--- MITgcm/pkg/mom_fluxform/mom_fluxform.F 2003/04/17 13:44:10 1.12 +++ MITgcm/pkg/mom_fluxform/mom_fluxform.F 2013/07/28 21:04:25 1.46 @@ -1,4 +1,4 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.12 2003/04/17 13:44:10 jmc Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.46 2013/07/28 21:04:25 jmc Exp $ C $Name: $ CBOI @@ -25,55 +25,71 @@ C stresses as well as internal viscous stresses. CEOI -#include "CPP_OPTIONS.h" +#include "MOM_FLUXFORM_OPTIONS.h" +#ifdef ALLOW_MOM_COMMON +# include "MOM_COMMON_OPTIONS.h" +#endif CBOP C !ROUTINE: MOM_FLUXFORM C !INTERFACE: ========================================================== - SUBROUTINE MOM_FLUXFORM( - I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown, - I dPhihydX,dPhiHydY,KappaRU,KappaRV, - U fVerU, fVerV, - I myTime,myIter,myThid) + SUBROUTINE MOM_FLUXFORM( + I bi,bj,k,iMin,iMax,jMin,jMax, + I KappaRU, KappaRV, + U fVerUkm, fVerVkm, + O fVerUkp, fVerVkp, + O guDiss, gvDiss, + I myTime, myIter, myThid ) C !DESCRIPTION: C Calculates all the horizontal accelerations except for the implicit surface -C pressure gradient and implciit vertical viscosity. +C pressure gradient and implicit vertical viscosity. C !USES: =============================================================== C == Global variables == IMPLICIT NONE #include "SIZE.h" -#include "DYNVARS.h" -#include "FFIELDS.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" +#include "DYNVARS.h" +#include "FFIELDS.h" #include "SURFACE.h" +#ifdef ALLOW_MOM_COMMON +# include "MOM_VISC.h" +#endif +#ifdef ALLOW_AUTODIFF_TAMC +# include "tamc.h" +# include "tamc_keys.h" +# include "MOM_FLUXFORM.h" +#endif C !INPUT PARAMETERS: =================================================== -C bi,bj :: tile indices -C iMin,iMax,jMin,jMAx :: loop ranges -C k :: vertical level -C kUp :: =1 or 2 for consecutive k -C kDown :: =2 or 1 for consecutive k -C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential +C bi,bj :: current tile indices +C k :: current vertical level +C iMin,iMax,jMin,jMax :: loop ranges C KappaRU :: vertical viscosity C KappaRV :: vertical viscosity -C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining -C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining +C fVerUkm :: vertical advective flux of U, interface above (k-1/2) +C fVerVkm :: vertical advective flux of V, interface above (k-1/2) +C fVerUkp :: vertical advective flux of U, interface below (k+1/2) +C fVerVkp :: vertical advective flux of V, interface below (k+1/2) +C guDiss :: dissipation tendency (all explicit terms), u component +C gvDiss :: dissipation tendency (all explicit terms), v component C myTime :: current time C myIter :: current time-step number -C myThid :: thread number - INTEGER bi,bj,iMin,iMax,jMin,jMax - INTEGER k,kUp,kDown - _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) +C myThid :: my Thread Id number + INTEGER bi,bj,k + INTEGER iMin,iMax,jMin,jMax _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) + _RL fVerUkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL fVerVkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL fVerUkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL fVerVkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL myTime INTEGER myIter INTEGER myThid @@ -83,35 +99,34 @@ C !LOCAL VARIABLES: ==================================================== C i,j :: loop indices -C aF :: advective flux C vF :: viscous flux C v4F :: bi-harmonic viscous flux -C vrF :: vertical viscous flux C cF :: Coriolis acceleration C mT :: Metric terms -C pF :: Pressure gradient C fZon :: zonal fluxes C fMer :: meridional fluxes +C fVrUp,fVrDw :: vertical viscous fluxes at interface k & k+1 INTEGER i,j - _RL aF(1-OLx:sNx+OLx,1-OLy:sNy+OLy) +#ifdef ALLOW_AUTODIFF_TAMC + INTEGER imomkey +#endif _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vrF(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pF(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy) -C wMaskOverride - Land sea flag override for top layer. -C afFacMom - Tracer