/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.47 - (hide annotations) (download)
Thu Aug 1 20:11:34 2013 UTC (10 years, 9 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint64q, checkpoint64p, checkpoint64s, checkpoint64r, checkpoint64t, checkpoint64m, checkpoint64l, checkpoint64o, checkpoint64n
Changes since 1.46: +15 -6 lines
always set horiz. viscosity arrays to background value before calling
 MOM_CALC_VISC (in MOM_FLUXFORM & MOM_VECINV) and call S/R MOM_CALC_VISC
 only when using variable horiz. viscosity (useVariableVisc=T);

1 jmc 1.47 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.46 2013/07/28 21:04:25 jmc Exp $
2 adcroft 1.2 C $Name: $
3 adcroft 1.1
4 adcroft 1.3 CBOI
5     C !TITLE: pkg/mom\_advdiff
6     C !AUTHORS: adcroft@mit.edu
7 adcroft 1.4 C !INTRODUCTION: Flux-form Momentum Equations Package
8 adcroft 1.3 C
9     C Package "mom\_fluxform" provides methods for calculating explicit terms
10     C in the momentum equation cast in flux-form:
11     C \begin{eqnarray*}
12     C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13     C -\nabla \cdot {\bf v} u
14     C -fv
15     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16     C + \mbox{metrics}
17     C \\
18     C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19     C -\nabla \cdot {\bf v} v
20     C +fu
21     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22     C + \mbox{metrics}
23     C \end{eqnarray*}
24     C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25     C stresses as well as internal viscous stresses.
26     CEOI
27    
28 edhill 1.13 #include "MOM_FLUXFORM_OPTIONS.h"
29 jmc 1.46 #ifdef ALLOW_MOM_COMMON
30     # include "MOM_COMMON_OPTIONS.h"
31     #endif
32 adcroft 1.1
33 adcroft 1.3 CBOP
34     C !ROUTINE: MOM_FLUXFORM
35    
36     C !INTERFACE: ==========================================================
37 jmc 1.37 SUBROUTINE MOM_FLUXFORM(
38 jmc 1.44 I bi,bj,k,iMin,iMax,jMin,jMax,
39 jmc 1.23 I KappaRU, KappaRV,
40 jmc 1.44 U fVerUkm, fVerVkm,
41     O fVerUkp, fVerVkp,
42 jmc 1.23 O guDiss, gvDiss,
43 jmc 1.44 I myTime, myIter, myThid )
44 adcroft 1.3
45     C !DESCRIPTION:
46     C Calculates all the horizontal accelerations except for the implicit surface
47 jmc 1.39 C pressure gradient and implicit vertical viscosity.
48 adcroft 1.1
49 adcroft 1.3 C !USES: ===============================================================
50 adcroft 1.1 C == Global variables ==
51 adcroft 1.3 IMPLICIT NONE
52 adcroft 1.1 #include "SIZE.h"
53     #include "EEPARAMS.h"
54     #include "PARAMS.h"
55     #include "GRID.h"
56 jmc 1.46 #include "DYNVARS.h"
57     #include "FFIELDS.h"
58 adcroft 1.1 #include "SURFACE.h"
59 jmc 1.46 #ifdef ALLOW_MOM_COMMON
60     # include "MOM_VISC.h"
61     #endif
62 jmc 1.37 #ifdef ALLOW_AUTODIFF_TAMC
63 heimbach 1.35 # include "tamc.h"
64     # include "tamc_keys.h"
65     # include "MOM_FLUXFORM.h"
66     #endif
67 adcroft 1.1
68 adcroft 1.3 C !INPUT PARAMETERS: ===================================================
69 jmc 1.44 C bi,bj :: current tile indices
70     C k :: current vertical level
71     C iMin,iMax,jMin,jMax :: loop ranges
72 adcroft 1.3 C KappaRU :: vertical viscosity
73     C KappaRV :: vertical viscosity
74 jmc 1.44 C fVerUkm :: vertical advective flux of U, interface above (k-1/2)
75     C fVerVkm :: vertical advective flux of V, interface above (k-1/2)
76     C fVerUkp :: vertical advective flux of U, interface below (k+1/2)
77     C fVerVkp :: vertical advective flux of V, interface below (k+1/2)
78 jmc 1.23 C guDiss :: dissipation tendency (all explicit terms), u component
79     C gvDiss :: dissipation tendency (all explicit terms), v component
80 jmc 1.8 C myTime :: current time
81 adcroft 1.3 C myIter :: current time-step number
82 jmc 1.44 C myThid :: my Thread Id number
83     INTEGER bi,bj,k
84     INTEGER iMin,iMax,jMin,jMax
85 adcroft 1.1 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
86     _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
87 jmc 1.44 _RL fVerUkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88     _RL fVerVkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89     _RL fVerUkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90     _RL fVerVkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 jmc 1.23 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92     _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93 jmc 1.8 _RL myTime
94 adcroft 1.2 INTEGER myIter
95 adcroft 1.1 INTEGER myThid
96    
