/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.36 - (hide annotations) (download)
Thu May 4 12:29:07 2006 UTC (18 years ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint58f_post, checkpoint58e_post, checkpoint58k_post, checkpoint58l_post, checkpoint58g_post, checkpoint58h_post, checkpoint58j_post, checkpoint58i_post
Changes since 1.35: +5 -1 lines
Need to bracket STORE block of rstar-related variables.

1 heimbach 1.36 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.35 2006/05/03 23:35:11 heimbach Exp $
2 adcroft 1.2 C $Name: $
3 adcroft 1.1
4 adcroft 1.3 CBOI
5     C !TITLE: pkg/mom\_advdiff
6     C !AUTHORS: adcroft@mit.edu
7 adcroft 1.4 C !INTRODUCTION: Flux-form Momentum Equations Package
8 adcroft 1.3 C
9     C Package "mom\_fluxform" provides methods for calculating explicit terms
10     C in the momentum equation cast in flux-form:
11     C \begin{eqnarray*}
12     C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13     C -\nabla \cdot {\bf v} u
14     C -fv
15     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16     C + \mbox{metrics}
17     C \\
18     C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19     C -\nabla \cdot {\bf v} v
20     C +fu
21     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22     C + \mbox{metrics}
23     C \end{eqnarray*}
24     C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25     C stresses as well as internal viscous stresses.
26     CEOI
27    
28 edhill 1.13 #include "MOM_FLUXFORM_OPTIONS.h"
29 adcroft 1.1
30 adcroft 1.3 CBOP
31     C !ROUTINE: MOM_FLUXFORM
32    
33     C !INTERFACE: ==========================================================
34 adcroft 1.1 SUBROUTINE MOM_FLUXFORM(
35     I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 jmc 1.23 I KappaRU, KappaRV,
37 adcroft 1.1 U fVerU, fVerV,
38 jmc 1.23 O guDiss, gvDiss,
39     I myTime, myIter, myThid)
40 adcroft 1.3
41     C !DESCRIPTION:
42     C Calculates all the horizontal accelerations except for the implicit surface
43     C pressure gradient and implciit vertical viscosity.
44 adcroft 1.1
45 adcroft 1.3 C !USES: ===============================================================
46 adcroft 1.1 C == Global variables ==
47 adcroft 1.3 IMPLICIT NONE
48 adcroft 1.1 #include "SIZE.h"
49     #include "DYNVARS.h"
50     #include "FFIELDS.h"
51     #include "EEPARAMS.h"
52     #include "PARAMS.h"
53     #include "GRID.h"
54     #include "SURFACE.h"
55 heimbach 1.35 #ifdef ALLOW_AUTODIFF_TAMC
56     # include "tamc.h"
57     # include "tamc_keys.h"
58     # include "MOM_FLUXFORM.h"
59     #endif
60 adcroft 1.1
61 adcroft 1.3 C !INPUT PARAMETERS: ===================================================
62     C bi,bj :: tile indices
63     C iMin,iMax,jMin,jMAx :: loop ranges
64     C k :: vertical level
65     C kUp :: =1 or 2 for consecutive k
66     C kDown :: =2 or 1 for consecutive k
67     C KappaRU :: vertical viscosity
68     C KappaRV :: vertical viscosity
69     C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
70     C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
71 jmc 1.23 C guDiss :: dissipation tendency (all explicit terms), u component
72     C gvDiss :: dissipation tendency (all explicit terms), v component
73 jmc 1.8 C myTime :: current time
74 adcroft 1.3 C myIter :: current time-step number
75     C myThid :: thread number
76     INTEGER bi,bj,iMin,iMax,jMin,jMax
77     INTEGER k,kUp,kDown
78 adcroft 1.1 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
79     _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
80     _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
81     _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
82 jmc 1.23 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83     _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 jmc 1.8 _RL myTime
85 adcroft 1.2 INTEGER myIter
86 adcroft 1.1 INTEGER myThid
87    
88 adcroft 1.3 C !OUTPUT PARAMETERS: ==================================================
89     C None - updates gU() and gV() in common blocks
90    
91     C !LOCAL VARIABLES: ====================================================
92     C i,j :: loop indices
93     C vF :: viscous flux
94     C v4F :: bi-harmonic viscous flux
95     C cF :: Coriolis acceleration
96     C mT :: Metric terms
97     C fZon :: zonal fluxes
98     C fMer :: meridional fluxes
99 jmc 1.23 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
100 adcroft 1.3 INTEGER i,j
101 heimbach 1.35 #ifdef ALLOW_AUTODIFF_TAMC
102     INTEGER imomkey
103     #endif
104 adcroft 1.3 _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105     _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106     _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107     _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108     _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109     _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 jmc 1.23 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111     _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 jmc 1.33 C afFacMom :: Tracer parameters for turning terms on and off.
