THEN
469 CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
470 DO j=jMin,jMax
471 DO i=iMin,iMax
472 gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
473 ENDDO
474 ENDDO
475 ENDIF
476 #endif /* ALLOW_SHELFICE */
477
478 C- endif momViscosity
479 ENDIF
480
481 C-- Forcing term (moved to timestep.F)
482 c IF (momForcing)
483 c & CALL EXTERNAL_FORCING_U(
484 c I iMin,iMax,jMin,jMax,bi,bj,k,
485 c I myTime,myThid)
486
487 C-- Metric terms for curvilinear grid systems
488 IF (useNHMTerms) THEN
489 C o Non-Hydrostatic (spherical) metric terms
490 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
491 DO j=jMin,jMax
492 DO i=iMin,iMax
493 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j)
494 ENDDO
495 ENDDO
496 ENDIF
497 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
498 C o Spherical polar grid metric terms
499 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
500 DO j=jMin,jMax
501 DO i=iMin,iMax
502 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
503 ENDDO
504 ENDDO
505 ENDIF
506 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
507 C o Cylindrical grid metric terms
508 CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
509 DO j=jMin,jMax
510 DO i=iMin,iMax
511 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
512 ENDDO
513 ENDDO
514 ENDIF
515
516 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
517
518 C---- Meridional momentum equation starts here
519
520 IF (momAdvection) THEN
521 C--- Calculate mean fluxes (advection) between cells for meridional flow.
522 C Mean flow component of zonal flux -> fZon
523 CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
524
525 C-- Meridional flux (fMer is at north face of "v" cell)
526 C Mean flow component of meridional flux -> fMer
527 CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
528
529 C-- Vertical flux (fVer is at upper face of "v" cell)
530 C Mean flow component of vertical flux (at k+1) -> fVerV
531 CALL MOM_V_ADV_WV(
532 I bi,bj,k+1,vVel,wVel,rTransV,
533 O fVerV(1-OLx,1-OLy,kDown), myThid )
534
535 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
536 DO j=jMin,jMax
537 DO i=iMin,iMax
538 gV(i,j,k,bi,bj) =
539 #ifdef OLD_UV_GEOM
540 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
541 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
542 #else
543 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
544 & *recip_rAs(i,j,bi,bj)
545 #endif
546 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
547 & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
548 & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
549 & )
550 ENDDO
551 ENDDO
552
553 #ifdef ALLOW_DIAGNOSTICS
554 IF ( useDiagnostics ) THEN
555 CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)
556 CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)
557 CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),
558 & 'ADVrE_Vm',k,1,2,bi,bj,myThid)
559 ENDIF
560 #endif
561
562 #ifdef NONLIN_FRSURF
563 C-- account for 3.D divergence of the flow in rStar coordinate:
564 # ifndef DISABLE_RSTAR_CODE
565 IF ( select_rStar.GT.0 ) THEN
566 DO j=jMin,jMax
567 DO i=iMin,iMax
568 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
569 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
570 & *vVel(i,j,k,bi,bj)
571 ENDDO
572 ENDDO
573 ENDIF
574 IF ( select_rStar.LT.0 ) THEN
575 DO j=jMin,jMax
576 DO i=iMin,iMax
577 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
578 & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
579 ENDDO
580 ENDDO
581 ENDIF
582 # endif /* DISABLE_RSTAR_CODE */
583 #endif /* NONLIN_FRSURF */
584
585 ELSE
586 C- if momAdvection / else
587 DO j=1-OLy,sNy+OLy
588 DO i=1-OLx,sNx+OLx
589 gV(i,j,k,bi,bj) = 0. _d 0
590 ENDDO
591 ENDDO
592
593 C- endif momAdvection.
594 ENDIF
595
596 IF (momViscosity) THEN
597 C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
598 C Bi-harmonic term del^2 V -> v4F
599 IF (biharmonic)
600 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
601
602 C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
603 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
604 I viscAh_Z,viscA4_Z,myThid)
605
606 C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
607 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
608 I viscAh_D,viscA4_D,myThid)
609
610 C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
611 IF (.NOT.implicitViscosity) THEN
612 CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
613 CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
614 ENDIF
615
616 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
617 DO j=jMin,jMax
618 DO i=iMin,iMax
619 gvDiss(i,j) =
620 #ifdef OLD_UV_GEOM
621 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
622 & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
623 #else
624 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
625 & *recip_rAs(i,j,bi,bj)
626 #endif
627 & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
628 & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
629 & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
630 & )
