/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.38 - (hide annotations) (download)
Thu Nov 23 00:45:18 2006 UTC (17 years, 6 months ago) by jmc
Branch: MAIN
Changes since 1.37: +4 -6 lines
nitialise vort3 (Pb reported by Martin).

1 jmc 1.38 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.37 2006/07/13 03:02:48 jmc Exp $
2 adcroft 1.2 C $Name: $
3 adcroft 1.1
4 adcroft 1.3 CBOI
5     C !TITLE: pkg/mom\_advdiff
6     C !AUTHORS: adcroft@mit.edu
7 adcroft 1.4 C !INTRODUCTION: Flux-form Momentum Equations Package
8 adcroft 1.3 C
9     C Package "mom\_fluxform" provides methods for calculating explicit terms
10     C in the momentum equation cast in flux-form:
11     C \begin{eqnarray*}
12     C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13     C -\nabla \cdot {\bf v} u
14     C -fv
15     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16     C + \mbox{metrics}
17     C \\
18     C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19     C -\nabla \cdot {\bf v} v
20     C +fu
21     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22     C + \mbox{metrics}
23     C \end{eqnarray*}
24     C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25     C stresses as well as internal viscous stresses.
26     CEOI
27    
28 edhill 1.13 #include "MOM_FLUXFORM_OPTIONS.h"
29 adcroft 1.1
30 adcroft 1.3 CBOP
31     C !ROUTINE: MOM_FLUXFORM
32    
33     C !INTERFACE: ==========================================================
34 jmc 1.37 SUBROUTINE MOM_FLUXFORM(
35 adcroft 1.1 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 jmc 1.23 I KappaRU, KappaRV,
37 adcroft 1.1 U fVerU, fVerV,
38 jmc 1.23 O guDiss, gvDiss,
39     I myTime, myIter, myThid)
40 adcroft 1.3
41     C !DESCRIPTION:
42     C Calculates all the horizontal accelerations except for the implicit surface
43     C pressure gradient and implciit vertical viscosity.
44 adcroft 1.1
45 adcroft 1.3 C !USES: ===============================================================
46 adcroft 1.1 C == Global variables ==
47 adcroft 1.3 IMPLICIT NONE
48 adcroft 1.1 #include "SIZE.h"
49     #include "DYNVARS.h"
50     #include "FFIELDS.h"
51     #include "EEPARAMS.h"
52     #include "PARAMS.h"
53     #include "GRID.h"
54     #include "SURFACE.h"
55 jmc 1.37 #ifdef ALLOW_AUTODIFF_TAMC
56 heimbach 1.35 # include "tamc.h"
57     # include "tamc_keys.h"
58     # include "MOM_FLUXFORM.h"
59     #endif
60 adcroft 1.1
61 adcroft 1.3 C !INPUT PARAMETERS: ===================================================
62     C bi,bj :: tile indices
63     C iMin,iMax,jMin,jMAx :: loop ranges
64     C k :: vertical level
65     C kUp :: =1 or 2 for consecutive k
66     C kDown :: =2 or 1 for consecutive k
67     C KappaRU :: vertical viscosity
68     C KappaRV :: vertical viscosity
69     C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
70     C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
71 jmc 1.23 C guDiss :: dissipation tendency (all explicit terms), u component
72     C gvDiss :: dissipation tendency (all explicit terms), v component
73 jmc 1.8 C myTime :: current time
74 adcroft 1.3 C myIter :: current time-step number
75     C myThid :: thread number
76     INTEGER bi,bj,iMin,iMax,jMin,jMax
77     INTEGER k,kUp,kDown
78 adcroft 1.1 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
79     _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
80     _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
81     _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
82 jmc 1.23 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83     _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 jmc 1.8 _RL myTime
85 adcroft 1.2 INTEGER myIter
86 adcroft 1.1 INTEGER myThid
87    
88 adcroft 1.3 C !OUTPUT PARAMETERS: ==================================================
89     C None - updates gU() and gV() in common blocks
90    
91     C !LOCAL VARIABLES: ====================================================
92     C i,j :: loop indices
93     C vF :: viscous flux
94     C v4F :: bi-harmonic viscous flux
95     C cF :: Coriolis acceleration
96     C mT :: Metric terms
97     C fZon :: zonal fluxes
98     C fMer :: meridional fluxes
99 jmc 1.23 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
100 adcroft 1.3 INTEGER i,j
101 jmc 1.37 #ifdef ALLOW_AUTODIFF_TAMC
102 heimbach 1.35 INTEGER imomkey
103     #endif
104 adcroft 1.3 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105     _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106     _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107     _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108     _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109     _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 jmc 1.23 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111     _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 jmc 1.33 C afFacMom :: Tracer parameters for turning terms on and off.
