/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Diff of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.34 by jmc, Thu Mar 30 19:49:41 2006 UTC revision 1.46 by jmc, Sun Jul 28 21:04:25 2013 UTC
# Line 26  C stresses as well as internal viscous s Line 26  C stresses as well as internal viscous s
26  CEOI  CEOI
27    
28  #include "MOM_FLUXFORM_OPTIONS.h"  #include "MOM_FLUXFORM_OPTIONS.h"
29    #ifdef ALLOW_MOM_COMMON
30    # include "MOM_COMMON_OPTIONS.h"
31    #endif
32    
33  CBOP  CBOP
34  C !ROUTINE: MOM_FLUXFORM  C !ROUTINE: MOM_FLUXFORM
35    
36  C !INTERFACE: ==========================================================  C !INTERFACE: ==========================================================
37        SUBROUTINE MOM_FLUXFORM(        SUBROUTINE MOM_FLUXFORM(
38       I        bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,       I        bi,bj,k,iMin,iMax,jMin,jMax,
39       I        KappaRU, KappaRV,       I        KappaRU, KappaRV,
40       U        fVerU, fVerV,       U        fVerUkm, fVerVkm,
41         O        fVerUkp, fVerVkp,
42       O        guDiss, gvDiss,       O        guDiss, gvDiss,
43       I        myTime, myIter, myThid)       I        myTime, myIter, myThid )
44    
45  C !DESCRIPTION:  C !DESCRIPTION:
46  C Calculates all the horizontal accelerations except for the implicit surface  C Calculates all the horizontal accelerations except for the implicit surface
47  C pressure gradient and implciit vertical viscosity.  C pressure gradient and implicit vertical viscosity.
48    
49  C !USES: ===============================================================  C !USES: ===============================================================
50  C     == Global variables ==  C     == Global variables ==
51        IMPLICIT NONE        IMPLICIT NONE
52  #include "SIZE.h"  #include "SIZE.h"
 #include "DYNVARS.h"  
 #include "FFIELDS.h"  
53  #include "EEPARAMS.h"  #include "EEPARAMS.h"
54  #include "PARAMS.h"  #include "PARAMS.h"
55  #include "GRID.h"  #include "GRID.h"
56    #include "DYNVARS.h"
57    #include "FFIELDS.h"
58  #include "SURFACE.h"  #include "SURFACE.h"
59    #ifdef ALLOW_MOM_COMMON
60    # include "MOM_VISC.h"
61    #endif
62    #ifdef ALLOW_AUTODIFF_TAMC
63    # include "tamc.h"
64    # include "tamc_keys.h"
65    # include "MOM_FLUXFORM.h"
66    #endif
67    
68  C !INPUT PARAMETERS: ===================================================  C !INPUT PARAMETERS: ===================================================
69  C  bi,bj                :: tile indices  C  bi,bj                :: current tile indices
70  C  iMin,iMax,jMin,jMAx  :: loop ranges  C  k                    :: current vertical level
71  C  k                    :: vertical level  C  iMin,iMax,jMin,jMax  :: loop ranges
 C  kUp                  :: =1 or 2 for consecutive k  
 C  kDown                :: =2 or 1 for consecutive k  
72  C  KappaRU              :: vertical viscosity  C  KappaRU              :: vertical viscosity
73  C  KappaRV              :: vertical viscosity  C  KappaRV              :: vertical viscosity
74  C  fVerU                :: vertical flux of U, 2 1/2 dim for pipe-lining  C  fVerUkm              :: vertical advective flux of U, interface above (k-1/2)
75  C  fVerV                :: vertical flux of V, 2 1/2 dim for pipe-lining  C  fVerVkm              :: vertical advective flux of V, interface above (k-1/2)
76    C  fVerUkp              :: vertical advective flux of U, interface below (k+1/2)
77    C  fVerVkp              :: vertical advective flux of V, interface below (k+1/2)
78  C  guDiss               :: dissipation tendency (all explicit terms), u component  C  guDiss               :: dissipation tendency (all explicit terms), u component
79  C  gvDiss               :: dissipation tendency (all explicit terms), v component  C  gvDiss               :: dissipation tendency (all explicit terms), v component
80  C  myTime               :: current time  C  myTime               :: current time
81  C  myIter               :: current time-step number  C  myIter               :: current time-step number
82  C  myThid               :: thread number  C  myThid               :: my Thread Id number
83        INTEGER bi,bj,iMin,iMax,jMin,jMax        INTEGER bi,bj,k
84        INTEGER k,kUp,kDown        INTEGER iMin,iMax,jMin,jMax
85        _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