631 ENDDO
632 ENDDO
633
634 #ifdef ALLOW_DIAGNOSTICS
635 IF ( useDiagnostics ) THEN
636 CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
637 CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
638 IF (.NOT.implicitViscosity)
639 & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
640 ENDIF
641 #endif
642
643 C-- No-slip and drag BCs appear as body forces in cell abutting topography
644 IF (no_slip_sides) THEN
645 C- No-slip BCs impose a drag at walls...
646 CALL MOM_V_SIDEDRAG(
647 I bi,bj,k,
648 I vFld, v4f, hFacZ,
649 I viscAh_Z,viscA4_Z,
650 I harmonic,biharmonic,useVariableViscosity,
651 O vF,
652 I myThid)
653 DO j=jMin,jMax
654 DO i=iMin,iMax
655 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
656 ENDDO
657 ENDDO
658 ENDIF
659 C- No-slip BCs impose a drag at bottom
660 IF (bottomDragTerms) THEN
661 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
662 DO j=jMin,jMax
663 DO i=iMin,iMax
664 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
665 ENDDO
666 ENDDO
667 ENDIF
668
669 #ifdef ALLOW_SHELFICE
670 IF (useShelfIce) THEN
671 CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRU,vF,myThid)
672 DO j=jMin,jMax
673 DO i=iMin,iMax
674 gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
675 ENDDO
676 ENDDO
677 ENDIF
678 #endif /* ALLOW_SHELFICE */
679
680 C- endif momViscosity
681 ENDIF
682
683 C-- Forcing term (moved to timestep.F)
684 c IF (momForcing)
685 c & CALL EXTERNAL_FORCING_V(
686 c I iMin,iMax,jMin,jMax,bi,bj,k,
687 c I myTime,myThid)
688
689 C-- Metric terms for curvilinear grid systems
690 IF (useNHMTerms) THEN
691 C o Non-Hydrostatic (spherical) metric terms
692 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
693 DO j=jMin,jMax
694 DO i=iMin,iMax
695 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j)
696 ENDDO
697 ENDDO
698 ENDIF
699 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
700 C o Spherical polar grid metric terms
701 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
702 DO j=jMin,jMax
703 DO i=iMin,iMax
704 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
705 ENDDO
706 ENDDO
707 ENDIF
708 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
709 C o Cylindrical grid metric terms
710 CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
711 DO j=jMin,jMax
712 DO i=iMin,iMax
713 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
714 ENDDO
715 ENDDO
716 ENDIF
717
718 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
719
720 C-- Coriolis term
721 C Note. As coded here, coriolis will not work with "thin walls"
722 c IF (useCDscheme) THEN
723 c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
724 c ELSE
725 IF (.NOT.useCDscheme) THEN
726 CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
727 DO j=jMin,jMax
728 DO i=iMin,iMax
729 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
730 ENDDO
731 ENDDO
732 #ifdef ALLOW_DIAGNOSTICS
733 IF ( useDiagnostics )
734 & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
735 #endif
736 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
737 DO j=jMin,jMax
738 DO i=iMin,iMax
739 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
740 ENDDO
741 ENDDO
742 #ifdef ALLOW_DIAGNOSTICS
743 IF ( useDiagnostics )
744 & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
745 #endif
746 ENDIF
747
748 IF (nonHydrostatic.OR.quasiHydrostatic) THEN
749 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
750 DO j=jMin,jMax
751 DO i=iMin,iMax
752 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
753 ENDDO
754 ENDDO
755 ENDIF
756
757 C-- Set du/dt & dv/dt on boundaries to zero
758 DO j=jMin,jMax
759 DO i=iMin,iMax
760 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
761 guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
762 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
763 gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
764 ENDDO
765 ENDDO
766
767 #ifdef ALLOW_DIAGNOSTICS
768 IF ( useDiagnostics ) THEN
769 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
770 CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),
771 & 'Um_Advec',k,1,2,bi,bj,myThid)
772 CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),
773 & 'Vm_Advec',k,1,2,bi,bj,myThid)
774 IF (momViscosity) THEN
775 CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
776 CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
777 ENDIF
778 ENDIF
779 #endif /* ALLOW_DIAGNOSTICS */
780
781 RETURN
782 END

  ViewVC Help
Powered by ViewVC 1.1.22