113 jmc 1.37 C vfFacMom
114     C pfFacMom afFacMom - Advective terms
115 adcroft 1.1 C cfFacMom vfFacMom - Eddy viscosity terms
116 jmc 1.33 C mtFacMom pfFacMom - Pressure terms
117 adcroft 1.1 C cfFacMom - Coriolis terms
118     C foFacMom - Forcing
119 jmc 1.33 C mtFacMom - Metric term
120 jmc 1.23 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
121 adcroft 1.1 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122     _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123     _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124     _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127     _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128     _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 jmc 1.8 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130     _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 adcroft 1.18 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 baylor 1.25 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
133     _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
134     _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
135     _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
136     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
137     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
138 adcroft 1.18 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
139     _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
140 adcroft 1.1 _RL uDudxFac
141     _RL AhDudxFac
142     _RL vDudyFac
143     _RL AhDudyFac
144     _RL rVelDudrFac
145     _RL ArDudrFac
146     _RL fuFac
147     _RL mtFacU
148 jmc 1.33 _RL mtNHFacU
149 adcroft 1.1 _RL uDvdxFac
150     _RL AhDvdxFac
151     _RL vDvdyFac
152     _RL AhDvdyFac
153     _RL rVelDvdrFac
154     _RL ArDvdrFac
155     _RL fvFac
156     _RL mtFacV
157 jmc 1.33 _RL mtNHFacV
158 jmc 1.29 _RL sideMaskFac
159 baylor 1.25 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
160 adcroft 1.3 CEOP
161 adcroft 1.1
162 heimbach 1.35 #ifdef ALLOW_AUTODIFF_TAMC
163     act0 = k - 1
164     max0 = Nr
165     act1 = bi - myBxLo(myThid)
166     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
167     act2 = bj - myByLo(myThid)
168     max2 = myByHi(myThid) - myByLo(myThid) + 1
169     act3 = myThid - 1
170     max3 = nTx*nTy
171     act4 = ikey_dynamics - 1
172 jmc 1.37 imomkey = (act0 + 1)
173 heimbach 1.35 & + act1*max0
174     & + act2*max0*max1
175     & + act3*max0*max1*max2
176     & + act4*max0*max1*max2*max3
177     #endif /* ALLOW_AUTODIFF_TAMC */
178    
179 adcroft 1.1 C Initialise intermediate terms
180 jmc 1.23 DO j=1-OLy,sNy+OLy
181     DO i=1-OLx,sNx+OLx
182 adcroft 1.1 vF(i,j) = 0.
183     v4F(i,j) = 0.
184     cF(i,j) = 0.
185     mT(i,j) = 0.
186     fZon(i,j) = 0.
187     fMer(i,j) = 0.
188 jmc 1.23 fVrUp(i,j)= 0.
189     fVrDw(i,j)= 0.
190     rTransU(i,j)= 0.
191     rTransV(i,j)= 0.
192 jmc 1.38 c KE(i,j) = 0.
193     c hDiv(i,j) = 0.
194     vort3(i,j) = 0.
195 adcroft 1.18 strain(i,j) = 0.
196 jmc 1.23 tension(i,j)= 0.
197     guDiss(i,j) = 0.
198     gvDiss(i,j) = 0.
199 adcroft 1.1 ENDDO
200     ENDDO
201    
202     C-- Term by term tracer parmeters
203     C o U momentum equation
204     uDudxFac = afFacMom*1.
205     AhDudxFac = vfFacMom*1.
206     vDudyFac = afFacMom*1.
207     AhDudyFac = vfFacMom*1.
208     rVelDudrFac = afFacMom*1.
