/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.40 - (hide annotations) (download)
Sun Oct 28 21:38:21 2007 UTC (16 years, 6 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint59p, checkpoint59m, checkpoint59l, checkpoint59o, checkpoint59n, checkpoint59k, checkpoint59j
Changes since 1.39: +45 -1 lines
Special version of momentum advection intended to conserve momentum
next to a bathymetry step or a coastline edge.

1 jmc 1.40 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.39 2006/12/05 05:30:38 jmc Exp $
2 adcroft 1.2 C $Name: $
3 adcroft 1.1
4 adcroft 1.3 CBOI
5     C !TITLE: pkg/mom\_advdiff
6     C !AUTHORS: adcroft@mit.edu
7 adcroft 1.4 C !INTRODUCTION: Flux-form Momentum Equations Package
8 adcroft 1.3 C
9     C Package "mom\_fluxform" provides methods for calculating explicit terms
10     C in the momentum equation cast in flux-form:
11     C \begin{eqnarray*}
12     C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13     C -\nabla \cdot {\bf v} u
14     C -fv
15     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16     C + \mbox{metrics}
17     C \\
18     C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19     C -\nabla \cdot {\bf v} v
20     C +fu
21     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22     C + \mbox{metrics}
23     C \end{eqnarray*}
24     C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25     C stresses as well as internal viscous stresses.
26     CEOI
27    
28 edhill 1.13 #include "MOM_FLUXFORM_OPTIONS.h"
29 adcroft 1.1
30 adcroft 1.3 CBOP
31     C !ROUTINE: MOM_FLUXFORM
32    
33     C !INTERFACE: ==========================================================
34 jmc 1.37 SUBROUTINE MOM_FLUXFORM(
35 adcroft 1.1 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 jmc 1.23 I KappaRU, KappaRV,
37 adcroft 1.1 U fVerU, fVerV,
38 jmc 1.23 O guDiss, gvDiss,
39     I myTime, myIter, myThid)
40 adcroft 1.3
41     C !DESCRIPTION:
42     C Calculates all the horizontal accelerations except for the implicit surface
43 jmc 1.39 C pressure gradient and implicit vertical viscosity.
44 adcroft 1.1
45 adcroft 1.3 C !USES: ===============================================================
46 adcroft 1.1 C == Global variables ==
47 adcroft 1.3 IMPLICIT NONE
48 adcroft 1.1 #include "SIZE.h"
49     #include "DYNVARS.h"
50     #include "FFIELDS.h"
51     #include "EEPARAMS.h"
52     #include "PARAMS.h"
53     #include "GRID.h"
54     #include "SURFACE.h"
55 jmc 1.37 #ifdef ALLOW_AUTODIFF_TAMC
56 heimbach 1.35 # include "tamc.h"
57     # include "tamc_keys.h"
58     # include "MOM_FLUXFORM.h"
59     #endif
60 adcroft 1.1
61 adcroft 1.3 C !INPUT PARAMETERS: ===================================================
62     C bi,bj :: tile indices
63     C iMin,iMax,jMin,jMAx :: loop ranges
64     C k :: vertical level
65     C kUp :: =1 or 2 for consecutive k
66     C kDown :: =2 or 1 for consecutive k
67     C KappaRU :: vertical viscosity
68     C KappaRV :: vertical viscosity
69     C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
70     C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
71 jmc 1.23 C guDiss :: dissipation tendency (all explicit terms), u component
72     C gvDiss :: dissipation tendency (all explicit terms), v component
73 jmc 1.8 C myTime :: current time
74 adcroft 1.3 C myIter :: current time-step number
75     C myThid :: thread number
76     INTEGER bi,bj,iMin,iMax,jMin,jMax
77     INTEGER k,kUp,kDown
78 adcroft 1.1 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
79     _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
80     _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
81     _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
82 jmc 1.23 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83     _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 jmc 1.8 _RL myTime
85 adcroft 1.2 INTEGER myIter
86 adcroft 1.1 INTEGER myThid
87    
88 adcroft 1.3 C !OUTPUT PARAMETERS: ==================================================
89     C None - updates gU() and gV() in common blocks
90    
91     C !LOCAL VARIABLES: ====================================================
92     C i,j :: loop indices
93     C vF :: viscous flux
94     C v4F :: bi-harmonic viscous flux
95     C cF :: Coriolis acceleration
96     C mT :: Metric terms
97     C fZon :: zonal fluxes
98     C fMer :: meridional fluxes
99 jmc 1.23 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
100 adcroft 1.3 INTEGER i,j
101 jmc 1.37 #ifdef ALLOW_AUTODIFF_TAMC
102 heimbach 1.35 INTEGER imomkey
103     #endif
104 adcroft 1.3 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105     _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106     _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107     _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108     _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109     _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 jmc 1.23 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111     _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 jmc 1.33 C afFacMom :: Tracer parameters for turning terms on and off.