86        _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
87        _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerUkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88        _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerVkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89          _RL fVerUkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90          _RL fVerVkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91        _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92        _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93        _RL     myTime        _RL     myTime
# Line 91  C  cF                   :: Coriolis acce Line 105  C  cF                   :: Coriolis acce
105  C  mT                   :: Metric terms  C  mT                   :: Metric terms
106  C  fZon                 :: zonal fluxes  C  fZon                 :: zonal fluxes
107  C  fMer                 :: meridional fluxes  C  fMer                 :: meridional fluxes
108  C  fVrUp,fVrDw          :: vertical viscous fluxes at interface k-1 & k  C  fVrUp,fVrDw          :: vertical viscous fluxes at interface k & k+1
109        INTEGER i,j        INTEGER i,j
110    #ifdef ALLOW_AUTODIFF_TAMC
111          INTEGER imomkey
112    #endif
113        _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114        _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115        _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
# Line 102  C  fVrUp,fVrDw          :: vertical visc Line 119  C  fVrUp,fVrDw          :: vertical visc
119        _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120        _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121  C     afFacMom     :: Tracer parameters for turning terms on and off.  C     afFacMom     :: Tracer parameters for turning terms on and off.
122  C     vfFacMom          C     vfFacMom
123  C     pfFacMom        afFacMom - Advective terms  C     pfFacMom        afFacMom - Advective terms
124  C     cfFacMom        vfFacMom - Eddy viscosity terms  C     cfFacMom        vfFacMom - Eddy viscosity terms
125  C     mtFacMom        pfFacMom - Pressure terms  C     mtFacMom        pfFacMom - Pressure terms
126  C                     cfFacMom - Coriolis terms  C                     cfFacMom - Coriolis terms
# Line 148  C     uDudxFac, AhDudxFac, etc ... indiv Line 165  C     uDudxFac, AhDudxFac, etc ... indiv
165        _RL  mtFacV        _RL  mtFacV
166        _RL  mtNHFacV        _RL  mtNHFacV
167        _RL  sideMaskFac        _RL  sideMaskFac
168        LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity        LOGICAL bottomDragTerms
169  CEOP  CEOP
170    #ifdef MOM_BOUNDARY_CONSERVE
171          COMMON / MOM_FLUXFORM_LOCAL / uBnd, vBnd
172          _RL  uBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
173          _RL  vBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
174    #endif /* MOM_BOUNDARY_CONSERVE */
175    
176    #ifdef ALLOW_AUTODIFF_TAMC
177              act0 = k - 1
178              max0 = Nr
179              act1 = bi - myBxLo(myThid)
180              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
181              act2 = bj - myByLo(myThid)
182              max2 = myByHi(myThid) - myByLo(myThid) + 1
183              act3 = myThid - 1
184              max3 = nTx*nTy
185              act4 = ikey_dynamics - 1
186              imomkey = (act0 + 1)
187         &                    + act1*max0
188         &                    + act2*max0*max1
189         &                    + act3*max0*max1*max2
190         &                    + act4*max0*max1*max2*max3
191    #endif /* ALLOW_AUTODIFF_TAMC */
192    
193  C     Initialise intermediate terms  C     Initialise intermediate terms
194        DO j=1-OLy,sNy+OLy        DO j=1-OLy,sNy+OLy
# Line 164  C     Initialise intermediate terms Line 203  C     Initialise intermediate terms
203          fVrDw(i,j)= 0.          fVrDw(i,j)= 0.
204          rTransU(i,j)= 0.          rTransU(i,j)= 0.
205          rTransV(i,j)= 0.          rTransV(i,j)= 0.
206    c       KE(i,j)     = 0.
207            hDiv(i,j)   = 0.
208            vort3(i,j)  = 0.
209          strain(i,j) = 0.          strain(i,j) = 0.
210          tension(i,j)= 0.          tension(i,j)= 0.
211          guDiss(i,j) = 0.          guDiss(i,j) = 0.
212          gvDiss(i,j) = 0.          gvDiss(i,j) = 0.