209     ArDudrFac = vfFacMom*1.
210 jmc 1.33 mtFacU = mtFacMom*1.
211     mtNHFacU = 1.
212 adcroft 1.1 fuFac = cfFacMom*1.
213     C o V momentum equation
214     uDvdxFac = afFacMom*1.
215     AhDvdxFac = vfFacMom*1.
216     vDvdyFac = afFacMom*1.
217     AhDvdyFac = vfFacMom*1.
218     rVelDvdrFac = afFacMom*1.
219     ArDvdrFac = vfFacMom*1.
220 jmc 1.33 mtFacV = mtFacMom*1.
221     mtNHFacV = 1.
222 adcroft 1.1 fvFac = cfFacMom*1.
223 jmc 1.23
224     IF (implicitViscosity) THEN
225     ArDudrFac = 0.
226     ArDvdrFac = 0.
227     ENDIF
228 adcroft 1.1
229 jmc 1.29 C note: using standard stencil (no mask) results in under-estimating
230     C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
231     IF ( no_slip_sides ) THEN
232     sideMaskFac = sideDragFactor
233     ELSE
234     sideMaskFac = 0. _d 0
235     ENDIF
236    
237 adcroft 1.1 IF ( no_slip_bottom
238     & .OR. bottomDragQuadratic.NE.0.
239     & .OR. bottomDragLinear.NE.0.) THEN
240     bottomDragTerms=.TRUE.
241     ELSE
242     bottomDragTerms=.FALSE.
243     ENDIF
244    
245     C-- Calculate open water fraction at vorticity points
246     CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
247    
248     C---- Calculate common quantities used in both U and V equations
249     C Calculate tracer cell face open areas
250     DO j=1-OLy,sNy+OLy
251     DO i=1-OLx,sNx+OLx
252     xA(i,j) = _dyG(i,j,bi,bj)
253     & *drF(k)*_hFacW(i,j,k,bi,bj)
254     yA(i,j) = _dxG(i,j,bi,bj)
255     & *drF(k)*_hFacS(i,j,k,bi,bj)
256     ENDDO
257     ENDDO
258    
259     C Make local copies of horizontal flow field
260     DO j=1-OLy,sNy+OLy
261     DO i=1-OLx,sNx+OLx
262     uFld(i,j) = uVel(i,j,k,bi,bj)
263     vFld(i,j) = vVel(i,j,k,bi,bj)
264     ENDDO
265     ENDDO
266    
267     C Calculate velocity field "volume transports" through tracer cell faces.
268     DO j=1-OLy,sNy+OLy
269     DO i=1-OLx,sNx+OLx
270     uTrans(i,j) = uFld(i,j)*xA(i,j)
271     vTrans(i,j) = vFld(i,j)*yA(i,j)
272     ENDDO
273     ENDDO
274    
275 baylor 1.25 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
276 jmc 1.29 IF ( momViscosity) THEN
277     CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
278     CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
279     CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
280     CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
281     DO j=1-Oly,sNy+Oly
282     DO i=1-Olx,sNx+Olx
283     IF ( hFacZ(i,j).EQ.0. ) THEN
284     vort3(i,j) = sideMaskFac*vort3(i,j)
285     strain(i,j) = sideMaskFac*strain(i,j)
286     ENDIF
287     ENDDO
288     ENDDO
289     #ifdef ALLOW_DIAGNOSTICS
290     IF ( useDiagnostics ) THEN
291     CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
292     CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
293     CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
294     CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
295     ENDIF
296     #endif
297     ENDIF
298 adcroft 1.18
299 jmc 1.8 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
300     IF (momAdvection.AND.k.EQ.1) THEN
301    
302     C- Calculate vertical transports above U & V points (West & South face):
303 heimbach 1.35
304     #ifdef ALLOW_AUTODIFF_TAMC
305 heimbach 1.36 # ifdef NONLIN_FRSURF
306     # ifndef DISABLE_RSTAR_CODE
307 heimbach 1.35 CADJ STORE dwtransc(:,:,bi,bj) =
308     CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
309     CADJ STORE dwtransu(:,:,bi,bj) =
310     CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
311     CADJ STORE dwtransv(:,:,bi,bj) =