97 adcroft 1.3 C !OUTPUT PARAMETERS: ==================================================
98     C None - updates gU() and gV() in common blocks
99    
100     C !LOCAL VARIABLES: ====================================================
101     C i,j :: loop indices
102     C vF :: viscous flux
103     C v4F :: bi-harmonic viscous flux
104     C cF :: Coriolis acceleration
105     C mT :: Metric terms
106     C fZon :: zonal fluxes
107     C fMer :: meridional fluxes
108 jmc 1.44 C fVrUp,fVrDw :: vertical viscous fluxes at interface k & k+1
109 adcroft 1.3 INTEGER i,j
110 jmc 1.37 #ifdef ALLOW_AUTODIFF_TAMC
111 heimbach 1.35 INTEGER imomkey
112     #endif
113 adcroft 1.3 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114     _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115     _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116     _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117     _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118     _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 jmc 1.23 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120     _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 jmc 1.33 C afFacMom :: Tracer parameters for turning terms on and off.
122 jmc 1.37 C vfFacMom
123     C pfFacMom afFacMom - Advective terms
124 adcroft 1.1 C cfFacMom vfFacMom - Eddy viscosity terms
125 jmc 1.33 C mtFacMom pfFacMom - Pressure terms
126 adcroft 1.1 C cfFacMom - Coriolis terms
127     C foFacMom - Forcing
128 jmc 1.33 C mtFacMom - Metric term
129 jmc 1.23 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
130 adcroft 1.1 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131     _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132     _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
133     _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
134     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
135     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
136     _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
137     _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
138 jmc 1.8 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
139     _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
140 adcroft 1.18 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
141 baylor 1.25 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
142     _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
143     _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
144     _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
145     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
146     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
147 adcroft 1.18 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
148     _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
149 adcroft 1.1 _RL uDudxFac
150     _RL AhDudxFac
151     _RL vDudyFac
152     _RL AhDudyFac
153     _RL rVelDudrFac
154     _RL ArDudrFac
155     _RL fuFac
156     _RL mtFacU
157 jmc 1.33 _RL mtNHFacU
158 adcroft 1.1 _RL uDvdxFac
159     _RL AhDvdxFac
160     _RL vDvdyFac
161     _RL AhDvdyFac
162     _RL rVelDvdrFac
163     _RL ArDvdrFac
164     _RL fvFac
165     _RL mtFacV
166 jmc 1.33 _RL mtNHFacV
167 jmc 1.29 _RL sideMaskFac
168 jmc 1.46 LOGICAL bottomDragTerms
169 adcroft 1.3 CEOP
170 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
171     COMMON / MOM_FLUXFORM_LOCAL / uBnd, vBnd
172     _RL uBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
173     _RL vBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
174     #endif /* MOM_BOUNDARY_CONSERVE */
175 adcroft 1.1
176 heimbach 1.35 #ifdef ALLOW_AUTODIFF_TAMC
177     act0 = k - 1
178     max0 = Nr
179     act1 = bi - myBxLo(myThid)
180     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
181     act2 = bj - myByLo(myThid)
182     max2 = myByHi(myThid) - myByLo(myThid) + 1
183     act3 = myThid - 1
184     max3 = nTx*nTy
185     act4 = ikey_dynamics - 1
186 jmc 1.37 imomkey = (act0 + 1)
187 heimbach 1.35 & + act1*max0
188     & + act2*max0*max1
189     & + act3*max0*max1*max2
190     & + act4*max0*max1*max2*max3
191     #endif /* ALLOW_AUTODIFF_TAMC */
192    
193 adcroft 1.1 C Initialise intermediate terms
194 jmc 1.23 DO j=1-OLy,sNy+OLy
195     DO i=1-OLx,sNx+OLx
196 adcroft 1.1 vF(i,j) = 0.
197     v4F(i,j) = 0.
198     cF(i,j) = 0.
199     mT(i,j) = 0.
200     fZon(i,j) = 0.
201     fMer(i,j) = 0.
202 jmc 1.23 fVrUp(i,j)= 0.
203     fVrDw(i,j)= 0.
204     rTransU(i,j)= 0.
205     rTransV(i,j)= 0.