113 jmc 1.37 C vfFacMom
114     C pfFacMom afFacMom - Advective terms
115 adcroft 1.1 C cfFacMom vfFacMom - Eddy viscosity terms
116 jmc 1.33 C mtFacMom pfFacMom - Pressure terms
117 adcroft 1.1 C cfFacMom - Coriolis terms
118     C foFacMom - Forcing
119 jmc 1.33 C mtFacMom - Metric term
120 jmc 1.23 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
121 adcroft 1.1 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122     _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123     _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124     _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127     _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128     _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 jmc 1.8 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130     _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 adcroft 1.18 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 baylor 1.25 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
133     _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
134     _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
135     _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
136     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
137     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
138 adcroft 1.18 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
139     _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
140 adcroft 1.1 _RL uDudxFac
141     _RL AhDudxFac
142     _RL vDudyFac
143     _RL AhDudyFac
144     _RL rVelDudrFac
145     _RL ArDudrFac
146     _RL fuFac
147     _RL mtFacU
148 jmc 1.33 _RL mtNHFacU
149 adcroft 1.1 _RL uDvdxFac
150     _RL AhDvdxFac
151     _RL vDvdyFac
152     _RL AhDvdyFac
153     _RL rVelDvdrFac
154     _RL ArDvdrFac
155     _RL fvFac
156     _RL mtFacV
157 jmc 1.33 _RL mtNHFacV
158 jmc 1.29 _RL sideMaskFac
159 baylor 1.25 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
160 adcroft 1.3 CEOP
161 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
162     COMMON / MOM_FLUXFORM_LOCAL / uBnd, vBnd
163     _RL uBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
164     _RL vBnd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
165     #endif /* MOM_BOUNDARY_CONSERVE */
166 adcroft 1.1
167 heimbach 1.35 #ifdef ALLOW_AUTODIFF_TAMC
168     act0 = k - 1
169     max0 = Nr
170     act1 = bi - myBxLo(myThid)
171     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
172     act2 = bj - myByLo(myThid)
173     max2 = myByHi(myThid) - myByLo(myThid) + 1
174     act3 = myThid - 1
175     max3 = nTx*nTy
176     act4 = ikey_dynamics - 1
177 jmc 1.37 imomkey = (act0 + 1)
178 heimbach 1.35 & + act1*max0
179     & + act2*max0*max1
180     & + act3*max0*max1*max2
181     & + act4*max0*max1*max2*max3
182     #endif /* ALLOW_AUTODIFF_TAMC */
183    
184 adcroft 1.1 C Initialise intermediate terms
185 jmc 1.23 DO j=1-OLy,sNy+OLy
186     DO i=1-OLx,sNx+OLx
187 adcroft 1.1 vF(i,j) = 0.
188     v4F(i,j) = 0.
189     cF(i,j) = 0.
190     mT(i,j) = 0.
191     fZon(i,j) = 0.
192     fMer(i,j) = 0.
193 jmc 1.23 fVrUp(i,j)= 0.
194     fVrDw(i,j)= 0.
195     rTransU(i,j)= 0.
196     rTransV(i,j)= 0.
197 jmc 1.38 c KE(i,j) = 0.
198     c hDiv(i,j) = 0.
199     vort3(i,j) = 0.
200 adcroft 1.18 strain(i,j) = 0.
201 jmc 1.23 tension(i,j)= 0.