312     CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
313 heimbach 1.36 # endif
314     # endif /* NONLIN_FRSURF */
315 heimbach 1.35 #endif /* ALLOW_AUTODIFF_TAMC */
316 jmc 1.23 CALL MOM_CALC_RTRANS( k, bi, bj,
317     O rTransU, rTransV,
318     I myTime, myIter, myThid)
319 jmc 1.8
320     C- Free surface correction term (flux at k=1)
321 jmc 1.23 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
322     O fVerU(1-OLx,1-OLy,kUp), myThid )
323 jmc 1.8
324 jmc 1.23 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
325     O fVerV(1-OLx,1-OLy,kUp), myThid )
326 jmc 1.8
327     C--- endif momAdvection & k=1
328     ENDIF
329    
330    
331     C--- Calculate vertical transports (at k+1) below U & V points :
332     IF (momAdvection) THEN
333 jmc 1.23 CALL MOM_CALC_RTRANS( k+1, bi, bj,
334     O rTransU, rTransV,
335     I myTime, myIter, myThid)
336 jmc 1.8 ENDIF
337    
338 baylor 1.25 IF (momViscosity) THEN
339     CALL MOM_CALC_VISC(
340     I bi,bj,k,
341     O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
342     O harmonic,biharmonic,useVariableViscosity,
343 jmc 1.26 I hDiv,vort3,tension,strain,KE,hFacZ,
344 baylor 1.25 I myThid)
345     ENDIF
346 jmc 1.8
347 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
348    
349 adcroft 1.1 C---- Zonal momentum equation starts here
350    
351 jmc 1.23 IF (momAdvection) THEN
352     C--- Calculate mean fluxes (advection) between cells for zonal flow.
353 adcroft 1.1
354     C-- Zonal flux (fZon is at east face of "u" cell)
355 jmc 1.23 C Mean flow component of zonal flux -> fZon
356     CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
357 adcroft 1.1
358     C-- Meridional flux (fMer is at south face of "u" cell)
359 jmc 1.23 C Mean flow component of meridional flux -> fMer
360     CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
361 adcroft 1.1
362     C-- Vertical flux (fVer is at upper face of "u" cell)
363 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVer
364     CALL MOM_U_ADV_WU(
365     I bi,bj,k+1,uVel,wVel,rTransU,
366     O fVerU(1-OLx,1-OLy,kDown), myThid )
367 adcroft 1.1
368     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
369 jmc 1.23 DO j=jMin,jMax
370     DO i=iMin,iMax
371     gU(i,j,k,bi,bj) =
372 adcroft 1.1 #ifdef OLD_UV_GEOM
373 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
374     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
375 adcroft 1.1 #else
376 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
377     & *recip_rAw(i,j,bi,bj)
378 adcroft 1.1 #endif
379 jmc 1.23 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
380     & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
381     & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
382     & )
383     ENDDO
384     ENDDO
385 adcroft 1.1
386 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
387     IF ( useDiagnostics ) THEN
388     CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)
389     CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)
390     CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),
391     & 'ADVrE_Um',k,1,2,bi,bj,myThid)
392     ENDIF
393     #endif
394    
395 jmc 1.8 #ifdef NONLIN_FRSURF
396     C-- account for 3.D divergence of the flow in rStar coordinate:
397 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
398 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
399     DO j=jMin,jMax
400     DO i=iMin,iMax
401     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
402 jmc 1.8 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
403     & *uVel(i,j,k,bi,bj)
