/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.45 - (hide annotations) (download)
Mon Oct 1 15:46:33 2012 UTC (11 years, 7 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint64, checkpoint64i, checkpoint64h, checkpoint64k, checkpoint64j, checkpoint64a, checkpoint64c, checkpoint64b, checkpoint64e, checkpoint64d, checkpoint64g, checkpoint64f
Changes since 1.44: +2 -2 lines
#ifdef ALLOW_SHELFICE
CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRU,vF,myThid)
Bug fix KappaRU -> KappaRV

1 heimbach 1.45 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.44 2012/03/18 22:21:31 jmc Exp $
2 adcroft 1.2 C $Name: $
3 adcroft 1.1
4 adcroft 1.3 CBOI
5     C !TITLE: pkg/mom\_advdiff
6     C !AUTHORS: adcroft@mit.edu
7 adcroft 1.4 C !INTRODUCTION: Flux-form Momentum Equations Package
8 adcroft 1.3 C
9     C Package "mom\_fluxform" provides methods for calculating explicit terms
10     C in the momentum equation cast in flux-form:
11     C \begin{eqnarray*}
12     C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13     C -\nabla \cdot {\bf v} u
14     C -fv
15     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16     C + \mbox{metrics}
17     C \\
18     C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19     C -\nabla \cdot {\bf v} v
20     C +fu
21     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22     C + \mbox{metrics}
23     C \end{eqnarray*}
24     C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25     C stresses as well as internal viscous stresses.
26     CEOI
27    
28 edhill 1.13 #include "MOM_FLUXFORM_OPTIONS.h"
29 adcroft 1.1
30 adcroft 1.3 CBOP
31     C !ROUTINE: MOM_FLUXFORM
32    
33     C !INTERFACE: ==========================================================
34 jmc 1.37 SUBROUTINE MOM_FLUXFORM(
35 jmc 1.44 I bi,bj,k,iMin,iMax,jMin,jMax,
36 jmc 1.23 I KappaRU, KappaRV,
37 jmc 1.44 U fVerUkm, fVerVkm,
38     O fVerUkp, fVerVkp,
39 jmc 1.23 O guDiss, gvDiss,
40 jmc 1.44 I myTime, myIter, myThid )
41 adcroft 1.3
42     C !DESCRIPTION:
43     C Calculates all the horizontal accelerations except for the implicit surface
44 jmc 1.39 C pressure gradient and implicit vertical viscosity.
45 adcroft 1.1
46 adcroft 1.3 C !USES: ===============================================================
47 adcroft 1.1 C == Global variables ==
48 adcroft 1.3 IMPLICIT NONE
49 adcroft 1.1 #include "SIZE.h"
50     #include "DYNVARS.h"
51     #include "FFIELDS.h"
52     #include "EEPARAMS.h"
53     #include "PARAMS.h"
54     #include "GRID.h"
55     #include "SURFACE.h"
56 jmc 1.37 #ifdef ALLOW_AUTODIFF_TAMC
57 heimbach 1.35 # include "tamc.h"
58     # include "tamc_keys.h"
59     # include "MOM_FLUXFORM.h"
60     #endif
61 adcroft 1.1
62 adcroft 1.3 C !INPUT PARAMETERS: ===================================================
63 jmc 1.44 C bi,bj :: current tile indices
64     C k :: current vertical level
65     C iMin,iMax,jMin,jMax :: loop ranges
66 adcroft 1.3 C KappaRU :: vertical viscosity
67     C KappaRV :: vertical viscosity
68 jmc 1.44 C fVerUkm :: vertical advective flux of U, interface above (k-1/2)
69     C fVerVkm :: vertical advective flux of V, interface above (k-1/2)
70     C fVerUkp :: vertical advective flux of U, interface below (k+1/2)
71     C fVerVkp :: vertical advective flux of V, interface below (k+1/2)
72 jmc 1.23 C guDiss :: dissipation tendency (all explicit terms), u component
73     C gvDiss :: dissipation tendency (all explicit terms), v component
74 jmc 1.8 C myTime :: current time
75 adcroft 1.3 C myIter :: current time-step number
76 jmc 1.44 C myThid :: my Thread Id number
77     INTEGER bi,bj,k
78     INTEGER iMin,iMax,jMin,jMax
79 adcroft 1.1 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
80     _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
81 jmc 1.44 _RL fVerUkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82     _RL fVerVkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83     _RL fVerUkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84     _RL fVerVkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 jmc 1.23 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86     _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 jmc 1.8 _RL myTime
88 adcroft 1.2 INTEGER myIter
89 adcroft 1.1 INTEGER myThid
90    
91 adcroft 1.3 C !OUTPUT PARAMETERS: ==================================================
92     C None - updates gU() and gV() in common blocks
93    
94     C !LOCAL VARIABLES: ====================================================
95     C i,j :: loop indices
96     C vF :: viscous flux
97     C v4F :: bi-harmonic viscous flux
98     C cF :: Coriolis acceleration
99     C mT :: Metric terms
100     C fZon :: zonal fluxes
101     C fMer :: meridional fluxes
102 jmc 1.44 C fVrUp,fVrDw :: vertical viscous fluxes at interface k & k+1
103 adcroft 1.3 INTEGER i,j
104 jmc 1.37 #ifdef ALLOW_AUTODIFF_TAMC
105 heimbach 1.35 INTEGER imomkey
106     #endif
107 adcroft 1.3 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108     _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109     _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110     _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111     _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112     _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113 jmc 1.23 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114     _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 jmc 1.33 C afFacMom :: Tracer parameters for turning terms on and off.