 #ifdef ALLOW_AUTODIFF_TAMC  
         vort3(i,j)   = 0. _d 0  
         strain(i,j)  = 0. _d 0  
         tension(i,j) = 0. _d 0  
 #endif  
213         ENDDO         ENDDO
214        ENDDO        ENDDO
215    
# Line 226  C---- Calculate common quantities used i Line 263  C---- Calculate common quantities used i
263  C     Calculate tracer cell face open areas  C     Calculate tracer cell face open areas
264        DO j=1-OLy,sNy+OLy        DO j=1-OLy,sNy+OLy
265         DO i=1-OLx,sNx+OLx         DO i=1-OLx,sNx+OLx
266          xA(i,j) = _dyG(i,j,bi,bj)          xA(i,j) = _dyG(i,j,bi,bj)*deepFacC(k)
267       &   *drF(k)*_hFacW(i,j,k,bi,bj)       &          *drF(k)*_hFacW(i,j,k,bi,bj)
268          yA(i,j) = _dxG(i,j,bi,bj)          yA(i,j) = _dxG(i,j,bi,bj)*deepFacC(k)
269       &   *drF(k)*_hFacS(i,j,k,bi,bj)       &          *drF(k)*_hFacS(i,j,k,bi,bj)
270         ENDDO         ENDDO
271        ENDDO        ENDDO
272    
# Line 242  C     Make local copies of horizontal fl Line 279  C     Make local copies of horizontal fl
279        ENDDO        ENDDO
280    
281  C     Calculate velocity field "volume transports" through tracer cell faces.  C     Calculate velocity field "volume transports" through tracer cell faces.
282    C     anelastic: transports are scaled by rhoFacC (~ mass transport)
283        DO j=1-OLy,sNy+OLy        DO j=1-OLy,sNy+OLy
284         DO i=1-OLx,sNx+OLx         DO i=1-OLx,sNx+OLx
285          uTrans(i,j) = uFld(i,j)*xA(i,j)          uTrans(i,j) = uFld(i,j)*xA(i,j)*rhoFacC(k)
286          vTrans(i,j) = vFld(i,j)*yA(i,j)          vTrans(i,j) = vFld(i,j)*yA(i,j)*rhoFacC(k)
287         ENDDO         ENDDO
288        ENDDO        ENDDO
289    
# Line 255  C     Calculate velocity field "volume t Line 293  C     Calculate velocity field "volume t
293          CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)          CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
294          CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)          CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
295          CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)          CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
296          DO j=1-Oly,sNy+Oly          DO j=1-OLy,sNy+OLy
297           DO i=1-Olx,sNx+Olx           DO i=1-OLx,sNx+OLx
298             IF ( hFacZ(i,j).EQ.0. ) THEN             IF ( hFacZ(i,j).EQ.0. ) THEN
299               vort3(i,j)  = sideMaskFac*vort3(i,j)               vort3(i,j)  = sideMaskFac*vort3(i,j)
300               strain(i,j) = sideMaskFac*strain(i,j)               strain(i,j) = sideMaskFac*strain(i,j)
# Line 273  C     Calculate velocity field "volume t Line 311  C     Calculate velocity field "volume t
311  #endif  #endif
312        ENDIF        ENDIF
313    
314  C---  First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)  C---  First call (k=1): compute vertical adv. flux fVerUkm & fVerVkm
315        IF (momAdvection.AND.k.EQ.1) THEN        IF (momAdvection.AND.k.EQ.1) THEN
316    
317    #ifdef MOM_BOUNDARY_CONSERVE
318            CALL MOM_UV_BOUNDARY( bi, bj, k,
319         I                        uVel, vVel,
320         O                        uBnd(1-OLx,1-OLy,k,bi,bj),
321         O                        vBnd(1-OLx,1-OLy,k,bi,bj),
322         I                        myTime, myIter, myThid )