206 jmc 1.38 c KE(i,j) = 0.
207 heimbach 1.41 hDiv(i,j) = 0.
208 jmc 1.38 vort3(i,j) = 0.
209 adcroft 1.18 strain(i,j) = 0.
210 jmc 1.23 tension(i,j)= 0.
211     guDiss(i,j) = 0.
212     gvDiss(i,j) = 0.
213 adcroft 1.1 ENDDO
214     ENDDO
215    
216     C-- Term by term tracer parmeters
217     C o U momentum equation
218     uDudxFac = afFacMom*1.
219     AhDudxFac = vfFacMom*1.
220     vDudyFac = afFacMom*1.
221     AhDudyFac = vfFacMom*1.
222     rVelDudrFac = afFacMom*1.
223     ArDudrFac = vfFacMom*1.
224 jmc 1.33 mtFacU = mtFacMom*1.
225     mtNHFacU = 1.
226 adcroft 1.1 fuFac = cfFacMom*1.
227     C o V momentum equation
228     uDvdxFac = afFacMom*1.
229     AhDvdxFac = vfFacMom*1.
230     vDvdyFac = afFacMom*1.
231     AhDvdyFac = vfFacMom*1.
232     rVelDvdrFac = afFacMom*1.
233     ArDvdrFac = vfFacMom*1.
234 jmc 1.33 mtFacV = mtFacMom*1.
235     mtNHFacV = 1.
236 adcroft 1.1 fvFac = cfFacMom*1.
237 jmc 1.23
238     IF (implicitViscosity) THEN
239     ArDudrFac = 0.
240     ArDvdrFac = 0.
241     ENDIF
242 adcroft 1.1
243 jmc 1.29 C note: using standard stencil (no mask) results in under-estimating
244     C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
245     IF ( no_slip_sides ) THEN
246     sideMaskFac = sideDragFactor
247     ELSE
248     sideMaskFac = 0. _d 0
249     ENDIF
250    
251 adcroft 1.1 IF ( no_slip_bottom
252     & .OR. bottomDragQuadratic.NE.0.
253     & .OR. bottomDragLinear.NE.0.) THEN
254     bottomDragTerms=.TRUE.
255     ELSE
256     bottomDragTerms=.FALSE.
257     ENDIF
258    
259     C-- Calculate open water fraction at vorticity points
260     CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
261    
262     C---- Calculate common quantities used in both U and V equations
263     C Calculate tracer cell face open areas
264     DO j=1-OLy,sNy+OLy
265     DO i=1-OLx,sNx+OLx
266 jmc 1.39 xA(i,j) = _dyG(i,j,bi,bj)*deepFacC(k)
267     & *drF(k)*_hFacW(i,j,k,bi,bj)
268     yA(i,j) = _dxG(i,j,bi,bj)*deepFacC(k)
269     & *drF(k)*_hFacS(i,j,k,bi,bj)
270 adcroft 1.1 ENDDO
271     ENDDO
272    
273     C Make local copies of horizontal flow field
274     DO j=1-OLy,sNy+OLy
275     DO i=1-OLx,sNx+OLx
276     uFld(i,j) = uVel(i,j,k,bi,bj)
277     vFld(i,j) = vVel(i,j,k,bi,bj)