116 jmc 1.37 C vfFacMom
117     C pfFacMom afFacMom - Advective terms
118 adcroft 1.1 C cfFacMom vfFacMom - Eddy viscosity terms
119 jmc 1.33 C mtFacMom pfFacMom - Pressure terms
120 adcroft 1.1 C cfFacMom - Coriolis terms
121     C foFacMom - Forcing
122 jmc 1.33 C mtFacMom - Metric term
123 jmc 1.23 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
124 adcroft 1.1 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125     _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126     _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127     _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130     _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131     _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 jmc 1.8 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
133     _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
134 adcroft 1.18 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
135 baylor 1.25 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
136     _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
137     _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
138     _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
139     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
140     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
141 adcroft 1.18 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
142     _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
143 adcroft 1.1 _RL uDudxFac
144     _RL AhDudxFac
145     _RL vDudyFac
146     _RL AhDudyFac
147     _RL rVelDudrFac
148     _RL ArDudrFac
149     _RL fuFac
150     _RL mtFacU
151 jmc 1.33 _RL mtNHFacU
152 adcroft 1.1 _RL uDvdxFac
153     _RL AhDvdxFac
154     _RL vDvdyFac
155     _RL AhDvdyFac
156     _RL rVelDvdrFac
157     _RL ArDvdrFac
158     _RL fvFac
159     _RL mtFacV
160 jmc 1.33 _RL mtNHFacV
161 jmc 1.29 _RL sideMaskFac
162 baylor 1.25 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
163 adcroft 1.3 CEOP
164 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
165     COMMON / MOM_FLUXFORM_LOCAL / uBnd, vBnd
166     _RL uBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
167     _RL vBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
168     #endif /* MOM_BOUNDARY_CONSERVE */
169 adcroft 1.1
170 heimbach 1.35 #ifdef ALLOW_AUTODIFF_TAMC
171     act0 = k - 1
172     max0 = Nr
173     act1 = bi - myBxLo(myThid)
174     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
175     act2 = bj - myByLo(myThid)
176     max2 = myByHi(myThid) - myByLo(myThid) + 1
177     act3 = myThid - 1
178     max3 = nTx*nTy
179     act4 = ikey_dynamics - 1
180 jmc 1.37 imomkey = (act0 + 1)
181 heimbach 1.35 & + act1*max0
182     & + act2*max0*max1
183     & + act3*max0*max1*max2
184     & + act4*max0*max1*max2*max3
185     #endif /* ALLOW_AUTODIFF_TAMC */
186    
187 adcroft 1.1 C Initialise intermediate terms
188 jmc 1.23 DO j=1-OLy,sNy+OLy
189     DO i=1-OLx,sNx+OLx
190 adcroft 1.1 vF(i,j) = 0.
191     v4F(i,j) = 0.
192     cF(i,j) = 0.
193     mT(i,j) = 0.
194     fZon(i,j) = 0.
195     fMer(i,j) = 0.
196 jmc 1.23 fVrUp(i,j)= 0.
197     fVrDw(i,j)= 0.
198     rTransU(i,j)= 0.
199     rTransV(i,j)= 0.
200 jmc 1.38 c KE(i,j) = 0.
201 heimbach 1.41 hDiv(i,j) = 0.
202 jmc 1.38 vort3(i,j) = 0.
203 adcroft 1.18 strain(i,j) = 0.