202     guDiss(i,j) = 0.
203     gvDiss(i,j) = 0.
204 adcroft 1.1 ENDDO
205     ENDDO
206    
207     C-- Term by term tracer parmeters
208     C o U momentum equation
209     uDudxFac = afFacMom*1.
210     AhDudxFac = vfFacMom*1.
211     vDudyFac = afFacMom*1.
212     AhDudyFac = vfFacMom*1.
213     rVelDudrFac = afFacMom*1.
214     ArDudrFac = vfFacMom*1.
215 jmc 1.33 mtFacU = mtFacMom*1.
216     mtNHFacU = 1.
217 adcroft 1.1 fuFac = cfFacMom*1.
218     C o V momentum equation
219     uDvdxFac = afFacMom*1.
220     AhDvdxFac = vfFacMom*1.
221     vDvdyFac = afFacMom*1.
222     AhDvdyFac = vfFacMom*1.
223     rVelDvdrFac = afFacMom*1.
224     ArDvdrFac = vfFacMom*1.
225 jmc 1.33 mtFacV = mtFacMom*1.
226     mtNHFacV = 1.
227 adcroft 1.1 fvFac = cfFacMom*1.
228 jmc 1.23
229     IF (implicitViscosity) THEN
230     ArDudrFac = 0.
231     ArDvdrFac = 0.
232     ENDIF
233 adcroft 1.1
234 jmc 1.29 C note: using standard stencil (no mask) results in under-estimating
235     C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
236     IF ( no_slip_sides ) THEN
237     sideMaskFac = sideDragFactor
238     ELSE
239     sideMaskFac = 0. _d 0
240     ENDIF
241    
242 adcroft 1.1 IF ( no_slip_bottom
243     & .OR. bottomDragQuadratic.NE.0.
244     & .OR. bottomDragLinear.NE.0.) THEN
245     bottomDragTerms=.TRUE.
246     ELSE
247     bottomDragTerms=.FALSE.
248     ENDIF
249    
250     C-- Calculate open water fraction at vorticity points
251     CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
252    
253     C---- Calculate common quantities used in both U and V equations
254     C Calculate tracer cell face open areas
255     DO j=1-OLy,sNy+OLy
256     DO i=1-OLx,sNx+OLx
257 jmc 1.39 xA(i,j) = _dyG(i,j,bi,bj)*deepFacC(k)
258     & *drF(k)*_hFacW(i,j,k,bi,bj)
259     yA(i,j) = _dxG(i,j,bi,bj)*deepFacC(k)
260     & *drF(k)*_hFacS(i,j,k,bi,bj)
261 adcroft 1.1 ENDDO
262     ENDDO
263    
264     C Make local copies of horizontal flow field
265     DO j=1-OLy,sNy+OLy
266     DO i=1-OLx,sNx+OLx
267     uFld(i,j) = uVel(i,j,k,bi,bj)
268     vFld(i,j) = vVel(i,j,k,bi,bj)