parameters for turning terms -C vfFacMom on and off. -C pfFacMom afFacMom - Advective terms + _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy) +C afFacMom :: Tracer parameters for turning terms on and off. +C vfFacMom +C pfFacMom afFacMom - Advective terms C cfFacMom vfFacMom - Eddy viscosity terms -C mTFacMom pfFacMom - Pressure terms +C mtFacMom pfFacMom - Pressure terms C cfFacMom - Coriolis terms C foFacMom - Forcing -C mTFacMom - Metric term -C uDudxFac, AhDudxFac, etc ... individual term tracer parameters +C mtFacMom - Metric term +C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy) @@ -122,63 +137,79 @@ _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy) -C I,J,K - Loop counters -C rVelMaskOverride - Factor for imposing special surface boundary conditions -C ( set according to free-surface condition ). -C hFacROpen - Lopped cell factos used tohold fraction of open -C hFacRClosed and closed cell wall. - _RL rVelMaskOverride -C xxxFac - On-off tracer parameters used for switching terms off. + _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uDudxFac _RL AhDudxFac - _RL A4DuxxdxFac _RL vDudyFac _RL AhDudyFac - _RL A4DuyydyFac _RL rVelDudrFac _RL ArDudrFac _RL fuFac - _RL phxFac _RL mtFacU + _RL mtNHFacU _RL uDvdxFac _RL AhDvdxFac - _RL A4DvxxdxFac _RL vDvdyFac _RL AhDvdyFac - _RL A4DvyydyFac _RL rVelDvdrFac _RL ArDvdrFac _RL fvFac - _RL phyFac - _RL vForcFac _RL mtFacV - INTEGER km1,kp1 - _RL wVelBottomOverride + _RL mtNHFacV + _RL sideMaskFac LOGICAL bottomDragTerms - _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy) CEOP - - km1=MAX(1,k-1) - kp1=MIN(Nr,k+1) - rVelMaskOverride=1. - IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac - wVelBottomOverride=1. - IF (k.EQ.Nr) wVelBottomOverride=0. +#ifdef MOM_BOUNDARY_CONSERVE + COMMON / MOM_FLUXFORM_LOCAL / uBnd, vBnd + _RL uBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) + _RL vBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) +#endif /* MOM_BOUNDARY_CONSERVE */ + +#ifdef ALLOW_AUTODIFF_TAMC + act0 = k - 1 + max0 = Nr + act1 = bi - myBxLo(myThid) + max1 = myBxHi(myThid) - myBxLo(myThid) + 1 + act2 = bj - myByLo(myThid) + max2 = myByHi(myThid) - myByLo(myThid) + 1 + act3 = myThid - 1 + max3 = nTx*nTy + act4 = ikey_dynamics - 1 + imomkey = (act0 + 1) + & + act1*max0 + & + act2*max0*max1 + & + act3*max0*max1*max2 + & + act4*max0*max1*max2*max3 +#endif /* ALLOW_AUTODIFF_TAMC */ C Initialise intermediate terms - DO J=1-OLy,sNy+OLy - DO I=1-OLx,sNx+OLx - aF(i,j) = 0. + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx vF(i,j) = 0. v4F(i,j) = 0. - vrF(i,j) = 0. cF(i,j) = 0. mT(i,j) = 0. - pF(i,j) = 0. fZon(i,j) = 0. fMer(i,j) = 0. - rTransU(i,j) = 0. - rTransV(i,j) = 0. + fVrUp(i,j)= 0. + fVrDw(i,j)= 0. + rTransU(i,j)= 0. + rTransV(i,j)= 0. +c KE(i,j) = 0. + hDiv(i,j) = 0. + vort3(i,j) = 0. + strain(i,j) = 0. + tension(i,j)= 0. + guDiss(i,j) = 0. + gvDiss(i,j) = 0. ENDDO ENDDO @@ -186,28 +217,36 @@ C o U momentum equation uDudxFac = afFacMom*1. AhDudxFac = vfFacMom*1. - A4DuxxdxFac = vfFacMom*1. vDudyFac = afFacMom*1. AhDudyFac = vfFacMom*1. - A4DuyydyFac = vfFacMom*1. rVelDudrFac = afFacMom*1. ArDudrFac = vfFacMom*1. - mTFacU = mtFacMom*1. + mtFacU = mtFacMom*1. + mtNHFacU = 1. fuFac = cfFacMom*1. - phxFac = pfFacMom*1. C o V momentum equation uDvdxFac = afFacMom*1. AhDvdxFac = vfFacMom*1. - A4DvxxdxFac = vfFacMom*1. vDvdyFac = afFacMom*1. AhDvdyFac = vfFacMom*1. - A4DvyydyFac = vfFacMom*1. rVelDvdrFac = afFacMom*1. ArDvdrFac = vfFacMom*1. - mTFacV = mtFacMom*1. + mtFacV = mtFacMom*1. + mtNHFacV = 1. fvFac = cfFacMom*1. - phyFac = pfFacMom*1. - vForcFac = foFacMom*1. + + IF (implicitViscosity) THEN + ArDudrFac = 0. + ArDvdrFac = 0. + ENDIF + +C note: using standard stencil (no mask) results in under-estimating +C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor + IF ( no_slip_sides ) THEN + sideMaskFac = sideDragFactor + ELSE + sideMaskFac = 0. _d 0 + ENDIF IF ( no_slip_bottom & .OR. bottomDragQuadratic.NE.0. @@ -217,12 +256,6 @@ bottomDragTerms=.FALSE. ENDIF -C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP - IF (staggerTimeStep) THEN - phxFac = 0. - phyFac = 0. - ENDIF - C-- Calculate open water fraction at vorticity points CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid) @@ -230,10 +263,10 @@ C Calculate tracer cell face open areas DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx - xA(i,j) = _dyG(i,j,bi,bj) - & *drF(k)*_hFacW(i,j,k,bi,bj) - yA(i,j) = _dxG(i,j,bi,bj) - & *drF(k)*_hFacS(i,j,k,bi,bj) + xA(i,j) = _dyG(i,j,bi,bj)*deepFacC(k) + & *drF(k)*_hFacW(i,j,k,bi,bj) + yA(i,j) = _dxG(i,j,bi,bj)*deepFacC(k) + & *drF(k)*_hFacS(i,j,k,bi,bj) ENDDO ENDDO @@ -246,37 +279,73 @@ ENDDO C Calculate velocity field "volume transports" through tracer cell faces. +C anelastic: transports are scaled by rhoFacC (~ mass transport) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx - uTrans(i,j) = uFld(i,j)*xA(i,j) - vTrans(i,j) = vFld(i,j)*yA(i,j) + uTrans(i,j) = uFld(i,j)*xA(i,j)*rhoFacC(k) + vTrans(i,j) = vFld(i,j)*yA(i,j)*rhoFacC(k) ENDDO ENDDO - CALL MOM_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid) + CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid) + IF ( momViscosity) THEN + CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid) + CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid) + CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid) + CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid) + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + IF ( hFacZ(i,j).EQ.0. ) THEN + vort3(i,j) = sideMaskFac*vort3(i,j) + strain(i,j) = sideMaskFac*strain(i,j) + ENDIF + ENDDO + ENDDO +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) THEN + CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid) + ENDIF +#endif + ENDIF -C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp) +C--- First call (k=1): compute vertical adv. flux fVerUkm & fVerVkm IF (momAdvection.AND.k.EQ.1) THEN +#ifdef MOM_BOUNDARY_CONSERVE + CALL MOM_UV_BOUNDARY( bi, bj, k, + I uVel, vVel, + O uBnd(1-OLx,1-OLy,k,bi,bj), + O vBnd(1-OLx,1-OLy,k,bi,bj), + I myTime, myIter, myThid ) +#endif /* MOM_BOUNDARY_CONSERVE */ + C- Calculate vertical transports above U & V points (West & South face): - CALL MOM_CALC_RTRANS( k, bi, bj, - O rTransU, rTransV, - I myTime, myIter, myThid) + +#ifdef ALLOW_AUTODIFF_TAMC +# ifdef NONLIN_FRSURF +# ifndef DISABLE_RSTAR_CODE +CADJ STORE dwtransc(:,:,bi,bj) = +CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte +CADJ STORE dwtransu(:,:,bi,bj) = +CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte +CADJ STORE dwtransv(:,:,bi,bj) = +CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte +# endif +# endif /* NONLIN_FRSURF */ +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL MOM_CALC_RTRANS( k, bi, bj, + O rTransU, rTransV, + I myTime, myIter, myThid) C- Free surface correction term (flux at k=1) - CALL MOM_U_ADV_WU(bi,bj,k,uVel,wVel,rTransU,af,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - fVerU(i,j,kUp) = af(i,j) - ENDDO - ENDDO + CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU, + O fVerUkm, myThid ) - CALL MOM_V_ADV_WV(bi,bj,k,vVel,wVel,rTransV,af,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - fVerV(i,j,kUp) = af(i,j) - ENDDO - ENDDO + CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV, + O fVerVkm, myThid ) C--- endif momAdvection & k=1 ENDIF @@ -284,129 +353,220 @@ C--- Calculate vertical transports (at k+1) below U & V points : IF (momAdvection) THEN - CALL MOM_CALC_RTRANS( k+1, bi, bj, - O rTransU, rTransV, - I myTime, myIter, myThid) + CALL MOM_CALC_RTRANS( k+1, bi, bj, + O rTransU, rTransV, + I myTime, myIter, myThid) ENDIF +#ifdef MOM_BOUNDARY_CONSERVE + IF ( momAdvection .AND. k.LT.Nr ) THEN + CALL MOM_UV_BOUNDARY( bi, bj, k+1, + I uVel, vVel, + O uBnd(1-OLx,1-OLy,k+1,bi,bj), + O vBnd(1-OLx,1-OLy,k+1,bi,bj), + I myTime, myIter, myThid ) + ENDIF +#endif /* MOM_BOUNDARY_CONSERVE */ -C---- Zonal momentum equation starts here - -C Bi-harmonic term del^2 U -> v4F - IF (momViscosity .AND. viscA4.NE.0. ) - & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid) + IF (momViscosity) THEN + CALL MOM_CALC_VISC( bi, bj, k, + O viscAh_Z, viscAh_D, viscA4_Z, viscA4_D, + I hDiv, vort3, tension, strain, KE, hFacZ, + I myThid ) + ENDIF -C--- Calculate mean and eddy fluxes between cells for zonal flow. +C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| -C-- Zonal flux (fZon is at east face of "u" cell) +C---- Zonal momentum equation starts here -C Mean flow component of zonal flux -> aF - IF (momAdvection) - & CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,aF,myThid) - -C Laplacian and bi-harmonic terms -> vF - IF (momViscosity) - & CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,vF,myThid) + IF (momAdvection) THEN +C--- Calculate mean fluxes (advection) between cells for zonal flow. -C Combine fluxes -> fZon - DO j=jMin,jMax - DO i=iMin,iMax - fZon(i,j) = uDudxFac*aF(i,j) + AhDudxFac*vF(i,j) - ENDDO - ENDDO +#ifdef MOM_BOUNDARY_CONSERVE + CALL MOM_U_ADV_UU( bi,bj,k,uTrans,uBnd(1-OLx,1-OLy,k,bi,bj), + O fZon,myThid ) + CALL MOM_U_ADV_VU( bi,bj,k,vTrans,uBnd(1-OLx,1-OLy,k,bi,bj), + O fMer,myThid ) + CALL MOM_U_ADV_WU( + I bi,bj,k+1,uBnd,wVel,rTransU, + O fVerUkp, myThid ) +#else /* MOM_BOUNDARY_CONSERVE */ +C-- Zonal flux (fZon is at east face of "u" cell) +C Mean flow component of zonal flux -> fZon + CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid) C-- Meridional flux (fMer is at south face of "u" cell) - -C Mean flow component of meridional flux - IF (momAdvection) - & CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,aF,myThid) - -C Laplacian and bi-harmonic term - IF (momViscosity) - & CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,vF,myThid) - -C Combine fluxes -> fMer - DO j=jMin,jMax+1 - DO i=iMin,iMax - fMer(i,j) = vDudyFac*aF(i,j) + AhDudyFac*vF(i,j) - ENDDO - ENDDO +C Mean flow component of meridional flux -> fMer + CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid) C-- Vertical flux (fVer is at upper face of "u" cell) - -C Mean flow component of vertical flux (at k+1) -> aF - IF (momAdvection) - & CALL MOM_U_ADV_WU(bi,bj,k+1,uVel,wVel,rTransU,af,myThid) - -C Eddy component of vertical flux (interior component only) -> vrF - IF (momViscosity.AND..NOT.implicitViscosity) - & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid) - -C Combine fluxes - DO j=jMin,jMax - DO i=iMin,iMax - fVerU(i,j,kDown) = rVelDudrFac*aF(i,j) + ArDudrFac*vrF(i,j) - ENDDO - ENDDO +C Mean flow component of vertical flux (at k+1) -> fVer + CALL MOM_U_ADV_WU( + I bi,bj,k+1,uVel,wVel,rTransU, + O fVerUkp, myThid ) +#endif /* MOM_BOUNDARY_CONSERVE */ C-- Tendency is minus divergence of the fluxes + coriolis + pressure term - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = #ifdef OLD_UV_GEOM - & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/ - & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) ) + & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/ + & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) ) #else - & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k) - & *recip_rAw(i,j,bi,bj) + & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k) + & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k) +#endif + & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac + & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac + & +( fVerUkp(i,j) - fVerUkm(i,j) )*rkSign*rVelDudrFac + & ) + ENDDO + ENDDO + +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) THEN + CALL DIAGNOSTICS_FILL( fZon, 'ADVx_Um ',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL( fMer, 'ADVy_Um ',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(fVerUkm,'ADVrE_Um',k,1,2,bi,bj,myThid) + ENDIF #endif - & *(fZon(i,j ) - fZon(i-1,j) - & +fMer(i,j+1) - fMer(i ,j) - & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac - & ) - & - phxFac*dPhiHydX(i,j) - ENDDO - ENDDO #ifdef NONLIN_FRSURF C-- account for 3.D divergence of the flow in rStar coordinate: - IF ( momAdvection .AND. select_rStar.GT.0 ) THEN - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj) +# ifndef