323    #endif /* MOM_BOUNDARY_CONSERVE */
324    
325  C-    Calculate vertical transports above U & V points (West & South face):  C-    Calculate vertical transports above U & V points (West & South face):
326    
327    #ifdef ALLOW_AUTODIFF_TAMC
328    # ifdef NONLIN_FRSURF
329    #  ifndef DISABLE_RSTAR_CODE
330    CADJ STORE dwtransc(:,:,bi,bj) =
331    CADJ &     comlev1_bibj_k, key = imomkey, byte = isbyte
332    CADJ STORE dwtransu(:,:,bi,bj) =
333    CADJ &     comlev1_bibj_k, key = imomkey, byte = isbyte
334    CADJ STORE dwtransv(:,:,bi,bj) =
335    CADJ &     comlev1_bibj_k, key = imomkey, byte = isbyte
336    #  endif
337    # endif /* NONLIN_FRSURF */
338    #endif /* ALLOW_AUTODIFF_TAMC */
339          CALL MOM_CALC_RTRANS( k, bi, bj,          CALL MOM_CALC_RTRANS( k, bi, bj,
340       O                        rTransU, rTransV,       O                        rTransU, rTransV,
341       I                        myTime, myIter, myThid)       I                        myTime, myIter, myThid)
342    
343  C-    Free surface correction term (flux at k=1)  C-    Free surface correction term (flux at k=1)
344          CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,          CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
345       O                     fVerU(1-OLx,1-OLy,kUp), myThid )       O                     fVerUkm, myThid )
346    
347          CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,          CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
348       O                     fVerV(1-OLx,1-OLy,kUp), myThid )       O                     fVerVkm, myThid )
349    
350  C---  endif momAdvection & k=1  C---  endif momAdvection & k=1
351        ENDIF        ENDIF
# Line 299  C---  Calculate vertical transports (at Line 358  C---  Calculate vertical transports (at
358       I                        myTime, myIter, myThid)       I                        myTime, myIter, myThid)
359        ENDIF        ENDIF
360    
361    #ifdef MOM_BOUNDARY_CONSERVE
362          IF ( momAdvection .AND. k.LT.Nr ) THEN
363            CALL MOM_UV_BOUNDARY( bi, bj, k+1,
364         I                        uVel, vVel,
365         O                        uBnd(1-OLx,1-OLy,k+1,bi,bj),
366         O                        vBnd(1-OLx,1-OLy,k+1,bi,bj),
367         I                        myTime, myIter, myThid )
368          ENDIF
369    #endif /* MOM_BOUNDARY_CONSERVE */
370    
371        IF (momViscosity) THEN        IF (momViscosity) THEN
372         CALL MOM_CALC_VISC(         CALL MOM_CALC_VISC( bi, bj, k,
373       I        bi,bj,k,       O        viscAh_Z, viscAh_D, viscA4_Z, viscA4_D,
374       O        viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,       I        hDiv, vort3, tension, strain, KE, hFacZ,
375       O        harmonic,biharmonic,useVariableViscosity,       I        myThid )
      I        hDiv,vort3,tension,strain,KE,hFacZ,  
      I        myThid)  
376        ENDIF        ENDIF
377    
378  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
# Line 315  C---- Zonal momentum equation starts her Line 382  C---- Zonal momentum equation starts her
382        IF (momAdvection) THEN        IF (momAdvection) THEN
383  C---  Calculate mean fluxes (advection)   between cells for zonal flow.  C---  Calculate mean fluxes (advection)   between cells for zonal flow.