269     ENDDO
270     ENDDO
271    
272     C Calculate velocity field "volume transports" through tracer cell faces.
273 jmc 1.39 C anelastic: transports are scaled by rhoFacC (~ mass transport)
274 adcroft 1.1 DO j=1-OLy,sNy+OLy
275     DO i=1-OLx,sNx+OLx
276 jmc 1.39 uTrans(i,j) = uFld(i,j)*xA(i,j)*rhoFacC(k)
277     vTrans(i,j) = vFld(i,j)*yA(i,j)*rhoFacC(k)
278 adcroft 1.1 ENDDO
279     ENDDO
280    
281 baylor 1.25 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
282 jmc 1.29 IF ( momViscosity) THEN
283     CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
284     CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
285     CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
286     CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
287     DO j=1-Oly,sNy+Oly
288     DO i=1-Olx,sNx+Olx
289     IF ( hFacZ(i,j).EQ.0. ) THEN
290     vort3(i,j) = sideMaskFac*vort3(i,j)
291     strain(i,j) = sideMaskFac*strain(i,j)
292     ENDIF
293     ENDDO
294     ENDDO
295     #ifdef ALLOW_DIAGNOSTICS
296     IF ( useDiagnostics ) THEN
297     CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
298     CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
299     CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
300     CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
301     ENDIF
302     #endif
303     ENDIF
304 adcroft 1.18
305 jmc 1.8 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
306     IF (momAdvection.AND.k.EQ.1) THEN
307    
308 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
309     CALL MOM_UV_BOUNDARY( bi, bj, k,
310     I uVel, vVel,
311     O uBnd(1-OLx,1-OLy,k,bi,bj),
312     O vBnd(1-OLx,1-OLy,k,bi,bj),
313     I myTime, myIter, myThid )
314     #endif /* MOM_BOUNDARY_CONSERVE */
315    
316 jmc 1.8 C- Calculate vertical transports above U & V points (West & South face):
317 heimbach 1.35
318     #ifdef ALLOW_AUTODIFF_TAMC
319 heimbach 1.36 # ifdef NONLIN_FRSURF
320     # ifndef DISABLE_RSTAR_CODE
321 jmc 1.39 CADJ STORE dwtransc(:,:,bi,bj) =
322 heimbach 1.35 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
323 jmc 1.39 CADJ STORE dwtransu(:,:,bi,bj) =
324 heimbach 1.35 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
325 jmc 1.39 CADJ STORE dwtransv(:,:,bi,bj) =
326 heimbach 1.35 CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
327 heimbach 1.36 # endif
328     # endif /* NONLIN_FRSURF */
329 heimbach 1.35 #endif /* ALLOW_AUTODIFF_TAMC */
330 jmc 1.23 CALL MOM_CALC_RTRANS( k, bi, bj,
331     O rTransU, rTransV,
332     I myTime, myIter, myThid)
333 jmc 1.8
334     C- Free surface correction term (flux at k=1)
335 jmc 1.23 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
336     O fVerU(1-OLx,1-OLy,kUp), myThid )
337 jmc 1.8
338 jmc 1.23 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
339     O fVerV(1-OLx,1-OLy,kUp), myThid )
340 jmc 1.8
341     C--- endif momAdvection & k=1
342     ENDIF
343    
344    
345     C--- Calculate vertical transports (at k+1) below U & V points :
346     IF (momAdvection) THEN
347 jmc 1.23 CALL MOM_CALC_RTRANS( k+1, bi, bj,
348     O rTransU, rTransV,
349     I myTime, myIter, myThid)
350 jmc 1.8 ENDIF
351    
352 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
353     IF ( momAdvection .AND. k.LT.Nr ) THEN
354     CALL MOM_UV_BOUNDARY( bi, bj, k+1,
355     I uVel, vVel,
356     O uBnd(1-OLx,1-OLy,k+1,bi,bj),
357     O vBnd(1-OLx,1-OLy,k+1,bi,bj),
358     I myTime, myIter, myThid )
359     ENDIF
360     #endif /* MOM_BOUNDARY_CONSERVE */
361    
362 baylor 1.25 IF (momViscosity) THEN
363     CALL MOM_CALC_VISC(
364     I bi,bj,k,
365     O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
366     O harmonic,biharmonic,useVariableViscosity,
367 jmc 1.26 I hDiv,vort3,tension,strain,KE,hFacZ,
368 baylor 1.25 I myThid)