278     ENDDO
279     ENDDO
280    
281     C Calculate velocity field "volume transports" through tracer cell faces.
282 jmc 1.39 C anelastic: transports are scaled by rhoFacC (~ mass transport)
283 adcroft 1.1 DO j=1-OLy,sNy+OLy
284     DO i=1-OLx,sNx+OLx
285 jmc 1.39 uTrans(i,j) = uFld(i,j)*xA(i,j)*rhoFacC(k)
286     vTrans(i,j) = vFld(i,j)*yA(i,j)*rhoFacC(k)
287 adcroft 1.1 ENDDO
288     ENDDO
289    
290 baylor 1.25 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
291 jmc 1.29 IF ( momViscosity) THEN
292     CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
293     CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
294     CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
295     CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
296 jmc 1.43 DO j=1-OLy,sNy+OLy
297     DO i=1-OLx,sNx+OLx
298 jmc 1.29 IF ( hFacZ(i,j).EQ.0. ) THEN
299     vort3(i,j) = sideMaskFac*vort3(i,j)
300     strain(i,j) = sideMaskFac*strain(i,j)
301     ENDIF
302     ENDDO
303     ENDDO
304     #ifdef ALLOW_DIAGNOSTICS
305     IF ( useDiagnostics ) THEN
306     CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
307     CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
308     CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
309     CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
310     ENDIF
311     #endif
312     ENDIF
313 adcroft 1.18
314 jmc 1.44 C--- First call (k=1): compute vertical adv. flux fVerUkm & fVerVkm
315 jmc 1.8 IF (momAdvection.AND.k.EQ.1) THEN
316    
317 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
318     CALL MOM_UV_BOUNDARY( bi, bj, k,
319     I uVel, vVel,
320     O uBnd(1-OLx,1-OLy,k,bi,bj),
321     O vBnd(1-OLx,1-OLy,k,bi,bj),
322     I myTime, myIter, myThid )
323     #endif /* MOM_BOUNDARY_CONSERVE */
324    
325 jmc 1.8 C- Calculate vertical transports above U & V points (West & South face):
326 heimbach 1.35
327     #ifdef ALLOW_AUTODIFF_TAMC
328 heimbach 1.36 # ifdef NONLIN_FRSURF
329     # ifndef DISABLE_RSTAR_CODE
330 jmc 1.39 CADJ STORE dwtransc(:,:,bi,bj) =
331 heimbach 1.35 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
332 jmc 1.39 CADJ STORE dwtransu(:,:,bi,bj) =
333 heimbach 1.35 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
334 jmc 1.39 CADJ STORE dwtransv(:,:,bi,bj) =
335 heimbach 1.35 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
336 heimbach 1.36 # endif
337     # endif /* NONLIN_FRSURF */
338 heimbach 1.35 #endif /* ALLOW_AUTODIFF_TAMC */
339 jmc 1.23 CALL MOM_CALC_RTRANS( k, bi, bj,
340     O rTransU, rTransV,
341     I myTime, myIter, myThid)
342 jmc 1.8
343     C- Free surface correction term (flux at k=1)
344 jmc 1.23 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
345 jmc 1.44 O fVerUkm, myThid )
346 jmc 1.8
347 jmc 1.23 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
348 jmc 1.44 O fVerVkm, myThid )