384    
385    #ifdef MOM_BOUNDARY_CONSERVE
386            CALL MOM_U_ADV_UU( bi,bj,k,uTrans,uBnd(1-OLx,1-OLy,k,bi,bj),
387         O                     fZon,myThid )
388            CALL MOM_U_ADV_VU( bi,bj,k,vTrans,uBnd(1-OLx,1-OLy,k,bi,bj),
389         O                     fMer,myThid )
390            CALL MOM_U_ADV_WU(
391         I                     bi,bj,k+1,uBnd,wVel,rTransU,
392         O                     fVerUkp, myThid )
393    #else /* MOM_BOUNDARY_CONSERVE */
394  C--   Zonal flux (fZon is at east face of "u" cell)  C--   Zonal flux (fZon is at east face of "u" cell)
395  C     Mean flow component of zonal flux -> fZon  C     Mean flow component of zonal flux -> fZon
396          CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)          CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
# Line 327  C--   Vertical flux (fVer is at upper fa Line 403  C--   Vertical flux (fVer is at upper fa
403  C     Mean flow component of vertical flux (at k+1) -> fVer  C     Mean flow component of vertical flux (at k+1) -> fVer
404          CALL MOM_U_ADV_WU(          CALL MOM_U_ADV_WU(
405       I                     bi,bj,k+1,uVel,wVel,rTransU,       I                     bi,bj,k+1,uVel,wVel,rTransU,
406       O                     fVerU(1-OLx,1-OLy,kDown), myThid )       O                     fVerUkp, myThid )
407    #endif /* MOM_BOUNDARY_CONSERVE */
408    
409  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term
410          DO j=jMin,jMax          DO j=jMin,jMax
# Line 338  C--   Tendency is minus divergence of th Line 415  C--   Tendency is minus divergence of th
415       &      ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )       &      ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
416  #else  #else
417       &     -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)       &     -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
418       &     *recip_rAw(i,j,bi,bj)       &     *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k)
419  #endif  #endif
420       &    *( ( fZon(i,j  )     - fZon(i-1,j) )*uDudxFac       &     *( ( fZon(i,j  )  - fZon(i-1,j)  )*uDudxFac
421       &      +( fMer(i,j+1)     - fMer(i,  j) )*vDudyFac       &       +( fMer(i,j+1)  - fMer(i,  j)  )*vDudyFac
422       &      +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac       &       +( fVerUkp(i,j) - fVerUkm(i,j) )*rkSign*rVelDudrFac
423       &     )       &     )
424           ENDDO           ENDDO
425          ENDDO          ENDDO
426    
427  #ifdef ALLOW_DIAGNOSTICS  #ifdef ALLOW_DIAGNOSTICS
428          IF ( useDiagnostics ) THEN          IF ( useDiagnostics ) THEN
429            CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)            CALL DIAGNOSTICS_FILL( fZon,  'ADVx_Um ',k,1,2,bi,bj,myThid)
430            CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)            CALL DIAGNOSTICS_FILL( fMer,  'ADVy_Um ',k,1,2,bi,bj,myThid)
431            CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),            CALL DIAGNOSTICS_FILL(fVerUkm,'ADVrE_Um',k,1,2,bi,bj,myThid)
      &                               'ADVrE_Um',k,1,2,bi,bj,myThid)  
432          ENDIF          ENDIF
433  #endif  #endif
434    
# Line 379  C-- account for 3.D divergence of the fl Line 455  C-- account for 3.D divergence of the fl
455  # endif /* DISABLE_RSTAR_CODE */  # endif /* DISABLE_RSTAR_CODE */
456  #endif /* NONLIN_FRSURF */  #endif /* NONLIN_FRSURF */
457    
458    #ifdef ALLOW_ADDFLUID
459            IF ( selectAddFluid.GE.1 ) THEN
460             DO j=jMin,jMax
461              DO i=iMin,iMax
462               gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
463         &     + uVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0
464         &      *( addMass(i-1,j,k,bi,bj) + addMass(i,j,k,bi,bj) )
465         &      *_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k)
466         &      * recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)
467              ENDDO
468             ENDDO
469            ENDIF
470    #endif /* ALLOW_ADDFLUID */
471    
472        ELSE        ELSE
473  C-    if momAdvection / else  C-    if momAdvection / else
474          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
# Line 394  C-    endif momAdvection. Line 484  C-    endif momAdvection.
484  C---  Calculate eddy fluxes (dissipation) between cells for zonal flow.  C---  Calculate eddy fluxes (dissipation) between cells for zonal flow.