204 jmc 1.23 tension(i,j)= 0.
205     guDiss(i,j) = 0.
206     gvDiss(i,j) = 0.
207 adcroft 1.1 ENDDO
208     ENDDO
209    
210     C-- Term by term tracer parmeters
211     C o U momentum equation
212     uDudxFac = afFacMom*1.
213     AhDudxFac = vfFacMom*1.
214     vDudyFac = afFacMom*1.
215     AhDudyFac = vfFacMom*1.
216     rVelDudrFac = afFacMom*1.
217     ArDudrFac = vfFacMom*1.
218 jmc 1.33 mtFacU = mtFacMom*1.
219     mtNHFacU = 1.
220 adcroft 1.1 fuFac = cfFacMom*1.
221     C o V momentum equation
222     uDvdxFac = afFacMom*1.
223     AhDvdxFac = vfFacMom*1.
224     vDvdyFac = afFacMom*1.
225     AhDvdyFac = vfFacMom*1.
226     rVelDvdrFac = afFacMom*1.
227     ArDvdrFac = vfFacMom*1.
228 jmc 1.33 mtFacV = mtFacMom*1.
229     mtNHFacV = 1.
230 adcroft 1.1 fvFac = cfFacMom*1.
231 jmc 1.23
232     IF (implicitViscosity) THEN
233     ArDudrFac = 0.
234     ArDvdrFac = 0.
235     ENDIF
236 adcroft 1.1
237 jmc 1.29 C note: using standard stencil (no mask) results in under-estimating
238     C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
239     IF ( no_slip_sides ) THEN
240     sideMaskFac = sideDragFactor
241     ELSE
242     sideMaskFac = 0. _d 0
243     ENDIF
244    
245 adcroft 1.1 IF ( no_slip_bottom
246     & .OR. bottomDragQuadratic.NE.0.
247     & .OR. bottomDragLinear.NE.0.) THEN
248     bottomDragTerms=.TRUE.
249     ELSE
250     bottomDragTerms=.FALSE.
251     ENDIF
252    
253     C-- Calculate open water fraction at vorticity points
254     CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
255    
256     C---- Calculate common quantities used in both U and V equations
257     C Calculate tracer cell face open areas
258     DO j=1-OLy,sNy+OLy
259     DO i=1-OLx,sNx+OLx
260 jmc 1.39 xA(i,j) = _dyG(i,j,bi,bj)*deepFacC(k)
261     & *drF(k)*_hFacW(i,j,k,bi,bj)
262     yA(i,j) = _dxG(i,j,bi,bj)*deepFacC(k)
263     & *drF(k)*_hFacS(i,j,k,bi,bj)
264 adcroft 1.1 ENDDO
265     ENDDO
266    
267     C Make local copies of horizontal flow field
268     DO j=1-OLy,sNy+OLy
269     DO i=1-OLx,sNx+OLx
270     uFld(i,j) = uVel(i,j,k,bi,bj)
271     vFld(i,j) = vVel(i,j,k,bi,bj)
272     ENDDO
273     ENDDO
274    
275     C Calculate velocity field "volume transports" through tracer cell faces.
276 jmc 1.39 C anelastic: transports are scaled by rhoFacC (~ mass transport)
277 adcroft 1.1 DO j=1-OLy,sNy+OLy
278     DO i=1-OLx,sNx+OLx
279 jmc 1.39 uTrans(i,j) = uFld(i,j)*xA(i,j)*rhoFacC(k)
280     vTrans(i,j) = vFld(i,j)*yA(i,j)*rhoFacC(k)
281 adcroft 1.1 ENDDO
282     ENDDO
283    
284 baylor 1.25 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
285 jmc 1.29 IF ( momViscosity) THEN
286     CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
287     CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
288     CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
289     CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
290 jmc 1.43 DO j=1-OLy,sNy+OLy
291     DO i=1-OLx,sNx+OLx