349 jmc 1.8
350     C--- endif momAdvection & k=1
351     ENDIF
352    
353     C--- Calculate vertical transports (at k+1) below U & V points :
354     IF (momAdvection) THEN
355 jmc 1.23 CALL MOM_CALC_RTRANS( k+1, bi, bj,
356     O rTransU, rTransV,
357     I myTime, myIter, myThid)
358 jmc 1.8 ENDIF
359    
360 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
361     IF ( momAdvection .AND. k.LT.Nr ) THEN
362     CALL MOM_UV_BOUNDARY( bi, bj, k+1,
363     I uVel, vVel,
364     O uBnd(1-OLx,1-OLy,k+1,bi,bj),
365     O vBnd(1-OLx,1-OLy,k+1,bi,bj),
366     I myTime, myIter, myThid )
367     ENDIF
368     #endif /* MOM_BOUNDARY_CONSERVE */
369    
370 baylor 1.25 IF (momViscosity) THEN
371 jmc 1.47 DO j=1-OLy,sNy+OLy
372     DO i=1-OLx,sNx+OLx
373     viscAh_D(i,j) = viscAhD
374     viscAh_Z(i,j) = viscAhZ
375     viscA4_D(i,j) = viscA4D
376     viscA4_Z(i,j) = viscA4Z
377     ENDDO
378     ENDDO
379     IF ( useVariableVisc ) THEN
380     CALL MOM_CALC_VISC( bi, bj, k,
381     O viscAh_Z, viscAh_D, viscA4_Z, viscA4_D,
382     I hDiv, vort3, tension, strain, KE, hFacZ,
383     I myThid )
384     ENDIF
385 baylor 1.25 ENDIF
386 jmc 1.8
387 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
388    
389 adcroft 1.1 C---- Zonal momentum equation starts here
390    
391 jmc 1.23 IF (momAdvection) THEN
392     C--- Calculate mean fluxes (advection) between cells for zonal flow.
393 adcroft 1.1
394 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
395     CALL MOM_U_ADV_UU( bi,bj,k,uTrans,uBnd(1-OLx,1-OLy,k,bi,bj),
396     O fZon,myThid )
397     CALL MOM_U_ADV_VU( bi,bj,k,vTrans,uBnd(1-OLx,1-OLy,k,bi,bj),
398     O fMer,myThid )
399     CALL MOM_U_ADV_WU(
400     I bi,bj,k+1,uBnd,wVel,rTransU,
401 jmc 1.44 O fVerUkp, myThid )
402 jmc 1.40 #else /* MOM_BOUNDARY_CONSERVE */
403 adcroft 1.1 C-- Zonal flux (fZon is at east face of "u" cell)
404 jmc 1.23 C Mean flow component of zonal flux -> fZon
405     CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
406 adcroft 1.1
407     C-- Meridional flux (fMer is at south face of "u" cell)
408 jmc 1.23 C Mean flow component of meridional flux -> fMer
409     CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
410 adcroft 1.1
411     C-- Vertical flux (fVer is at upper face of "u" cell)
412 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVer
413     CALL MOM_U_ADV_WU(
414     I bi,bj,k+1,uVel,wVel,rTransU,
415 jmc 1.44 O fVerUkp, myThid )
416 jmc 1.40 #endif /* MOM_BOUNDARY_CONSERVE */
417 adcroft 1.1
418     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
419 jmc 1.23 DO j=jMin,jMax
420     DO i=iMin,iMax
421     gU(i,j,k,bi,bj) =
422 adcroft 1.1 #ifdef OLD_UV_GEOM
423 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
424     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
425 adcroft 1.1 #else
426 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
427 jmc 1.39 & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k)
428 adcroft 1.1 #endif
429 jmc 1.44 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
430     & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
431     & +( fVerUkp(i,j) - fVerUkm(i,j) )*rkSign*rVelDudrFac
432 jmc 1.23 & )
433     ENDDO
434     ENDDO
435 adcroft 1.1
436 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
437     IF ( useDiagnostics ) THEN
438 jmc 1.44 CALL DIAGNOSTICS_FILL( fZon, 'ADVx_Um ',k,1,2,bi,bj,myThid)
439     CALL DIAGNOSTICS_FILL( fMer, 'ADVy_Um ',k,1,2,bi,bj,myThid)
440     CALL DIAGNOSTICS_FILL(fVerUkm,'ADVrE_Um',k,1,2,bi,bj,myThid)
441 jmc 1.24 ENDIF
442     #endif
443    
444 jmc 1.8 #ifdef NONLIN_FRSURF
445     C-- account for 3.D divergence of the flow in rStar coordinate:
446 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
447 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
448     DO j=jMin,jMax
449     DO i=iMin,iMax
450     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
451 jmc 1.8 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
452     & *uVel(i,j,k,bi,bj)
453 jmc 1.23 ENDDO
454     ENDDO
455     ENDIF
456     IF ( select_rStar.LT.0 ) THEN
457     DO j=jMin,jMax
458     DO i=iMin,iMax
459     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
460     & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
461     ENDDO
462     ENDDO
463     ENDIF
464 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
465 jmc 1.23 #endif /* NONLIN_FRSURF */
466    
467 jmc 1.43 #ifdef ALLOW_ADDFLUID
468     IF ( selectAddFluid.GE.1 ) THEN
469     DO j=jMin,jMax
470     DO i=iMin,iMax
471     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
472     & + uVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0
473     & *( addMass(i-1,j,k,bi,bj) + addMass(i,j,k,bi,bj) )
474     & *_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k)
475     & * recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)
476     ENDDO
477     ENDDO
478     ENDIF
479     #endif /* ALLOW_ADDFLUID */
480    
481 jmc 1.23 ELSE
482     C- if momAdvection / else
483     DO j=1-OLy,sNy+OLy
484     DO i=1-OLx,sNx+OLx
485     gU(i,j,k,bi,bj) = 0. _d 0
486     ENDDO
487 jmc 1.8 ENDDO
488 jmc 1.23
489     C- endif momAdvection.
490 jmc 1.8 ENDIF
491 jmc 1.23
492     IF (momViscosity) THEN
493     C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
494    
495     C Bi-harmonic term del^2 U -> v4F
496 jmc 1.46 IF ( useBiharmonicVisc )
497 jmc 1.23 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
498    
499     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
500 baylor 1.25 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
501 baylor 1.27 I viscAh_D,viscA4_D,myThid)
502 jmc 1.23
503     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
504 baylor 1.25 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
505 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
506 jmc 1.23
507     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
508     IF (.NOT.implicitViscosity) THEN
509     CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
510     CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
511     ENDIF
512    
513     C-- Tendency is minus divergence of the fluxes
514 jmc 1.39 C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is)
515 jmc 1.23 DO j=jMin,jMax
516     DO i=iMin,iMax
517     guDiss(i,j) =
518     #ifdef OLD_UV_GEOM
519     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
520     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
521     #else
522     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
523 jmc 1.39 & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)
524 jmc 1.23 #endif
525 jmc 1.39 & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
526     & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
527     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
528     & *recip_rhoFacC(k)
529 jmc 1.23 & )
530     ENDDO
531 jmc 1.8 ENDDO
532    
533 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
534     IF ( useDiagnostics ) THEN
535     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
536     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
537     IF (.NOT.implicitViscosity)
538     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
539     ENDIF
540     #endif
541    
542 jmc 1.37 C-- No-slip and drag BCs appear as body forces in cell abutting topography
543 jmc 1.23 IF (no_slip_sides) THEN
544 adcroft 1.1 C- No-slip BCs impose a drag at walls...