485    
486  C     Bi-harmonic term del^2 U -> v4F  C     Bi-harmonic term del^2 U -> v4F
487          IF (biharmonic)          IF ( useBiharmonicVisc )
488       &  CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)       &  CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
489    
490  C     Laplacian and bi-harmonic terms, Zonal  Fluxes -> fZon  C     Laplacian and bi-harmonic terms, Zonal  Fluxes -> fZon
# Line 412  C     Eddy component of vertical flux (i Line 502  C     Eddy component of vertical flux (i
502         ENDIF         ENDIF
503    
504  C--   Tendency is minus divergence of the fluxes  C--   Tendency is minus divergence of the fluxes
505    C     anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is)
506          DO j=jMin,jMax          DO j=jMin,jMax
507           DO i=iMin,iMax           DO i=iMin,iMax
508            guDiss(i,j) =            guDiss(i,j) =
# Line 420  C--   Tendency is minus divergence of th Line 511  C--   Tendency is minus divergence of th
511       &      ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )       &      ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
512  #else  #else
513       &     -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)       &     -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
514       &     *recip_rAw(i,j,bi,bj)       &     *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)
515  #endif  #endif
516       &    *( ( fZon(i,j  ) - fZon(i-1,j) )*AhDudxFac       &     *( ( fZon(i,j  ) - fZon(i-1,j) )*AhDudxFac
517       &      +( fMer(i,j+1) - fMer(i,  j) )*AhDudyFac       &       +( fMer(i,j+1) - fMer(i,  j) )*AhDudyFac
518       &      +( fVrDw(i,j)  - fVrUp(i,j) )*rkSign*ArDudrFac       &       +( fVrDw(i,j)  - fVrUp(i,j)  )*rkSign*ArDudrFac
519         &                                     *recip_rhoFacC(k)
520       &     )       &     )
521           ENDDO           ENDDO
522          ENDDO          ENDDO
# Line 438  C--   Tendency is minus divergence of th Line 530  C--   Tendency is minus divergence of th
530          ENDIF          ENDIF
531  #endif  #endif
532    
533  C-- No-slip and drag BCs appear as body forces in cell abutting topography  C-- No-slip and drag BCs appear as body forces in cell abutting topography
534          IF (no_slip_sides) THEN          IF (no_slip_sides) THEN
535  C-     No-slip BCs impose a drag at walls...  C-     No-slip BCs impose a drag at walls...
536           CALL MOM_U_SIDEDRAG(           CALL MOM_U_SIDEDRAG( bi, bj, k,
      I        bi,bj,k,  
537       I        uFld, v4f, hFacZ,       I        uFld, v4f, hFacZ,
538       I        viscAh_Z,viscA4_Z,       I        viscAh_Z, viscA4_Z,
539       I        harmonic,biharmonic,useVariableViscosity,       I        useHarmonicVisc, useBiharmonicVisc, useVariableVisc,
540       O        vF,       O        vF,
541       I        myThid)       I        myThid )
542           DO j=jMin,jMax           DO j=jMin,jMax
543            DO i=iMin,iMax            DO i=iMin,iMax
544             gUdiss(i,j) = gUdiss(i,j) + vF(i,j)             gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
# Line 518  C---+----1----+----2----+----3----+----4 Line 609  C---+----1----+----2----+----3----+----4
609  C---- Meridional momentum equation starts here  C---- Meridional momentum equation starts here
610    
611        IF (momAdvection) THEN        IF (momAdvection) THEN
612    
613    #ifdef MOM_BOUNDARY_CONSERVE
614            CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vBnd(1-OLx,1-OLy,k,bi,bj),
615         O                     fZon,myThid )
616            CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vBnd(1-OLx,1-OLy,k,bi,bj),
617         O                     fMer,myThid )
618            CALL MOM_V_ADV_WV( bi,bj,k+1,vBnd,wVel,rTransV,
619         O                     fVerVkp, myThid )
620    #else /* MOM_BOUNDARY_CONSERVE */
621  C---  Calculate mean fluxes (advection)   between cells for meridional flow.  C---  Calculate mean fluxes (advection)   between cells for meridional flow.