292 jmc 1.29 IF ( hFacZ(i,j).EQ.0. ) THEN
293     vort3(i,j) = sideMaskFac*vort3(i,j)
294     strain(i,j) = sideMaskFac*strain(i,j)
295     ENDIF
296     ENDDO
297     ENDDO
298     #ifdef ALLOW_DIAGNOSTICS
299     IF ( useDiagnostics ) THEN
300     CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
301     CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
302     CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
303     CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
304     ENDIF
305     #endif
306     ENDIF
307 adcroft 1.18
308 jmc 1.44 C--- First call (k=1): compute vertical adv. flux fVerUkm & fVerVkm
309 jmc 1.8 IF (momAdvection.AND.k.EQ.1) THEN
310    
311 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
312     CALL MOM_UV_BOUNDARY( bi, bj, k,
313     I uVel, vVel,
314     O uBnd(1-OLx,1-OLy,k,bi,bj),
315     O vBnd(1-OLx,1-OLy,k,bi,bj),
316     I myTime, myIter, myThid )
317     #endif /* MOM_BOUNDARY_CONSERVE */
318    
319 jmc 1.8 C- Calculate vertical transports above U & V points (West & South face):
320 heimbach 1.35
321     #ifdef ALLOW_AUTODIFF_TAMC
322 heimbach 1.36 # ifdef NONLIN_FRSURF
323     # ifndef DISABLE_RSTAR_CODE
324 jmc 1.39 CADJ STORE dwtransc(:,:,bi,bj) =
325 heimbach 1.35 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
326 jmc 1.39 CADJ STORE dwtransu(:,:,bi,bj) =
327 heimbach 1.35 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
328 jmc 1.39 CADJ STORE dwtransv(:,:,bi,bj) =
329 heimbach 1.35 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
330 heimbach 1.36 # endif
331     # endif /* NONLIN_FRSURF */
332 heimbach 1.35 #endif /* ALLOW_AUTODIFF_TAMC */
333 jmc 1.23 CALL MOM_CALC_RTRANS( k, bi, bj,
334     O rTransU, rTransV,
335     I myTime, myIter, myThid)
336 jmc 1.8
337     C- Free surface correction term (flux at k=1)
338 jmc 1.23 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
339 jmc 1.44 O fVerUkm, myThid )
340 jmc 1.8
341 jmc 1.23 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
342 jmc 1.44 O fVerVkm, myThid )
343 jmc 1.8
344     C--- endif momAdvection & k=1
345     ENDIF
346    
347    
348     C--- Calculate vertical transports (at k+1) below U & V points :
349     IF (momAdvection) THEN
350 jmc 1.23 CALL MOM_CALC_RTRANS( k+1, bi, bj,
351     O rTransU, rTransV,
352     I myTime, myIter, myThid)
353 jmc 1.8 ENDIF
354    
355 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
356     IF ( momAdvection .AND. k.LT.Nr ) THEN
357     CALL MOM_UV_BOUNDARY( bi, bj, k+1,
358     I uVel, vVel,
359     O uBnd(1-OLx,1-OLy,k+1,bi,bj),
360     O vBnd(1-OLx,1-OLy,k+1,bi,bj),
361     I myTime, myIter, myThid )
362     ENDIF
363     #endif /* MOM_BOUNDARY_CONSERVE */
364    
365 baylor 1.25 IF (momViscosity) THEN
366     CALL MOM_CALC_VISC(
367     I bi,bj,k,
368     O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
369     O harmonic,biharmonic,useVariableViscosity,
370 jmc 1.26 I hDiv,vort3,tension,strain,KE,hFacZ,
371 baylor 1.25 I myThid)