545 jmc 1.46 CALL MOM_U_SIDEDRAG( bi, bj, k,
546 baylor 1.27 I uFld, v4f, hFacZ,
547 jmc 1.46 I viscAh_Z, viscA4_Z,
548     I useHarmonicVisc, useBiharmonicVisc, useVariableVisc,
549 baylor 1.27 O vF,
550 jmc 1.46 I myThid )
551 jmc 1.23 DO j=jMin,jMax
552     DO i=iMin,iMax
553     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
554     ENDDO
555     ENDDO
556     ENDIF
557 adcroft 1.1 C- No-slip BCs impose a drag at bottom
558 jmc 1.23 IF (bottomDragTerms) THEN
559     CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
560     DO j=jMin,jMax
561     DO i=iMin,iMax
562     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
563     ENDDO
564     ENDDO
565     ENDIF
566    
567 mlosch 1.32 #ifdef ALLOW_SHELFICE
568     IF (useShelfIce) THEN
569     CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
570     DO j=jMin,jMax
571     DO i=iMin,iMax
572     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
573     ENDDO
574     ENDDO
575     ENDIF
576     #endif /* ALLOW_SHELFICE */
577    
578 jmc 1.23 C- endif momViscosity
579 adcroft 1.1 ENDIF
580    
581 jmc 1.12 C-- Forcing term (moved to timestep.F)
582     c IF (momForcing)
583     c & CALL EXTERNAL_FORCING_U(
584     c I iMin,iMax,jMin,jMax,bi,bj,k,
585     c I myTime,myThid)
586 adcroft 1.1
587     C-- Metric terms for curvilinear grid systems
588 adcroft 1.5 IF (useNHMTerms) THEN
589 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
590 adcroft 1.1 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
591     DO j=jMin,jMax
592     DO i=iMin,iMax
593 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j)
594 adcroft 1.1 ENDDO
595     ENDDO
596 adcroft 1.5 ENDIF
597 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
598     C o Spherical polar grid metric terms
599 adcroft 1.1 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
600     DO j=jMin,jMax
601     DO i=iMin,iMax
602 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
603 adcroft 1.1 ENDDO
604     ENDDO
605 afe 1.20 ENDIF
606 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
607     C o Cylindrical grid metric terms
608     CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
609     DO j=jMin,jMax
610     DO i=iMin,iMax
611     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
612     ENDDO
613 afe 1.19 ENDDO
614 adcroft 1.1 ENDIF
615    
616 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
617 adcroft 1.1
618     C---- Meridional momentum equation starts here
619    
620 jmc 1.23 IF (momAdvection) THEN
621 jmc 1.40
622     #ifdef MOM_BOUNDARY_CONSERVE
623     CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vBnd(1-OLx,1-OLy,k,bi,bj),
624     O fZon,myThid )
625     CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vBnd(1-OLx,1-OLy,k,bi,bj),
626     O fMer,myThid )
627 jmc 1.44 CALL MOM_V_ADV_WV( bi,bj,k+1,vBnd,wVel,rTransV,
628     O fVerVkp, myThid )
629 jmc 1.40 #else /* MOM_BOUNDARY_CONSERVE */
630 jmc 1.23 C--- Calculate mean fluxes (advection) between cells for meridional flow.