622  C     Mean flow component of zonal flux -> fZon  C     Mean flow component of zonal flux -> fZon
623          CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)          CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vFld,fZon,myThid )
624    
625  C--   Meridional flux (fMer is at north face of "v" cell)  C--   Meridional flux (fMer is at north face of "v" cell)
626  C     Mean flow component of meridional flux -> fMer  C     Mean flow component of meridional flux -> fMer
627          CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)          CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vFld,fMer,myThid )
628    
629  C--   Vertical flux (fVer is at upper face of "v" cell)  C--   Vertical flux (fVer is at upper face of "v" cell)
630  C     Mean flow component of vertical flux (at k+1) -> fVerV  C     Mean flow component of vertical flux (at k+1) -> fVerV
631          CALL MOM_V_ADV_WV(          CALL MOM_V_ADV_WV( bi,bj,k+1,vVel,wVel,rTransV,
632       I                     bi,bj,k+1,vVel,wVel,rTransV,       O                     fVerVkp, myThid )
633       O                     fVerV(1-OLx,1-OLy,kDown), myThid )  #endif /* MOM_BOUNDARY_CONSERVE */
634    
635  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term
636          DO j=jMin,jMax          DO j=jMin,jMax
# Line 541  C--   Tendency is minus divergence of th Line 641  C--   Tendency is minus divergence of th
641       &      ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )       &      ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
642  #else  #else
643       &     -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)       &     -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
644       &      *recip_rAs(i,j,bi,bj)       &     *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k)
645  #endif  #endif
646       &    *( ( fZon(i+1,j)     - fZon(i,j  ) )*uDvdxFac       &     *( ( fZon(i+1,j)  - fZon(i,j  )  )*uDvdxFac
647       &      +( fMer(i,  j)     - fMer(i,j-1) )*vDvdyFac       &       +( fMer(i,  j)  - fMer(i,j-1)  )*vDvdyFac
648       &      +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac       &       +( fVerVkp(i,j) - fVerVkm(i,j) )*rkSign*rVelDvdrFac
649       &     )       &     )
650           ENDDO           ENDDO
651          ENDDO          ENDDO
652    
653  #ifdef ALLOW_DIAGNOSTICS  #ifdef ALLOW_DIAGNOSTICS
654          IF ( useDiagnostics ) THEN          IF ( useDiagnostics ) THEN
655            CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)            CALL DIAGNOSTICS_FILL( fZon,  'ADVx_Vm ',k,1,2,bi,bj,myThid)
656            CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)            CALL DIAGNOSTICS_FILL( fMer,  'ADVy_Vm ',k,1,2,bi,bj,myThid)
657            CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),            CALL DIAGNOSTICS_FILL(fVerVkm,'ADVrE_Vm',k,1,2,bi,bj,myThid)
      &                               'ADVrE_Vm',k,1,2,bi,bj,myThid)  
658          ENDIF          ENDIF
659  #endif  #endif
660    
# Line 582  C-- account for 3.D divergence of the fl Line 681  C-- account for 3.D divergence of the fl
681  # endif /* DISABLE_RSTAR_CODE */  # endif /* DISABLE_RSTAR_CODE */
682  #endif /* NONLIN_FRSURF */  #endif /* NONLIN_FRSURF */
683    
684    #ifdef ALLOW_ADDFLUID
685            IF ( selectAddFluid.GE.1 ) THEN
686             DO j=jMin,jMax
687              DO i=iMin,iMax
688               gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
689         &     + vVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0
690         &      *( addMass(i,j-1,k,bi,bj) + addMass(i,j,k,bi,bj) )
691         &      *_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k)
692         &      * recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)
693              ENDDO
694             ENDDO
695            ENDIF
696    #endif /* ALLOW_ADDFLUID */
697    
698        ELSE        ELSE
699  C-    if momAdvection / else  C-    if momAdvection / else
700          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
# Line 596  C-    endif momAdvection. Line 709  C-    endif momAdvection.
709        IF (momViscosity) THEN        IF (momViscosity) THEN
710  C---  Calculate eddy fluxes (dissipation) between cells for meridional flow.  C---  Calculate eddy fluxes (dissipation) between cells for meridional flow.
711  C     Bi-harmonic term del^2 V -> v4F  C     Bi-harmonic term del^2 V -> v4F
712          IF (biharmonic)          IF ( useBiharmonicVisc )
713       &  CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)       &  CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
714    
715  C     Laplacian and bi-harmonic terms, Zonal  Fluxes -> fZon  C     Laplacian and bi-harmonic terms, Zonal  Fluxes -> fZon
# Line 614  C     Eddy component of vertical flux (i Line 727  C     Eddy component of vertical flux (i
727         ENDIF         ENDIF
728    
729  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term
730    C     anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is)
731          DO j=jMin,jMax          DO j=jMin,jMax
732           DO i=iMin,iMax           DO i=iMin,iMax
733            gvDiss(i,j) =            gvDiss(i,j) =
# Line 622  C--   Tendency is minus divergence of th Line 736  C--   Tendency is minus divergence of th
736       &      ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )       &      ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
737  #else  #else
738       &     -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)       &     -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
739       &      *recip_rAs(i,j,bi,bj)       &      *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)
740  #endif  #endif
741       &    *( ( fZon(i+1,j)  - fZon(i,j  ) )*AhDvdxFac       &     *( ( fZon(i+1,j)  - fZon(i,j  ) )*AhDvdxFac
742       &      +( fMer(i,  j)  - fMer(i,j-1) )*AhDvdyFac       &       +( fMer(i,  j)  - fMer(i,j-1) )*AhDvdyFac
743       &      +( fVrDw(i,j)   - fVrUp(i,j) )*rkSign*ArDvdrFac       &       +( fVrDw(i,j)   - fVrUp(i,j) )*rkSign*ArDvdrFac
744         &                                     *recip_rhoFacC(k)
745       &     )       &     )
746           ENDDO           ENDDO
747          ENDDO          ENDDO
# Line 640  C--   Tendency is minus divergence of th Line 755  C--   Tendency is minus divergence of th
755          ENDIF          ENDIF
756  #endif  #endif
757    
758  C-- No-slip and drag BCs appear as body forces in cell abutting topography  C-- No-slip and drag BCs appear as body forces in cell abutting topography