372     ENDIF
373 jmc 1.8
374 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
375    
376 adcroft 1.1 C---- Zonal momentum equation starts here
377    
378 jmc 1.23 IF (momAdvection) THEN
379     C--- Calculate mean fluxes (advection) between cells for zonal flow.
380 adcroft 1.1
381 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
382     CALL MOM_U_ADV_UU( bi,bj,k,uTrans,uBnd(1-OLx,1-OLy,k,bi,bj),
383     O fZon,myThid )
384     CALL MOM_U_ADV_VU( bi,bj,k,vTrans,uBnd(1-OLx,1-OLy,k,bi,bj),
385     O fMer,myThid )
386     CALL MOM_U_ADV_WU(
387     I bi,bj,k+1,uBnd,wVel,rTransU,
388 jmc 1.44 O fVerUkp, myThid )
389 jmc 1.40 #else /* MOM_BOUNDARY_CONSERVE */
390 adcroft 1.1 C-- Zonal flux (fZon is at east face of "u" cell)
391 jmc 1.23 C Mean flow component of zonal flux -> fZon
392     CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
393 adcroft 1.1
394     C-- Meridional flux (fMer is at south face of "u" cell)
395 jmc 1.23 C Mean flow component of meridional flux -> fMer
396     CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
397 adcroft 1.1
398     C-- Vertical flux (fVer is at upper face of "u" cell)
399 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVer
400     CALL MOM_U_ADV_WU(
401     I bi,bj,k+1,uVel,wVel,rTransU,
402 jmc 1.44 O fVerUkp, myThid )
403 jmc 1.40 #endif /* MOM_BOUNDARY_CONSERVE */
404 adcroft 1.1
405     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
406 jmc 1.23 DO j=jMin,jMax
407     DO i=iMin,iMax
408     gU(i,j,k,bi,bj) =
409 adcroft 1.1 #ifdef OLD_UV_GEOM
410 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
411     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
412 adcroft 1.1 #else
413 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
414 jmc 1.39 & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k)
415 adcroft 1.1 #endif
416 jmc 1.44 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
417     & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
418     & +( fVerUkp(i,j) - fVerUkm(i,j) )*rkSign*rVelDudrFac
419 jmc 1.23 & )
420     ENDDO
421     ENDDO
422 adcroft 1.1
423 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
424     IF ( useDiagnostics ) THEN
425 jmc 1.44 CALL DIAGNOSTICS_FILL( fZon, 'ADVx_Um ',k,1,2,bi,bj,myThid)
426     CALL DIAGNOSTICS_FILL( fMer, 'ADVy_Um ',k,1,2,bi,bj,myThid)
427     CALL DIAGNOSTICS_FILL(fVerUkm,'ADVrE_Um',k,1,2,bi,bj,myThid)
428 jmc 1.24 ENDIF
429     #endif
430    
431 jmc 1.8 #ifdef NONLIN_FRSURF
432     C-- account for 3.D divergence of the flow in rStar coordinate:
433 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
434 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
435     DO j=jMin,jMax
436     DO i=iMin,iMax
437     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
438 jmc 1.8 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
439     & *uVel(i,j,k,bi,bj)
440 jmc 1.23 ENDDO
441     ENDDO
442     ENDIF
443     IF ( select_rStar.LT.0 ) THEN
444     DO j=jMin,jMax
445     DO i=iMin,iMax
446     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
447     & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
448     ENDDO
449     ENDDO
450     ENDIF
451 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
452 jmc 1.23 #endif /* NONLIN_FRSURF */
453    
454 jmc 1.43 #ifdef ALLOW_ADDFLUID
455     IF ( selectAddFluid.GE.1 ) THEN
456     DO j=jMin,jMax
457     DO i=iMin,iMax
458     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
459     & + uVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0
460     & *( addMass(i-1,j,k,bi,bj) + addMass(i,j,k,bi,bj) )
461     & *_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k)
462     & * recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)
463     ENDDO
464     ENDDO
465     ENDIF
466     #endif /* ALLOW_ADDFLUID */
467    
468 jmc 1.23 ELSE
469     C- if momAdvection / else
470     DO j=1-OLy,sNy+OLy
471     DO i=1-OLx,sNx+OLx
472     gU(i,j,k,bi,bj) = 0. _d 0
473     ENDDO
474 jmc 1.8 ENDDO
475 jmc 1.23
476     C- endif momAdvection.
477 jmc 1.8 ENDIF
478 jmc 1.23
479     IF (momViscosity) THEN
480     C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
481    
482     C Bi-harmonic term del^2 U -> v4F
483 jmc 1.37 IF (biharmonic)
484 jmc 1.23 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
485    
486     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
487 baylor 1.25 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
488 baylor 1.27 I viscAh_D,viscA4_D,myThid)
489 jmc 1.23
490     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
491 baylor 1.25 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
492 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
493 jmc 1.23
494     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
495     IF (.NOT.implicitViscosity) THEN
496     CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
497     CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
498     ENDIF
499    
500     C-- Tendency is minus divergence of the fluxes
501 jmc 1.39 C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is)
502 jmc 1.23 DO j=jMin,jMax
503     DO i=iMin,iMax
504     guDiss(i,j) =
505     #ifdef OLD_UV_GEOM
506     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
507     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
508     #else
509     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
510 jmc 1.39 & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)
511 jmc 1.23 #endif
512 jmc 1.39 & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
513     & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
514     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
515     & *recip_rhoFacC(k)
516 jmc 1.23 & )
517     ENDDO
518 jmc 1.8 ENDDO
519    
520 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
521     IF ( useDiagnostics ) THEN
522     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
523     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
524     IF (.NOT.implicitViscosity)
525     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
526     ENDIF
527     #endif
528    
529 jmc 1.37 C-- No-slip and drag BCs appear as body forces in cell abutting topography
530 jmc 1.23 IF (no_slip_sides) THEN
531 adcroft 1.1 C- No-slip BCs impose a drag at walls...