631     C Mean flow component of zonal flux -> fZon
632 jmc 1.44 CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vFld,fZon,myThid )
633 adcroft 1.1
634     C-- Meridional flux (fMer is at north face of "v" cell)
635 jmc 1.23 C Mean flow component of meridional flux -> fMer
636 jmc 1.44 CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vFld,fMer,myThid )
637 adcroft 1.1
638     C-- Vertical flux (fVer is at upper face of "v" cell)
639 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVerV
640 jmc 1.44 CALL MOM_V_ADV_WV( bi,bj,k+1,vVel,wVel,rTransV,
641     O fVerVkp, myThid )
642 jmc 1.40 #endif /* MOM_BOUNDARY_CONSERVE */
643 adcroft 1.1
644     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
645 jmc 1.23 DO j=jMin,jMax
646     DO i=iMin,iMax
647     gV(i,j,k,bi,bj) =
648 adcroft 1.1 #ifdef OLD_UV_GEOM
649 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
650     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
651 adcroft 1.1 #else
652 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
653 jmc 1.39 & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k)
654 adcroft 1.1 #endif
655 jmc 1.44 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
656     & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
657     & +( fVerVkp(i,j) - fVerVkm(i,j) )*rkSign*rVelDvdrFac
658 jmc 1.23 & )
659 jmc 1.24 ENDDO
660     ENDDO
661    
662     #ifdef ALLOW_DIAGNOSTICS
663     IF ( useDiagnostics ) THEN
664 jmc 1.44 CALL DIAGNOSTICS_FILL( fZon, 'ADVx_Vm ',k,1,2,bi,bj,myThid)
665     CALL DIAGNOSTICS_FILL( fMer, 'ADVy_Vm ',k,1,2,bi,bj,myThid)
666     CALL DIAGNOSTICS_FILL(fVerVkm,'ADVrE_Vm',k,1,2,bi,bj,myThid)
667 jmc 1.24 ENDIF
668     #endif
669 adcroft 1.1
670 jmc 1.8 #ifdef NONLIN_FRSURF
671     C-- account for 3.D divergence of the flow in rStar coordinate:
672 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
673 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
674     DO j=jMin,jMax
675     DO i=iMin,iMax
676     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
677 jmc 1.8 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
678     & *vVel(i,j,k,bi,bj)
679 jmc 1.23 ENDDO
680     ENDDO
681     ENDIF
682     IF ( select_rStar.LT.0 ) THEN
683     DO j=jMin,jMax
684     DO i=iMin,iMax
685     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
686     & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
687     ENDDO
688     ENDDO
689     ENDIF
690 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
691 jmc 1.23 #endif /* NONLIN_FRSURF */
692    
693 jmc 1.43 #ifdef ALLOW_ADDFLUID
694     IF ( selectAddFluid.GE.1 ) THEN
695     DO j=jMin,jMax
696     DO i=iMin,iMax
697     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
698     & + vVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0
699     & *( addMass(i,j-1,k,bi,bj) + addMass(i,j,k,bi,bj) )
700     & *_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k)
701     & * recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)
702     ENDDO
703     ENDDO
704     ENDIF
705     #endif /* ALLOW_ADDFLUID */
706    
707 jmc 1.23 ELSE
708     C- if momAdvection / else
709     DO j=1-OLy,sNy+OLy
710     DO i=1-OLx,sNx+OLx
711     gV(i,j,k,bi,bj) = 0. _d 0
712     ENDDO
713 jmc 1.8 ENDDO
714 jmc 1.23
715     C- endif momAdvection.
716 jmc 1.8 ENDIF
717 jmc 1.23
718     IF (momViscosity) THEN
719     C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
720     C Bi-harmonic term del^2 V -> v4F
721 jmc 1.46 IF ( useBiharmonicVisc )
722 jmc 1.23 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
723    
724     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
725 baylor 1.25 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
726 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
727 jmc 1.23
728     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
729 baylor 1.25 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
730 baylor 1.27 I viscAh_D,viscA4_D,myThid)
731 jmc 1.23
732     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
733     IF (.NOT.implicitViscosity) THEN
734     CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
735     CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
736     ENDIF
737    
738     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
739 jmc 1.39 C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is)
740 jmc 1.23 DO j=jMin,jMax
741     DO i=iMin,iMax
742     gvDiss(i,j) =
743     #ifdef OLD_UV_GEOM
744     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
745     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
746     #else
747     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
748 jmc 1.39 & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)
749 jmc 1.23 #endif
750 jmc 1.39 & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
751     & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
752     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
753     & *recip_rhoFacC(k)
754 jmc 1.23 & )
755     ENDDO
756 jmc 1.8 ENDDO
757    
758 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
759     IF ( useDiagnostics ) THEN
760     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
761     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
762     IF (.NOT.implicitViscosity)
763     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
764     ENDIF
765     #endif
766    
767 jmc 1.37 C-- No-slip and drag BCs appear as body forces in cell abutting topography
768 mlosch 1.32 IF (no_slip_sides) THEN
769 adcroft 1.1 C- No-slip BCs impose a drag at walls...