DISABLE_RSTAR_CODE + IF ( select_rStar.GT.0 ) THEN + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj) & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf & *uVel(i,j,k,bi,bj) - ENDDO - ENDDO - ENDIF - IF ( momAdvection .AND. select_rStar.LT.0 ) THEN - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj) + ENDDO + ENDDO + ENDIF + IF ( select_rStar.LT.0 ) THEN + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj) & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj) - ENDDO - ENDDO - ENDIF + ENDDO + ENDDO + ENDIF +# endif /* DISABLE_RSTAR_CODE */ #endif /* NONLIN_FRSURF */ -C-- No-slip and drag BCs appear as body forces in cell abutting topography - IF (momViscosity.AND.no_slip_sides) THEN -C- No-slip BCs impose a drag at walls... - CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,v4F,hFacZ,vF,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j) +#ifdef ALLOW_ADDFLUID + IF ( selectAddFluid.GE.1 ) THEN + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj) + & + uVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0 + & *( addMass(i-1,j,k,bi,bj) + addMass(i,j,k,bi,bj) ) + & *_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k) + & * recip_rAw(i,j,bi,bj)*recip_deepFac2C(k) + ENDDO + ENDDO + ENDIF +#endif /* ALLOW_ADDFLUID */ + + ELSE +C- if momAdvection / else + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + gU(i,j,k,bi,bj) = 0. _d 0 + ENDDO ENDDO - ENDDO + +C- endif momAdvection. ENDIF -C- No-slip BCs impose a drag at bottom - IF (momViscosity.AND.bottomDragTerms) THEN - CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j) + + IF (momViscosity) THEN +C--- Calculate eddy fluxes (dissipation) between cells for zonal flow. + +C Bi-harmonic term del^2 U -> v4F + IF ( useBiharmonicVisc ) + & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid) + +C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon + CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon, + I viscAh_D,viscA4_D,myThid) + +C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer + CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer, + I viscAh_Z,viscA4_Z,myThid) + +C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw + IF (.NOT.implicitViscosity) THEN + CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid) + CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid) + ENDIF + +C-- Tendency is minus divergence of the fluxes +C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is) + DO j=jMin,jMax + DO i=iMin,iMax + guDiss(i,j) = +#ifdef OLD_UV_GEOM + & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/ + & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) ) +#else + & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k) + & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k) +#endif + & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac + & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac + & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac + & *recip_rhoFacC(k) + & ) + ENDDO ENDDO - ENDDO + +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) THEN + CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid) + IF (.NOT.implicitViscosity) + & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid) + ENDIF +#endif + +C-- No-slip and drag BCs appear as body forces in cell abutting topography + IF (no_slip_sides) THEN +C- No-slip BCs impose a drag at walls... + CALL MOM_U_SIDEDRAG( bi, bj, k, + I uFld, v4f, hFacZ, + I viscAh_Z, viscA4_Z, + I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, + O vF, + I myThid ) + DO j=jMin,jMax + DO i=iMin,iMax + gUdiss(i,j) = gUdiss(i,j) + vF(i,j) + ENDDO + ENDDO + ENDIF +C- No-slip BCs impose a drag at bottom + IF (bottomDragTerms) THEN + CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gUdiss(i,j) = gUdiss(i,j) + vF(i,j) + ENDDO + ENDDO + ENDIF + +#ifdef ALLOW_SHELFICE + IF (useShelfIce) THEN + CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gUdiss(i,j) = gUdiss(i,j) + vF(i,j) + ENDDO + ENDDO + ENDIF +#endif /* ALLOW_SHELFICE */ + +C- endif