369     ENDIF
370 jmc 1.8
371 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
372    
373 adcroft 1.1 C---- Zonal momentum equation starts here
374    
375 jmc 1.23 IF (momAdvection) THEN
376     C--- Calculate mean fluxes (advection) between cells for zonal flow.
377 adcroft 1.1
378 jmc 1.40 #ifdef MOM_BOUNDARY_CONSERVE
379     CALL MOM_U_ADV_UU( bi,bj,k,uTrans,uBnd(1-OLx,1-OLy,k,bi,bj),
380     O fZon,myThid )
381     CALL MOM_U_ADV_VU( bi,bj,k,vTrans,uBnd(1-OLx,1-OLy,k,bi,bj),
382     O fMer,myThid )
383     CALL MOM_U_ADV_WU(
384     I bi,bj,k+1,uBnd,wVel,rTransU,
385     O fVerU(1-OLx,1-OLy,kDown), myThid )
386     #else /* MOM_BOUNDARY_CONSERVE */
387 adcroft 1.1 C-- Zonal flux (fZon is at east face of "u" cell)
388 jmc 1.23 C Mean flow component of zonal flux -> fZon
389     CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
390 adcroft 1.1
391     C-- Meridional flux (fMer is at south face of "u" cell)
392 jmc 1.23 C Mean flow component of meridional flux -> fMer
393     CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
394 adcroft 1.1
395     C-- Vertical flux (fVer is at upper face of "u" cell)
396 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVer
397     CALL MOM_U_ADV_WU(
398     I bi,bj,k+1,uVel,wVel,rTransU,
399     O fVerU(1-OLx,1-OLy,kDown), myThid )
400 jmc 1.40 #endif /* MOM_BOUNDARY_CONSERVE */
401 adcroft 1.1
402     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
403 jmc 1.23 DO j=jMin,jMax
404     DO i=iMin,iMax
405     gU(i,j,k,bi,bj) =
406 adcroft 1.1 #ifdef OLD_UV_GEOM
407 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
408     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
409 adcroft 1.1 #else
410 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
411 jmc 1.39 & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k)
412 adcroft 1.1 #endif
413 jmc 1.39 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
414     & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
415     & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
416 jmc 1.23 & )
417     ENDDO
418     ENDDO
419 adcroft 1.1
420 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
421     IF ( useDiagnostics ) THEN
422     CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)
423     CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)
424     CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),
425     & 'ADVrE_Um',k,1,2,bi,bj,myThid)
426     ENDIF
427     #endif
428    
429 jmc 1.8 #ifdef NONLIN_FRSURF
430     C-- account for 3.D divergence of the flow in rStar coordinate:
431 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
432 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
433     DO j=jMin,jMax
434     DO i=iMin,iMax
435     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
436 jmc 1.8 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
437     & *uVel(i,j,k,bi,bj)
438 jmc 1.23 ENDDO
439     ENDDO
440     ENDIF
441     IF ( select_rStar.LT.0 ) THEN
442     DO j=jMin,jMax
443     DO i=iMin,iMax
444     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
445     & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
446     ENDDO
447     ENDDO
448     ENDIF
449 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
450 jmc 1.23 #endif /* NONLIN_FRSURF */
451    
452     ELSE
453     C- if momAdvection / else
454     DO j=1-OLy,sNy+OLy
455     DO i=1-OLx,sNx+OLx
456     gU(i,j,k,bi,bj) = 0. _d 0
457     ENDDO
458 jmc 1.8 ENDDO
459 jmc 1.23
460     C- endif momAdvection.
461 jmc 1.8 ENDIF
462 jmc 1.23
463     IF (momViscosity) THEN
464     C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
465    
466     C Bi-harmonic term del^2 U -> v4F
467 jmc 1.37 IF (biharmonic)
468 jmc 1.23 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
469    
470     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
471 baylor 1.25 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
472 baylor 1.27 I viscAh_D,viscA4_D,myThid)
473 jmc 1.23
474     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
475 baylor 1.25 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
476 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
477 jmc 1.23
478     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
479     IF (.NOT.implicitViscosity) THEN
480     CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
481     CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
482     ENDIF
483    
484     C-- Tendency is minus divergence of the fluxes
485 jmc 1.39 C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is)
486 jmc 1.23 DO j=jMin,jMax
487     DO i=iMin,iMax
488     guDiss(i,j) =
489     #ifdef OLD_UV_GEOM
490     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
491     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
492     #else
493     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
494 jmc 1.39 & *recip_rAw(i,j,bi,bj)*recip_deepFac2C(k)
495 jmc 1.23 #endif
496 jmc 1.39 & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
497     & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
498     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
499     & *recip_rhoFacC(k)
500 jmc 1.23 & )
501     ENDDO
502 jmc 1.8 ENDDO
503    
504 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
505     IF ( useDiagnostics ) THEN
506     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
507     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
508     IF (.NOT.implicitViscosity)
509     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
510     ENDIF
511     #endif
512    
513 jmc 1.37 C-- No-slip and drag BCs appear as body forces in cell abutting topography
514 jmc 1.23 IF (no_slip_sides) THEN
515 adcroft 1.1 C- No-slip BCs impose a drag at walls...