404 jmc 1.23 ENDDO
405     ENDDO
406     ENDIF
407     IF ( select_rStar.LT.0 ) THEN
408     DO j=jMin,jMax
409     DO i=iMin,iMax
410     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
411     & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
412     ENDDO
413     ENDDO
414     ENDIF
415 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
416 jmc 1.23 #endif /* NONLIN_FRSURF */
417    
418     ELSE
419     C- if momAdvection / else
420     DO j=1-OLy,sNy+OLy
421     DO i=1-OLx,sNx+OLx
422     gU(i,j,k,bi,bj) = 0. _d 0
423     ENDDO
424 jmc 1.8 ENDDO
425 jmc 1.23
426     C- endif momAdvection.
427 jmc 1.8 ENDIF
428 jmc 1.23
429     IF (momViscosity) THEN
430     C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
431    
432     C Bi-harmonic term del^2 U -> v4F
433 jmc 1.37 IF (biharmonic)
434 jmc 1.23 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
435    
436     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
437 baylor 1.25 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
438 baylor 1.27 I viscAh_D,viscA4_D,myThid)
439 jmc 1.23
440     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
441 baylor 1.25 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
442 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
443 jmc 1.23
444     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
445     IF (.NOT.implicitViscosity) THEN
446     CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
447     CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
448     ENDIF
449    
450     C-- Tendency is minus divergence of the fluxes
451     DO j=jMin,jMax
452     DO i=iMin,iMax
453     guDiss(i,j) =
454     #ifdef OLD_UV_GEOM
455     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
456     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
457     #else
458     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
459     & *recip_rAw(i,j,bi,bj)
460     #endif
461     & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
462     & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
463     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
464     & )
465     ENDDO
466 jmc 1.8 ENDDO
467    
468 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
469     IF ( useDiagnostics ) THEN
470     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
471     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
472     IF (.NOT.implicitViscosity)
473     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
474     ENDIF
475     #endif
476    
477 jmc 1.37 C-- No-slip and drag BCs appear as body forces in cell abutting topography
478 jmc 1.23 IF (no_slip_sides) THEN
479 adcroft 1.1 C- No-slip BCs impose a drag at walls...
480 baylor 1.27 CALL MOM_U_SIDEDRAG(
481     I bi,bj,k,
482     I uFld, v4f, hFacZ,
483     I viscAh_Z,viscA4_Z,
484     I harmonic,biharmonic,useVariableViscosity,
485     O vF,
486     I myThid)
487 jmc 1.23 DO j=jMin,jMax
488     DO i=iMin,iMax
489     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
490     ENDDO
491     ENDDO
492     ENDIF
493 adcroft 1.1 C- No-slip BCs impose a drag at bottom
494 jmc 1.23 IF (bottomDragTerms) THEN
495     CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
496     DO j=jMin,jMax
497     DO i=iMin,iMax
498     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
499     ENDDO
500     ENDDO
501     ENDIF
502    
503 mlosch 1.32 #ifdef ALLOW_SHELFICE
504     IF (useShelfIce) THEN
505     CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
506     DO j=jMin,jMax
507     DO i=iMin,iMax
508     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
509     ENDDO
510     ENDDO
511     ENDIF
512     #endif /* ALLOW_SHELFICE */
513    
514 jmc 1.23 C- endif momViscosity
515 adcroft 1.1 ENDIF
516    
517 jmc 1.12 C-- Forcing term (moved to timestep.F)
518     c IF (momForcing)
519     c & CALL EXTERNAL_FORCING_U(
520     c I iMin,iMax,jMin,jMax,bi,bj,k,
521     c I myTime,myThid)
522 adcroft 1.1
523     C-- Metric terms for curvilinear grid systems
524 adcroft 1.5 IF (useNHMTerms) THEN
525 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
526 adcroft 1.1 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
527     DO j=jMin,jMax
528     DO i=iMin,iMax
529 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j)