momViscosity ENDIF C-- Forcing term (moved to timestep.F) @@ -417,148 +577,221 @@ C-- Metric terms for curvilinear grid systems IF (useNHMTerms) THEN -C o Non-hydrosatic metric terms +C o Non-Hydrostatic (spherical) metric terms CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid) DO j=jMin,jMax DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j) + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j) ENDDO ENDDO ENDIF - IF (usingSphericalPolarMTerms) THEN + IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN +C o Spherical polar grid metric terms CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid) DO j=jMin,jMax DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j) + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j) ENDDO ENDDO ENDIF - -C-- Set du/dt on boundaries to zero - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj) + IF ( usingCylindricalGrid .AND. metricTerms ) THEN +C o Cylindrical grid metric terms + CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j) + ENDDO ENDDO - ENDDO + ENDIF +C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C---- Meridional momentum equation starts here -C Bi-harmonic term del^2 V -> v4F - IF (momViscosity .AND. viscA4.NE.0. ) - & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid) - -C--- Calculate mean and eddy fluxes between cells for meridional flow. - -C-- Zonal flux (fZon is at west face of "v" cell) - -C Mean flow component of zonal flux -> aF - IF (momAdvection) - & CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,af,myThid) - -C Laplacian and bi-harmonic terms -> vF - IF (momViscosity) - & CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,vf,myThid) + IF (momAdvection) THEN -C Combine fluxes -> fZon - DO j=jMin,jMax - DO i=iMin,iMax+1 - fZon(i,j) = uDvdxFac*aF(i,j) + AhDvdxFac*vF(i,j) - ENDDO - ENDDO +#ifdef MOM_BOUNDARY_CONSERVE + CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vBnd(1-OLx,1-OLy,k,bi,bj), + O fZon,myThid ) + CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vBnd(1-OLx,1-OLy,k,bi,bj), + O fMer,myThid ) + CALL MOM_V_ADV_WV( bi,bj,k+1,vBnd,wVel,rTransV, + O fVerVkp, myThid ) +#else /* MOM_BOUNDARY_CONSERVE */ +C--- Calculate mean fluxes (advection) between cells for meridional flow. +C Mean flow component of zonal flux -> fZon + CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vFld,fZon,myThid ) C-- Meridional flux (fMer is at north face of "v" cell) - -C Mean flow component of meridional flux - IF (momAdvection) - & CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,af,myThid) - -C Laplacian and bi-harmonic term - IF (momViscosity) - & CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,vf,myThid) - -C Combine fluxes -> fMer - DO j=jMin,jMax - DO i=iMin,iMax - fMer(i,j) = vDvdyFac*aF(i,j) + AhDvdyFac*vF(i,j) - ENDDO - ENDDO +C Mean flow component of meridional flux -> fMer + CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vFld,fMer,myThid ) C-- Vertical flux (fVer is at upper face of "v" cell) - -C o Mean flow component of vertical flux - IF (momAdvection) - & CALL MOM_V_ADV_WV(bi,bj,k+1,vVel,wVel,rTransV,af,myThid) - -C Eddy component of vertical flux (interior component only) -> vrF - IF (momViscosity.AND..NOT.implicitViscosity) - & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid) - -C Combine fluxes -> fVerV - DO j=jMin,jMax - DO i=iMin,iMax - fVerV(i,j,kDown) = rVelDvdrFac*aF(i,j) + ArDvdrFac*vrF(i,j) - ENDDO - ENDDO +C Mean flow component of vertical flux (at k+1) -> fVerV + CALL MOM_V_ADV_WV( bi,bj,k+1,vVel,wVel,rTransV, + O fVerVkp, myThid ) +#endif /* MOM_BOUNDARY_CONSERVE */ C-- Tendency is minus divergence of the fluxes + coriolis + pressure term - DO j=jMin,jMax - DO i=iMin,iMax - gV(i,j,k,bi,bj) = + DO j=jMin,jMax + DO i=iMin,iMax + gV(i,j,k,bi,bj) = #ifdef OLD_UV_GEOM - & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/ - & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) ) + & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/ + & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) ) #else - & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k) - & *recip_rAs(i,j,bi,bj) + & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k) + & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k) +#endif + & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac + & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac + & +( fVerVkp(i,j) - fVerVkm(i,j) )*rkSign*rVelDvdrFac + & ) + ENDDO + ENDDO + +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) THEN + CALL DIAGNOSTICS_FILL( fZon, 'ADVx_Vm ',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL( fMer, 'ADVy_Vm ',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(fVerVkm,'ADVrE_Vm',k,1,2,bi,bj,myThid) + ENDIF #endif - & *(fZon(i+1,j) - fZon(i,j ) - & +fMer(i,j ) - fMer(i,j-1) - & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac - & ) - & - phyFac*dPhiHydY(i,j) - ENDDO - ENDDO #ifdef NONLIN_FRSURF C-- account for 3.D divergence of the flow in rStar coordinate: - IF ( momAdvection .AND. select_rStar.GT.0 ) THEN - DO j=jMin,jMax - DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj) +# ifndef DISABLE_RSTAR_CODE + IF ( select_rStar.GT.0 ) THEN + DO j=jMin,jMax + DO i=iMin,iMax + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj) & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf & *vVel(i,j,k,bi,bj) - ENDDO - ENDDO - ENDIF - IF ( momAdvection .AND. select_rStar.LT.0 ) THEN - DO j=jMin,jMax - DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj) + ENDDO + ENDDO + ENDIF + IF ( select_rStar.LT.0 ) THEN + DO j=jMin,jMax + DO i=iMin,iMax + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj) & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj) - ENDDO - ENDDO - ENDIF + ENDDO + ENDDO + ENDIF +# endif /* DISABLE_RSTAR_CODE */ #endif /* NONLIN_FRSURF */ -C-- No-slip and drag BCs appear as body forces in cell abutting topography - IF (momViscosity.AND.no_slip_sides) THEN -C- No-slip BCs impose a drag at walls... - CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,v4F,hFacZ,vF,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j) +#ifdef ALLOW_ADDFLUID + IF ( selectAddFluid.GE.1 ) THEN + DO j=jMin,jMax + DO i=iMin,iMax + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj) + & + vVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0 + & *( addMass(i,j-1,k,bi,bj) + addMass(i,j,k,bi,bj) ) + & *_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k) + & * recip_rAs(i,j,bi,bj)*recip_deepFac2C(k) + ENDDO + ENDDO + ENDIF +#endif /* ALLOW_ADDFLUID */ + + ELSE +C- if momAdvection / else + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + gV(i,j,k,bi,bj) = 0. _d 0 + ENDDO ENDDO - ENDDO + +C- endif momAdvection. ENDIF -C- No-slip BCs impose a drag at bottom - IF (momViscosity.AND.bottomDragTerms) THEN - CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j) + + IF (momViscosity) THEN +C--- Calculate eddy fluxes (dissipation) between cells for meridional flow. +C Bi-harmonic term del^2 V -> v4F + IF ( useBiharmonicVisc ) + & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid) + +C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon + CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon, + I viscAh_Z,viscA4_Z,myThid) + +C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer + CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer, + I viscAh_D,viscA4_D,myThid) + +C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw + IF (.NOT.implicitViscosity) THEN + CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid) + CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid) + ENDIF + +C-- Tendency is minus divergence of the fluxes + coriolis + pressure term +C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is) + DO j=jMin,jMax + DO i=iMin,iMax + gvDiss(i,j) = +#ifdef OLD_UV_GEOM + & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/ + & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) ) +#else + & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k) + & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k) +#endif + & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac + & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac + & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac + & *recip_rhoFacC(k) + & ) + ENDDO ENDDO - ENDDO + +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) THEN + CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid) + IF (.NOT.implicitViscosity) + & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid) + ENDIF +#endif + +C-- No-slip and drag BCs appear as body forces in cell abutting topography + IF (no_slip_sides) THEN +C- No-slip BCs impose a drag at walls... + CALL MOM_V_SIDEDRAG( bi, bj, k, + I vFld, v4f, hFacZ, + I viscAh_Z,viscA4_Z, + I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, + O vF, + I myThid ) + DO j=jMin,jMax + DO i=iMin,iMax + gvDiss(i,j) = gvDiss(i,j) + vF(i,j) + ENDDO + ENDDO + ENDIF +C- No-slip BCs impose a drag at bottom + IF (bottomDragTerms) THEN + CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gvDiss(i,j) = gvDiss(i,j) + vF(i,j) + ENDDO + ENDDO + ENDIF + +#ifdef ALLOW_SHELFICE + IF (useShelfIce) THEN + CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gvDiss(i,j) = gvDiss(i,j) + vF(i,j) + ENDDO + ENDDO + ENDIF +#endif /* ALLOW_SHELFICE */ + +C- endif momViscosity ENDIF C-- Forcing term (moved to timestep.F) @@ -569,29 +802,34 @@ C-- Metric terms for curvilinear grid systems IF (useNHMTerms) THEN -C o Spherical polar grid metric terms +C o Non-Hydrostatic (spherical) metric terms CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid) DO j=jMin,jMax DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j) + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j) ENDDO ENDDO ENDIF - IF (usingSphericalPolarMTerms) THEN + IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN +C o Spherical polar grid metric terms CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid) DO j=jMin,jMax DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j) + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j) ENDDO ENDDO ENDIF - -C-- Set dv/dt on boundaries to zero - DO j=jMin,jMax - DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj) + IF ( usingCylindricalGrid .AND. metricTerms ) THEN +C o Cylindrical grid metric terms + CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j) + ENDDO ENDDO - ENDDO + ENDIF + +C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C-- Coriolis term C Note. As coded here, coriolis will not work with "thin walls" @@ -605,22 +843,64 @@ gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j) ENDDO ENDDO +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) + & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid) +#endif CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j) ENDDO ENDDO +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) + & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid) +#endif ENDIF - IF (nonHydrostatic.OR.quasiHydrostatic) THEN - CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j) +C-- 3.D Coriolis term (horizontal momentum, Eastward component: -fprime*w) + IF ( use3dCoriolis ) THEN + CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j) + ENDDO ENDDO + IF ( usingCurvilinearGrid ) THEN +C- presently, non zero angleSinC array only supported with Curvilinear-Grid + CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j) + ENDDO + ENDDO + ENDIF + ENDIF + +C-- Set du/dt & dv/dt on boundaries to zero + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj) + guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj) + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj) + gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj) ENDDO + ENDDO + +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) THEN + CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(gU(1-OLx,1-OLy,k,bi,bj), + & 'Um_Advec',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(gV(1-OLx,1-OLy,k,bi,bj), + & 'Vm_Advec',k,1,2,bi,bj,myThid) + IF (momViscosity) THEN + CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid) + ENDIF ENDIF +#endif /* ALLOW_DIAGNOSTICS */ RETURN END