516 baylor 1.27 CALL MOM_U_SIDEDRAG(
517     I bi,bj,k,
518     I uFld, v4f, hFacZ,
519     I viscAh_Z,viscA4_Z,
520     I harmonic,biharmonic,useVariableViscosity,
521     O vF,
522     I myThid)
523 jmc 1.23 DO j=jMin,jMax
524     DO i=iMin,iMax
525     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
526     ENDDO
527     ENDDO
528     ENDIF
529 adcroft 1.1 C- No-slip BCs impose a drag at bottom
530 jmc 1.23 IF (bottomDragTerms) THEN
531     CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
532     DO j=jMin,jMax
533     DO i=iMin,iMax
534     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
535     ENDDO
536     ENDDO
537     ENDIF
538    
539 mlosch 1.32 #ifdef ALLOW_SHELFICE
540     IF (useShelfIce) THEN
541     CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
542     DO j=jMin,jMax
543     DO i=iMin,iMax
544     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
545     ENDDO
546     ENDDO
547     ENDIF
548     #endif /* ALLOW_SHELFICE */
549    
550 jmc 1.23 C- endif momViscosity
551 adcroft 1.1 ENDIF
552    
553 jmc 1.12 C-- Forcing term (moved to timestep.F)
554     c IF (momForcing)
555     c & CALL EXTERNAL_FORCING_U(
556     c I iMin,iMax,jMin,jMax,bi,bj,k,
557     c I myTime,myThid)
558 adcroft 1.1
559     C-- Metric terms for curvilinear grid systems
560 adcroft 1.5 IF (useNHMTerms) THEN
561 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
562 adcroft 1.1 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
563     DO j=jMin,jMax
564     DO i=iMin,iMax
565 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j)
566 adcroft 1.1 ENDDO
567     ENDDO
568 adcroft 1.5 ENDIF
569 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
570     C o Spherical polar grid metric terms
571 adcroft 1.1 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
572     DO j=jMin,jMax
573     DO i=iMin,iMax
574 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
575 adcroft 1.1 ENDDO
576     ENDDO
577 afe 1.20 ENDIF
578 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
579     C o Cylindrical grid metric terms
580     CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
581     DO j=jMin,jMax
582     DO i=iMin,iMax
583     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
584     ENDDO
585 afe 1.19 ENDDO
586 adcroft 1.1 ENDIF
587    
588 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
589 adcroft 1.1
590     C---- Meridional momentum equation starts here
591    
592 jmc 1.23 IF (momAdvection) THEN
593 jmc 1.40
594     #ifdef MOM_BOUNDARY_CONSERVE
595     CALL MOM_V_ADV_UV( bi,bj,k,uTrans,vBnd(1-OLx,1-OLy,k,bi,bj),
596     O fZon,myThid )
597     CALL MOM_V_ADV_VV( bi,bj,k,vTrans,vBnd(1-OLx,1-OLy,k,bi,bj),
598     O fMer,myThid )
599     CALL MOM_V_ADV_WV(
600     I bi,bj,k+1,vBnd,wVel,rTransV,
601     O fVerV(1-OLx,1-OLy,kDown), myThid )
602     #else /* MOM_BOUNDARY_CONSERVE */
603 jmc 1.23 C--- Calculate mean fluxes (advection) between cells for meridional flow.