532 baylor 1.27 CALL MOM_U_SIDEDRAG(
533     I bi,bj,k,
534     I uFld, v4f, hFacZ,
535     I viscAh_Z,viscA4_Z,
536     I harmonic,biharmonic,useVariableViscosity,
537     O vF,
538     I myThid)
539 jmc 1.23 DO j=jMin,jMax
540     DO i=iMin,iMax
541     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
542     ENDDO
543     ENDDO
544     ENDIF
545 adcroft 1.1 C- No-slip BCs impose a drag at bottom
546 jmc 1.23 IF (bottomDragTerms) THEN
547     CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
548     DO j=jMin,jMax
549     DO i=iMin,iMax
550     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
551     ENDDO
552     ENDDO
553     ENDIF
554    
555 mlosch 1.32 #ifdef ALLOW_SHELFICE
556     IF (useShelfIce) THEN
557     CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
558     DO j=jMin,jMax
559     DO i=iMin,iMax
560     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
561     ENDDO
562     ENDDO
563     ENDIF
564     #endif /* ALLOW_SHELFICE */
565    
566 jmc 1.23 C- endif momViscosity
567 adcroft 1.1 ENDIF
568    
569 jmc 1.12 C-- Forcing term (moved to timestep.F)
570     c IF (momForcing)
571     c & CALL EXTERNAL_FORCING_U(
572     c I iMin,iMax,jMin,jMax,bi,bj,k,
573     c I myTime,myThid)
574 adcroft 1.1
575     C-- Metric terms for curvilinear grid systems
576 adcroft 1.5 IF (useNHMTerms) THEN
577 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
578 adcroft 1.1 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
579     DO j=jMin,jMax
580     DO i=iMin,iMax
581 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j)
582 adcroft 1.1 ENDDO
583     ENDDO
584 adcroft 1.5 ENDIF
585 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
586     C o Spherical polar grid metric terms
587 adcroft 1.1 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
588     DO j=jMin,jMax
589     DO i=iMin,iMax
590 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
591 adcroft 1.1 ENDDO
592     ENDDO
593 afe 1.20 ENDIF
594 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
595     C o Cylindrical grid metric terms
596     CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
597     DO j=jMin,jMax
598     DO i=iMin,iMax
599     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
600     ENDDO
601 afe 1.19 ENDDO
602 adcroft 1.1 ENDIF
603    
604 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
605 adcroft 1.1
606     C---- Meridional momentum equation starts here
607    
608 jmc 1.23 IF (momAdvection) THEN
609 jmc 1.40
610     #ifdef MOM_BOUNDARY_CONSERVE
611     CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vBnd(1-OLx,1-OLy,k,bi,bj),
612     O fZon,myThid )
613     CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vBnd(1-OLx,1-OLy,k,bi,bj),
614     O fMer,myThid )
615 jmc 1.44 CALL MOM_V_ADV_WV( bi,bj,k+1,vBnd,wVel,rTransV,
616     O fVerVkp, myThid )
617 jmc 1.40 #else /* MOM_BOUNDARY_CONSERVE */
618 jmc 1.23 C--- Calculate mean fluxes (advection) between cells for meridional flow.