770 jmc 1.46 CALL MOM_V_SIDEDRAG( bi, bj, k,
771 baylor 1.27 I vFld, v4f, hFacZ,
772     I viscAh_Z,viscA4_Z,
773 jmc 1.46 I useHarmonicVisc, useBiharmonicVisc, useVariableVisc,
774 baylor 1.27 O vF,
775 jmc 1.46 I myThid )
776 jmc 1.23 DO j=jMin,jMax
777     DO i=iMin,iMax
778     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
779     ENDDO
780     ENDDO
781     ENDIF
782 adcroft 1.1 C- No-slip BCs impose a drag at bottom
783 jmc 1.23 IF (bottomDragTerms) THEN
784     CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
785     DO j=jMin,jMax
786     DO i=iMin,iMax
787     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
788     ENDDO
789     ENDDO
790     ENDIF
791    
792 mlosch 1.32 #ifdef ALLOW_SHELFICE
793     IF (useShelfIce) THEN
794 heimbach 1.45 CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
795 mlosch 1.32 DO j=jMin,jMax
796     DO i=iMin,iMax
797     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
798     ENDDO
799     ENDDO
800     ENDIF
801     #endif /* ALLOW_SHELFICE */
802    
803 jmc 1.23 C- endif momViscosity
804 adcroft 1.1 ENDIF
805    
806 jmc 1.12 C-- Forcing term (moved to timestep.F)
807     c IF (momForcing)
808     c & CALL EXTERNAL_FORCING_V(
809     c I iMin,iMax,jMin,jMax,bi,bj,k,
810     c I myTime,myThid)
811 adcroft 1.1
812     C-- Metric terms for curvilinear grid systems
813 adcroft 1.5 IF (useNHMTerms) THEN
814 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
815 adcroft 1.1 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
816     DO j=jMin,jMax
817     DO i=iMin,iMax
818 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j)
819 adcroft 1.1 ENDDO
820     ENDDO
821 adcroft 1.5 ENDIF
822 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
823     C o Spherical polar grid metric terms
824 adcroft 1.1 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
825     DO j=jMin,jMax
826     DO i=iMin,iMax
827 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
828 adcroft 1.1 ENDDO
829     ENDDO
830     ENDIF
831 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
832     C o Cylindrical grid metric terms
833     CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
834     DO j=jMin,jMax
835     DO i=iMin,iMax
836     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
837     ENDDO
838     ENDDO
839 afe 1.19 ENDIF
840 adcroft 1.1
841 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
842 adcroft 1.1
843     C-- Coriolis term
844     C Note. As coded here, coriolis will not work with "thin walls"
845 jmc 1.12 c IF (useCDscheme) THEN
846     c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
847     c ELSE
848     IF (.NOT.useCDscheme) THEN
849     CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
850     DO j=jMin,jMax
851     DO i=iMin,iMax
852     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
853     ENDDO
854     ENDDO
855 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
856     IF ( useDiagnostics )
857     & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
858     #endif
859 jmc 1.12 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
860     DO j=jMin,jMax
861     DO i=iMin,iMax
862     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
863     ENDDO
864     ENDDO
865 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
866     IF ( useDiagnostics )
867     & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
868     #endif
869 jmc 1.12 ENDIF
870    
871 jmc 1.42 C-- 3.D Coriolis term (horizontal momentum, Eastward component: -fprime*w)
872 jmc 1.37 IF ( use3dCoriolis ) THEN
873 jmc 1.34 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
874     DO j=jMin,jMax
875     DO i=iMin,iMax
876     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
877     ENDDO
878     ENDDO
879     IF ( usingCurvilinearGrid ) THEN
880     C- presently, non zero angleSinC array only supported with Curvilinear-Grid
881     CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
882     DO j=jMin,jMax
883     DO i=iMin,iMax
884     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
885     ENDDO
886 adcroft 1.6 ENDDO
887 jmc 1.34 ENDIF
888 adcroft 1.6 ENDIF
889 adcroft 1.1
890 jmc 1.23 C-- Set du/dt & dv/dt on boundaries to zero
891     DO j=jMin,jMax
892     DO i=iMin,iMax
893     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
894     guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
895     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
896     gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
897     ENDDO
898     ENDDO
899    
900 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
901     IF ( useDiagnostics ) THEN
902 baylor 1.28 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
903 jmc 1.43 CALL DIAGNOSTICS_FILL(gU(1-OLx,1-OLy,k,bi,bj),
904 jmc 1.24 & 'Um_Advec',k,1,2,bi,bj,myThid)
905 jmc 1.43 CALL DIAGNOSTICS_FILL(gV(1-OLx,1-OLy,k,bi,bj),
906 jmc 1.24 & 'Vm_Advec',k,1,2,bi,bj,myThid)
907     IF (momViscosity) THEN
908     CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
909     CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
910     ENDIF
911     ENDIF
912     #endif /* ALLOW_DIAGNOSTICS */
913    
914 adcroft 1.1 RETURN
915     END

  ViewVC Help
Powered by ViewVC 1.1.22