604     C Mean flow component of zonal flux -> fZon
605     CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
606 adcroft 1.1
607     C-- Meridional flux (fMer is at north face of "v" cell)
608 jmc 1.23 C Mean flow component of meridional flux -> fMer
609     CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
610 adcroft 1.1
611     C-- Vertical flux (fVer is at upper face of "v" cell)
612 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVerV
613     CALL MOM_V_ADV_WV(
614     I bi,bj,k+1,vVel,wVel,rTransV,
615     O fVerV(1-OLx,1-OLy,kDown), myThid )
616 jmc 1.40 #endif /* MOM_BOUNDARY_CONSERVE */
617 adcroft 1.1
618     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
619 jmc 1.23 DO j=jMin,jMax
620     DO i=iMin,iMax
621     gV(i,j,k,bi,bj) =
622 adcroft 1.1 #ifdef OLD_UV_GEOM
623 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
624     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
625 adcroft 1.1 #else
626 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
627 jmc 1.39 & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k)
628 adcroft 1.1 #endif
629 jmc 1.39 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
630     & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
631     & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
632 jmc 1.23 & )
633 jmc 1.24 ENDDO
634     ENDDO
635    
636     #ifdef ALLOW_DIAGNOSTICS
637     IF ( useDiagnostics ) THEN
638     CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)
639     CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)
640     CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),
641     & 'ADVrE_Vm',k,1,2,bi,bj,myThid)
642     ENDIF
643     #endif
644 adcroft 1.1
645 jmc 1.8 #ifdef NONLIN_FRSURF
646     C-- account for 3.D divergence of the flow in rStar coordinate:
647 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
648 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
649     DO j=jMin,jMax
650     DO i=iMin,iMax
651     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
652 jmc 1.8 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
653     & *vVel(i,j,k,bi,bj)
654 jmc 1.23 ENDDO
655     ENDDO
656     ENDIF
657     IF ( select_rStar.LT.0 ) THEN
658     DO j=jMin,jMax
659     DO i=iMin,iMax
660     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
661     & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
662     ENDDO
663     ENDDO
664     ENDIF
665 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
666 jmc 1.23 #endif /* NONLIN_FRSURF */
667    
668     ELSE
669     C- if momAdvection / else
670     DO j=1-OLy,sNy+OLy
671     DO i=1-OLx,sNx+OLx
672     gV(i,j,k,bi,bj) = 0. _d 0
673     ENDDO
674 jmc 1.8 ENDDO
675 jmc 1.23
676     C- endif momAdvection.
677 jmc 1.8 ENDIF
678 jmc 1.23
679     IF (momViscosity) THEN
680     C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
681     C Bi-harmonic term del^2 V -> v4F
682 jmc 1.37 IF (biharmonic)
683 jmc 1.23 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
684    
685     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
686 baylor 1.25 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
687 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
688 jmc 1.23
689     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
690 baylor 1.25 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
691 baylor 1.27 I viscAh_D,viscA4_D,myThid)
692 jmc 1.23
693     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
694     IF (.NOT.implicitViscosity) THEN
695     CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
696     CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
697     ENDIF
698    
699     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
700 jmc 1.39 C anelastic: hor.visc.fluxes are not scaled by rhoFac (by vert.visc.flx is)
701 jmc 1.23 DO j=jMin,jMax
702     DO i=iMin,iMax
703     gvDiss(i,j) =
704     #ifdef OLD_UV_GEOM
705     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
706     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
707     #else
708     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
709 jmc 1.39 & *recip_rAs(i,j,bi,bj)*recip_deepFac2C(k)
710 jmc 1.23 #endif
711 jmc 1.39 & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
712     & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
713     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
714     & *recip_rhoFacC(k)
715 jmc 1.23 & )
716     ENDDO
717 jmc 1.8 ENDDO
718    
719 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
720     IF ( useDiagnostics ) THEN
721     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
722     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
723     IF (.NOT.implicitViscosity)
724     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
725     ENDIF
726     #endif
727    
728 jmc 1.37 C-- No-slip and drag BCs appear as body forces in cell abutting topography
729 mlosch 1.32 IF (no_slip_sides) THEN
730 adcroft 1.1 C- No-slip BCs impose a drag at walls...