759          IF (no_slip_sides) THEN          IF (no_slip_sides) THEN
760  C-     No-slip BCs impose a drag at walls...  C-     No-slip BCs impose a drag at walls...
761           CALL MOM_V_SIDEDRAG(           CALL MOM_V_SIDEDRAG( bi, bj, k,
      I        bi,bj,k,  
762       I        vFld, v4f, hFacZ,       I        vFld, v4f, hFacZ,
763       I        viscAh_Z,viscA4_Z,       I        viscAh_Z,viscA4_Z,
764       I        harmonic,biharmonic,useVariableViscosity,       I        useHarmonicVisc, useBiharmonicVisc, useVariableVisc,
765       O        vF,       O        vF,
766       I        myThid)       I        myThid )
767           DO j=jMin,jMax           DO j=jMin,jMax
768            DO i=iMin,iMax            DO i=iMin,iMax
769             gvDiss(i,j) = gvDiss(i,j) + vF(i,j)             gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
# Line 668  C-    No-slip BCs impose a drag at botto Line 782  C-    No-slip BCs impose a drag at botto
782    
783  #ifdef ALLOW_SHELFICE  #ifdef ALLOW_SHELFICE
784          IF (useShelfIce) THEN          IF (useShelfIce) THEN
785           CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRU,vF,myThid)           CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
786           DO j=jMin,jMax           DO j=jMin,jMax
787            DO i=iMin,iMax            DO i=iMin,iMax
788             gvDiss(i,j) = gvDiss(i,j) + vF(i,j)             gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
# Line 745  c     ELSE Line 859  c     ELSE
859  #endif  #endif
860        ENDIF        ENDIF
861    
862  C--   3.D Coriolis term (horizontal momentum, Eastward component: -f'*w)  C--   3.D Coriolis term (horizontal momentum, Eastward component: -fprime*w)
863        IF ( nonHydrostatic.OR.quasiHydrostatic ) THEN        IF ( use3dCoriolis ) THEN
864          CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)          CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
865          DO j=jMin,jMax          DO j=jMin,jMax
866           DO i=iMin,iMax           DO i=iMin,iMax
# Line 777  C--   Set du/dt & dv/dt on boundaries to Line 891  C--   Set du/dt & dv/dt on boundaries to
891  #ifdef ALLOW_DIAGNOSTICS  #ifdef ALLOW_DIAGNOSTICS
892        IF ( useDiagnostics ) THEN        IF ( useDiagnostics ) THEN
893          CALL DIAGNOSTICS_FILL(KE,    'momKE   ',k,1,2,bi,bj,myThid)          CALL DIAGNOSTICS_FILL(KE,    'momKE   ',k,1,2,bi,bj,myThid)
894          CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),          CALL DIAGNOSTICS_FILL(gU(1-OLx,1-OLy,k,bi,bj),
895       &                               'Um_Advec',k,1,2,bi,bj,myThid)       &                               'Um_Advec',k,1,2,bi,bj,myThid)
896          CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),          CALL DIAGNOSTICS_FILL(gV(1-OLx,1-OLy,k,bi,bj),
897       &                               'Vm_Advec',k,1,2,bi,bj,myThid)       &                               'Vm_Advec',k,1,2,bi,bj,myThid)
898         IF (momViscosity) THEN         IF (momViscosity) THEN
899          CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)          CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)

Legend:
Removed from v.1.34  
changed lines
  Added in v.1.46

  ViewVC Help
Powered by ViewVC 1.1.22