619     C Mean flow component of zonal flux -> fZon
620 jmc 1.44 CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vFld,fZon,myThid )
621 adcroft 1.1
622     C-- Meridional flux (fMer is at north face of "v" cell)
623 jmc 1.23 C Mean flow component of meridional flux -> fMer
624 jmc 1.44 CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vFld,fMer,myThid )
625 adcroft 1.1
626     C-- Vertical flux (fVer is at upper face of "v" cell)
627 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVerV
628 jmc 1.44 CALL MOM_V_ADV_WV( bi,bj,k+1,vVel,wVel,rTransV,
629     O fVerVkp, myThid )
630 jmc 1.40 #endif /* MOM_BOUNDARY_CONSERVE */
631 adcroft 1.1
632     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
633 jmc 1.23 DO j=jMin,jMax
634     DO i=iMin,iMax
635     gV(i,j,k,bi,bj) =
636 adcroft 1.1 #ifdef OLD_UV_GEOM
637 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
638     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
639 adcroft 1.1 #else
640 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
641 jmc 1.39 & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k)
642 adcroft 1.1 #endif
643 jmc 1.44 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
644     & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
645     & +( fVerVkp(i,j) - fVerVkm(i,j) )*rkSign*rVelDvdrFac
646 jmc 1.23 & )
647 jmc 1.24 ENDDO
648     ENDDO
649    
650     #ifdef ALLOW_DIAGNOSTICS
651     IF ( useDiagnostics ) THEN
652 jmc 1.44 CALL DIAGNOSTICS_FILL( fZon, 'ADVx_Vm ',k,1,2,bi,bj,myThid)
653     CALL DIAGNOSTICS_FILL( fMer, 'ADVy_Vm ',k,1,2,bi,bj,myThid)
654     CALL DIAGNOSTICS_FILL(fVerVkm,'ADVrE_Vm',k,1,2,bi,bj,myThid)
655 jmc 1.24 ENDIF
656     #endif
657 adcroft 1.1
658 jmc 1.8 #ifdef NONLIN_FRSURF
659     C-- account for 3.D divergence of the flow in rStar coordinate:
660 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
661 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
662     DO j=jMin,jMax
663     DO i=iMin,iMax
664     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
665 jmc 1.8 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
666     & *vVel(i,j,k,bi,bj)
667 jmc 1.23 ENDDO
668     ENDDO
669     ENDIF
670     IF ( select_rStar.LT.0 ) THEN
671     DO j=jMin,jMax
672     DO i=iMin,iMax
673     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
674     & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
675     ENDDO
676     ENDDO
677     ENDIF
678 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
679 jmc 1.23 #endif /* NONLIN_FRSURF */
680    
681 jmc 1.43 #ifdef ALLOW_ADDFLUID
682     IF ( selectAddFluid.GE.1 ) THEN
683     DO j=jMin,jMax
684     DO i=iMin,iMax
685     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
686     & + vVel(i,j,k,bi,bj)*mass2rUnit*0.5 _d 0
687     & *( addMass(i,j-1,k,bi,bj) + addMass(i,j,k,bi,bj) )
688     & *_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)*recip_rhoFacC(k)
689     & * recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)
690     ENDDO
691     ENDDO
692     ENDIF
693     #endif /* ALLOW_ADDFLUID */
694    
695 jmc 1.23 ELSE
696     C- if momAdvection / else
697     DO j=1-OLy,sNy+OLy
698     DO i=1-OLx,sNx+OLx
699     gV(i,j,k,bi,bj) = 0. _d 0
700     ENDDO
701 jmc 1.8 ENDDO
702 jmc 1.23
703     C- endif momAdvection.
704 jmc 1.8 ENDIF
705 jmc 1.23
706     IF (momViscosity) THEN
707     C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
708     C Bi-harmonic term del^2 V -> v4F
709 jmc 1.37 IF (biharmonic)
710 jmc 1.23 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
711    
712     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
713 baylor 1.25 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
714 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
715 jmc 1.23
716     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
717 baylor 1.25 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
718 baylor 1.27 I viscAh_D,viscA4_D,myThid)
719 jmc 1.23
720     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
721     IF (.NOT.implicitViscosity) THEN
722     CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
723     CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
724     ENDIF
725    
726     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
727 jmc 1.39 C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is)
728 jmc 1.23 DO j=jMin,jMax
729     DO i=iMin,iMax
730     gvDiss(i,j) =
731     #ifdef OLD_UV_GEOM
732     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
733     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
734     #else
735     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
736 jmc 1.39 & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)
737 jmc 1.23 #endif
738 jmc 1.39 & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
739     & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
740     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
741     & *recip_rhoFacC(k)
742 jmc 1.23 & )
743     ENDDO
744 jmc 1.8 ENDDO
745    
746 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
747     IF ( useDiagnostics ) THEN
748     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
749     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
750     IF (.NOT.implicitViscosity)
751     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
752     ENDIF
753     #endif
754    
755 jmc 1.37 C-- No-slip and drag BCs appear as body forces in cell abutting topography
756 mlosch 1.32 IF (no_slip_sides) THEN
757 adcroft 1.1 C- No-slip BCs impose a drag at walls...