530 adcroft 1.1 ENDDO
531     ENDDO
532 adcroft 1.5 ENDIF
533 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
534     C o Spherical polar grid metric terms
535 adcroft 1.1 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
536     DO j=jMin,jMax
537     DO i=iMin,iMax
538 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
539 adcroft 1.1 ENDDO
540     ENDDO
541 afe 1.20 ENDIF
542 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
543     C o Cylindrical grid metric terms
544     CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
545     DO j=jMin,jMax
546     DO i=iMin,iMax
547     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
548     ENDDO
549 afe 1.19 ENDDO
550 adcroft 1.1 ENDIF
551    
552 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
553 adcroft 1.1
554     C---- Meridional momentum equation starts here
555    
556 jmc 1.23 IF (momAdvection) THEN
557     C--- Calculate mean fluxes (advection) between cells for meridional flow.
558     C Mean flow component of zonal flux -> fZon
559     CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
560 adcroft 1.1
561     C-- Meridional flux (fMer is at north face of "v" cell)
562 jmc 1.23 C Mean flow component of meridional flux -> fMer
563     CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
564 adcroft 1.1
565     C-- Vertical flux (fVer is at upper face of "v" cell)
566 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVerV
567     CALL MOM_V_ADV_WV(
568     I bi,bj,k+1,vVel,wVel,rTransV,
569     O fVerV(1-OLx,1-OLy,kDown), myThid )
570 adcroft 1.1
571     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
572 jmc 1.23 DO j=jMin,jMax
573     DO i=iMin,iMax
574     gV(i,j,k,bi,bj) =
575 adcroft 1.1 #ifdef OLD_UV_GEOM
576 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
577     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
578 adcroft 1.1 #else
579 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
580     & *recip_rAs(i,j,bi,bj)
581 adcroft 1.1 #endif
582 jmc 1.23 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
583     & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
584     & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
585     & )
586 jmc 1.24 ENDDO
587     ENDDO
588    
589     #ifdef ALLOW_DIAGNOSTICS
590     IF ( useDiagnostics ) THEN
591     CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)
592     CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)
593     CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),
594     & 'ADVrE_Vm',k,1,2,bi,bj,myThid)
595     ENDIF
596     #endif
597 adcroft 1.1
598 jmc 1.8 #ifdef NONLIN_FRSURF
599     C-- account for 3.D divergence of the flow in rStar coordinate:
600 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
601 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
602     DO j=jMin,jMax
603     DO i=iMin,iMax
604     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
605 jmc 1.8 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
606     & *vVel(i,j,k,bi,bj)
607 jmc 1.23 ENDDO
608     ENDDO
609     ENDIF
610     IF ( select_rStar.LT.0 ) THEN
611     DO j=jMin,jMax
612     DO i=iMin,iMax
613     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
614     & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
615     ENDDO
616     ENDDO
617     ENDIF
618 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
619 jmc 1.23 #endif /* NONLIN_FRSURF */
620    
621     ELSE
622     C- if momAdvection / else
623     DO j=1-OLy,sNy+OLy
624     DO i=1-OLx,sNx+OLx
625     gV(i,j,k,bi,bj) = 0. _d 0
626     ENDDO
627 jmc 1.8 ENDDO
628 jmc 1.23
629     C- endif momAdvection.
630 jmc 1.8 ENDIF
631 jmc 1.23
632     IF (momViscosity) THEN
633     C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
634     C Bi-harmonic term del^2 V -> v4F
635 jmc 1.37 IF (biharmonic)
636 jmc 1.23 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
637    
638     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
639 baylor 1.25 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
640 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
641 jmc 1.23
642     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
643 baylor 1.25 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
644 baylor 1.27 I viscAh_D,viscA4_D,myThid)
645 jmc 1.23
646     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
647     IF (.NOT.implicitViscosity) THEN
648     CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
649     CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
650     ENDIF
651    
652     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
653     DO j=jMin,jMax
654     DO i=iMin,iMax
655     gvDiss(i,j) =
656     #ifdef OLD_UV_GEOM
657     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
658     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
659     #else
660     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
661     & *recip_rAs(i,j,bi,bj)
662     #endif
663     & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
664     & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
665     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
666     & )
667     ENDDO
668 jmc 1.8 ENDDO
669    
670 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
671     IF ( useDiagnostics ) THEN
672     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
673     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
674     IF (.NOT.implicitViscosity)
675     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
676     ENDIF
677     #endif
678    
679 jmc 1.37 C-- No-slip and drag BCs appear as body forces in cell abutting topography
680 mlosch 1.32 IF (no_slip_sides) THEN
681 adcroft 1.1 C- No-slip BCs impose a drag at walls...