731 baylor 1.27 CALL MOM_V_SIDEDRAG(
732     I bi,bj,k,
733     I vFld, v4f, hFacZ,
734     I viscAh_Z,viscA4_Z,
735     I harmonic,biharmonic,useVariableViscosity,
736     O vF,
737     I myThid)
738 jmc 1.23 DO j=jMin,jMax
739     DO i=iMin,iMax
740     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
741     ENDDO
742     ENDDO
743     ENDIF
744 adcroft 1.1 C- No-slip BCs impose a drag at bottom
745 jmc 1.23 IF (bottomDragTerms) THEN
746     CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
747     DO j=jMin,jMax
748     DO i=iMin,iMax
749     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
750     ENDDO
751     ENDDO
752     ENDIF
753    
754 mlosch 1.32 #ifdef ALLOW_SHELFICE
755     IF (useShelfIce) THEN
756     CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRU,vF,myThid)
757     DO j=jMin,jMax
758     DO i=iMin,iMax
759     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
760     ENDDO
761     ENDDO
762     ENDIF
763     #endif /* ALLOW_SHELFICE */
764    
765 jmc 1.23 C- endif momViscosity
766 adcroft 1.1 ENDIF
767    
768 jmc 1.12 C-- Forcing term (moved to timestep.F)
769     c IF (momForcing)
770     c & CALL EXTERNAL_FORCING_V(
771     c I iMin,iMax,jMin,jMax,bi,bj,k,
772     c I myTime,myThid)
773 adcroft 1.1
774     C-- Metric terms for curvilinear grid systems
775 adcroft 1.5 IF (useNHMTerms) THEN
776 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
777 adcroft 1.1 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
778     DO j=jMin,jMax
779     DO i=iMin,iMax
780 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j)
781 adcroft 1.1 ENDDO
782     ENDDO
783 adcroft 1.5 ENDIF
784 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
785     C o Spherical polar grid metric terms
786 adcroft 1.1 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
787     DO j=jMin,jMax
788     DO i=iMin,iMax
789 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
790 adcroft 1.1 ENDDO
791     ENDDO
792     ENDIF
793 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
794     C o Cylindrical grid metric terms
795     CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
796     DO j=jMin,jMax
797     DO i=iMin,iMax
798     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
799     ENDDO
800     ENDDO
801 afe 1.19 ENDIF
802 adcroft 1.1
803 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
804 adcroft 1.1
805     C-- Coriolis term
806     C Note. As coded here, coriolis will not work with "thin walls"
807 jmc 1.12 c IF (useCDscheme) THEN
808     c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
809     c ELSE
810     IF (.NOT.useCDscheme) THEN
811     CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
812     DO j=jMin,jMax
813     DO i=iMin,iMax
814     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
815     ENDDO
816     ENDDO
817 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
818     IF ( useDiagnostics )
819     & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
820     #endif
821 jmc 1.12 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
822     DO j=jMin,jMax
823     DO i=iMin,iMax
824     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
825     ENDDO
826     ENDDO
827 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
828     IF ( useDiagnostics )
829     & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
830     #endif
831 jmc 1.12 ENDIF
832    
833 jmc 1.34 C-- 3.D Coriolis term (horizontal momentum, Eastward component: -f'*w)
834 jmc 1.37 IF ( use3dCoriolis ) THEN
835 jmc 1.34 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
836     DO j=jMin,jMax
837     DO i=iMin,iMax
838     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
839     ENDDO
840     ENDDO
841     IF ( usingCurvilinearGrid ) THEN
842     C- presently, non zero angleSinC array only supported with Curvilinear-Grid
843     CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
844     DO j=jMin,jMax
845     DO i=iMin,iMax
846     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
847     ENDDO
848 adcroft 1.6 ENDDO
849 jmc 1.34 ENDIF
850 adcroft 1.6 ENDIF
851 adcroft 1.1
852 jmc 1.23 C-- Set du/dt & dv/dt on boundaries to zero
853     DO j=jMin,jMax
854     DO i=iMin,iMax
855     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
856     guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
857     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
858     gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
859     ENDDO
860     ENDDO
861    
862 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
863     IF ( useDiagnostics ) THEN
864 baylor 1.28 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
865 jmc 1.24 CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),
866     & 'Um_Advec',k,1,2,bi,bj,myThid)
867     CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),
868     & 'Vm_Advec',k,1,2,bi,bj,myThid)
869     IF (momViscosity) THEN
870     CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
871     CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
872     ENDIF
873     ENDIF
874     #endif /* ALLOW_DIAGNOSTICS */
875    
876 adcroft 1.1 RETURN
877     END

  ViewVC Help
Powered by ViewVC 1.1.22