758 baylor 1.27 CALL MOM_V_SIDEDRAG(
759     I bi,bj,k,
760     I vFld, v4f, hFacZ,
761     I viscAh_Z,viscA4_Z,
762     I harmonic,biharmonic,useVariableViscosity,
763     O vF,
764     I myThid)
765 jmc 1.23 DO j=jMin,jMax
766     DO i=iMin,iMax
767     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
768     ENDDO
769     ENDDO
770     ENDIF
771 adcroft 1.1 C- No-slip BCs impose a drag at bottom
772 jmc 1.23 IF (bottomDragTerms) THEN
773     CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
774     DO j=jMin,jMax
775     DO i=iMin,iMax
776     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
777     ENDDO
778     ENDDO
779     ENDIF
780    
781 mlosch 1.32 #ifdef ALLOW_SHELFICE
782     IF (useShelfIce) THEN
783 heimbach 1.45 CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
784 mlosch 1.32 DO j=jMin,jMax
785     DO i=iMin,iMax
786     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
787     ENDDO
788     ENDDO
789     ENDIF
790     #endif /* ALLOW_SHELFICE */
791    
792 jmc 1.23 C- endif momViscosity
793 adcroft 1.1 ENDIF
794    
795 jmc 1.12 C-- Forcing term (moved to timestep.F)
796     c IF (momForcing)
797     c & CALL EXTERNAL_FORCING_V(
798     c I iMin,iMax,jMin,jMax,bi,bj,k,
799     c I myTime,myThid)
800 adcroft 1.1
801     C-- Metric terms for curvilinear grid systems
802 adcroft 1.5 IF (useNHMTerms) THEN
803 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
804 adcroft 1.1 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
805     DO j=jMin,jMax
806     DO i=iMin,iMax
807 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j)
808 adcroft 1.1 ENDDO
809     ENDDO
810 adcroft 1.5 ENDIF
811 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
812     C o Spherical polar grid metric terms
813 adcroft 1.1 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
814     DO j=jMin,jMax
815     DO i=iMin,iMax
816 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
817 adcroft 1.1 ENDDO
818     ENDDO
819     ENDIF
820 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
821     C o Cylindrical grid metric terms
822     CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
823     DO j=jMin,jMax
824     DO i=iMin,iMax
825     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
826     ENDDO
827     ENDDO
828 afe 1.19 ENDIF
829 adcroft 1.1
830 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
831 adcroft 1.1
832     C-- Coriolis term
833     C Note. As coded here, coriolis will not work with "thin walls"
834 jmc 1.12 c IF (useCDscheme) THEN
835     c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
836     c ELSE
837     IF (.NOT.useCDscheme) THEN
838     CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
839     DO j=jMin,jMax
840     DO i=iMin,iMax
841     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
842     ENDDO
843     ENDDO
844 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
845     IF ( useDiagnostics )
846     & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
847     #endif
848 jmc 1.12 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
849     DO j=jMin,jMax
850     DO i=iMin,iMax
851     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
852     ENDDO
853     ENDDO
854 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
855     IF ( useDiagnostics )
856     & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
857     #endif
858 jmc 1.12 ENDIF
859    
860 jmc 1.42 C-- 3.D Coriolis term (horizontal momentum, Eastward component: -fprime*w)
861 jmc 1.37 IF ( use3dCoriolis ) THEN
862 jmc 1.34 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
863     DO j=jMin,jMax
864     DO i=iMin,iMax
865     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
866     ENDDO
867     ENDDO
868     IF ( usingCurvilinearGrid ) THEN
869     C- presently, non zero angleSinC array only supported with Curvilinear-Grid
870     CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
871     DO j=jMin,jMax
872     DO i=iMin,iMax
873     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
874     ENDDO
875 adcroft 1.6 ENDDO
876 jmc 1.34 ENDIF
877 adcroft 1.6 ENDIF
878 adcroft 1.1
879 jmc 1.23 C-- Set du/dt & dv/dt on boundaries to zero
880     DO j=jMin,jMax
881     DO i=iMin,iMax
882     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
883     guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
884     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
885     gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
886     ENDDO
887     ENDDO
888    
889 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
890     IF ( useDiagnostics ) THEN
891 baylor 1.28 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
892 jmc 1.43 CALL DIAGNOSTICS_FILL(gU(1-OLx,1-OLy,k,bi,bj),
893 jmc 1.24 & 'Um_Advec',k,1,2,bi,bj,myThid)
894 jmc 1.43 CALL DIAGNOSTICS_FILL(gV(1-OLx,1-OLy,k,bi,bj),
895 jmc 1.24 & 'Vm_Advec',k,1,2,bi,bj,myThid)
896     IF (momViscosity) THEN
897     CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
898     CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
899     ENDIF
900     ENDIF
901     #endif /* ALLOW_DIAGNOSTICS */
902    
903 adcroft 1.1 RETURN
904     END

  ViewVC Help
Powered by ViewVC 1.1.22