682 baylor 1.27 CALL MOM_V_SIDEDRAG(
683     I bi,bj,k,
684     I vFld, v4f, hFacZ,
685     I viscAh_Z,viscA4_Z,
686     I harmonic,biharmonic,useVariableViscosity,
687     O vF,
688     I myThid)
689 jmc 1.23 DO j=jMin,jMax
690     DO i=iMin,iMax
691     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
692     ENDDO
693     ENDDO
694     ENDIF
695 adcroft 1.1 C- No-slip BCs impose a drag at bottom
696 jmc 1.23 IF (bottomDragTerms) THEN
697     CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
698     DO j=jMin,jMax
699     DO i=iMin,iMax
700     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
701     ENDDO
702     ENDDO
703     ENDIF
704    
705 mlosch 1.32 #ifdef ALLOW_SHELFICE
706     IF (useShelfIce) THEN
707     CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRU,vF,myThid)
708     DO j=jMin,jMax
709     DO i=iMin,iMax
710     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
711     ENDDO
712     ENDDO
713     ENDIF
714     #endif /* ALLOW_SHELFICE */
715    
716 jmc 1.23 C- endif momViscosity
717 adcroft 1.1 ENDIF
718    
719 jmc 1.12 C-- Forcing term (moved to timestep.F)
720     c IF (momForcing)
721     c & CALL EXTERNAL_FORCING_V(
722     c I iMin,iMax,jMin,jMax,bi,bj,k,
723     c I myTime,myThid)
724 adcroft 1.1
725     C-- Metric terms for curvilinear grid systems
726 adcroft 1.5 IF (useNHMTerms) THEN
727 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
728 adcroft 1.1 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
729     DO j=jMin,jMax
730     DO i=iMin,iMax
731 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j)
732 adcroft 1.1 ENDDO
733     ENDDO
734 adcroft 1.5 ENDIF
735 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
736     C o Spherical polar grid metric terms
737 adcroft 1.1 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
738     DO j=jMin,jMax
739     DO i=iMin,iMax
740 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
741 adcroft 1.1 ENDDO
742     ENDDO
743     ENDIF
744 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
745     C o Cylindrical grid metric terms
746     CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
747     DO j=jMin,jMax
748     DO i=iMin,iMax
749     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
750     ENDDO
751     ENDDO
752 afe 1.19 ENDIF
753 adcroft 1.1
754 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
755 adcroft 1.1
756     C-- Coriolis term
757     C Note. As coded here, coriolis will not work with "thin walls"
758 jmc 1.12 c IF (useCDscheme) THEN
759     c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
760     c ELSE
761     IF (.NOT.useCDscheme) THEN
762     CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
763     DO j=jMin,jMax
764     DO i=iMin,iMax
765     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
766     ENDDO
767     ENDDO
768 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
769     IF ( useDiagnostics )
770     & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
771     #endif
772 jmc 1.12 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
773     DO j=jMin,jMax
774     DO i=iMin,iMax
775     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
776     ENDDO
777     ENDDO
778 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
779     IF ( useDiagnostics )
780     & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
781     #endif
782 jmc 1.12 ENDIF
783    
784 jmc 1.34 C-- 3.D Coriolis term (horizontal momentum, Eastward component: -f'*w)
785 jmc 1.37 IF ( use3dCoriolis ) THEN
786 jmc 1.34 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
787     DO j=jMin,jMax
788     DO i=iMin,iMax
789     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
790     ENDDO
791     ENDDO
792     IF ( usingCurvilinearGrid ) THEN
793     C- presently, non zero angleSinC array only supported with Curvilinear-Grid
794     CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
795     DO j=jMin,jMax
796     DO i=iMin,iMax
797     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
798     ENDDO
799 adcroft 1.6 ENDDO
800 jmc 1.34 ENDIF
801 adcroft 1.6 ENDIF
802 adcroft 1.1
803 jmc 1.23 C-- Set du/dt & dv/dt on boundaries to zero
804     DO j=jMin,jMax
805     DO i=iMin,iMax
806     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
807     guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
808     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
809     gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
810     ENDDO
811     ENDDO
812    
813 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
814     IF ( useDiagnostics ) THEN
815 baylor 1.28 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
816 jmc 1.24 CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),
817     & 'Um_Advec',k,1,2,bi,bj,myThid)
818     CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),
819     & 'Vm_Advec',k,1,2,bi,bj,myThid)
820     IF (momViscosity) THEN
821     CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
822     CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
823     ENDIF
824     ENDIF
825     #endif /* ALLOW_DIAGNOSTICS */
826    
827 adcroft 1.1 RETURN
828     END

  ViewVC Help
Powered by ViewVC 1.1.22