113     C vfFacMom
114 adcroft 1.1 C pfFacMom afFacMom - Advective terms
115     C cfFacMom vfFacMom - Eddy viscosity terms
116 jmc 1.33 C mtFacMom pfFacMom - Pressure terms
117 adcroft 1.1 C cfFacMom - Coriolis terms
118     C foFacMom - Forcing
119 jmc 1.33 C mtFacMom - Metric term
120 jmc 1.23 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
121 adcroft 1.1 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122     _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123     _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124     _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127     _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128     _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 jmc 1.8 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130     _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 adcroft 1.18 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 baylor 1.25 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
133     _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
134     _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
135     _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
136     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
137     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
138 adcroft 1.18 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
139     _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
140 adcroft 1.1 _RL uDudxFac
141     _RL AhDudxFac
142     _RL vDudyFac
143     _RL AhDudyFac
144     _RL rVelDudrFac
145     _RL ArDudrFac
146     _RL fuFac
147     _RL mtFacU
148 jmc 1.33 _RL mtNHFacU
149 adcroft 1.1 _RL uDvdxFac
150     _RL AhDvdxFac
151     _RL vDvdyFac
152     _RL AhDvdyFac
153     _RL rVelDvdrFac
154     _RL ArDvdrFac
155     _RL fvFac
156     _RL mtFacV
157 jmc 1.33 _RL mtNHFacV
158 jmc 1.29 _RL sideMaskFac
159 baylor 1.25 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
160 adcroft 1.3 CEOP
161 adcroft 1.1
162 heimbach 1.35 #ifdef ALLOW_AUTODIFF_TAMC
163     act0 = k - 1
164     max0 = Nr
165     act1 = bi - myBxLo(myThid)
166     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
167     act2 = bj - myByLo(myThid)
168     max2 = myByHi(myThid) - myByLo(myThid) + 1
169     act3 = myThid - 1
170     max3 = nTx*nTy
171     act4 = ikey_dynamics - 1
172     imomkey = (act0 + 1)
173     & + act1*max0
174     & + act2*max0*max1
175     & + act3*max0*max1*max2
176     & + act4*max0*max1*max2*max3
177     #endif /* ALLOW_AUTODIFF_TAMC */
178    
179 adcroft 1.1 C Initialise intermediate terms
180 jmc 1.23 DO j=1-OLy,sNy+OLy
181     DO i=1-OLx,sNx+OLx
182 adcroft 1.1 vF(i,j) = 0.
183     v4F(i,j) = 0.
184     cF(i,j) = 0.
185     mT(i,j) = 0.
186     fZon(i,j) = 0.
187     fMer(i,j) = 0.
188 jmc 1.23 fVrUp(i,j)= 0.
189     fVrDw(i,j)= 0.
190     rTransU(i,j)= 0.
191     rTransV(i,j)= 0.
192 adcroft 1.18 strain(i,j) = 0.
193 jmc 1.23 tension(i,j)= 0.
194     guDiss(i,j) = 0.
195     gvDiss(i,j) = 0.
196 heimbach 1.30 #ifdef ALLOW_AUTODIFF_TAMC
197     vort3(i,j) = 0. _d 0
198     strain(i,j) = 0. _d 0
199     tension(i,j) = 0. _d 0
200     #endif
201 adcroft 1.1 ENDDO
202     ENDDO
203    
204     C-- Term by term tracer parmeters
205     C o U momentum equation
206     uDudxFac = afFacMom*1.
207     AhDudxFac = vfFacMom*1.
208     vDudyFac = afFacMom*1.
209     AhDudyFac = vfFacMom*1.
210     rVelDudrFac = afFacMom*1.
211     ArDudrFac = vfFacMom*1.
212 jmc 1.33 mtFacU = mtFacMom*1.
213     mtNHFacU = 1.
214 adcroft 1.1 fuFac = cfFacMom*1.
215     C o V momentum equation
216     uDvdxFac = afFacMom*1.
217     AhDvdxFac = vfFacMom*1.
218     vDvdyFac = afFacMom*1.
219     AhDvdyFac = vfFacMom*1.
220     rVelDvdrFac = afFacMom*1.
221     ArDvdrFac = vfFacMom*1.
222 jmc 1.33 mtFacV = mtFacMom*1.
223     mtNHFacV = 1.
224 adcroft 1.1 fvFac = cfFacMom*1.
225 jmc 1.23
226     IF (implicitViscosity) THEN
227     ArDudrFac = 0.
228     ArDvdrFac = 0.
229     ENDIF
230 adcroft 1.1
231 jmc 1.29 C note: using standard stencil (no mask) results in under-estimating
232     C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
233     IF ( no_slip_sides ) THEN
234     sideMaskFac = sideDragFactor
235     ELSE
236     sideMaskFac = 0. _d 0
237     ENDIF
238    
239 adcroft 1.1 IF ( no_slip_bottom
240     & .OR. bottomDragQuadratic.NE.0.
241     & .OR. bottomDragLinear.NE.0.) THEN
242     bottomDragTerms=.TRUE.
243     ELSE
244     bottomDragTerms=.FALSE.
245     ENDIF
246    
247     C-- Calculate open water fraction at vorticity points
248     CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
249    
250     C---- Calculate common quantities used in both U and V equations
251     C Calculate tracer cell face open areas
252     DO j=1-OLy,sNy+OLy
253     DO i=1-OLx,sNx+OLx
254     xA(i,j) = _dyG(i,j,bi,bj)
255     & *drF(k)*_hFacW(i,j,k,bi,bj)
256     yA(i,j) = _dxG(i,j,bi,bj)
257     & *drF(k)*_hFacS(i,j,k,bi,bj)
258     ENDDO
259     ENDDO
260    
261     C Make local copies of horizontal flow field
262     DO j=1-OLy,sNy+OLy
263     DO i=1-OLx,sNx+OLx
264     uFld(i,j) = uVel(i,j,k,bi,bj)
265     vFld(i,j) = vVel(i,j,k,bi,bj)
266     ENDDO
267     ENDDO
268    
269     C Calculate velocity field "volume transports" through tracer cell faces.
270     DO j=1-OLy,sNy+OLy
271     DO i=1-OLx,sNx+OLx
272     uTrans(i,j) = uFld(i,j)*xA(i,j)
273     vTrans(i,j) = vFld(i,j)*yA(i,j)
274     ENDDO
275     ENDDO
276    
277 baylor 1.25 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
278 jmc 1.29 IF ( momViscosity) THEN
279     CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
280     CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
281     CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
282     CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
283     DO j=1-Oly,sNy+Oly
284     DO i=1-Olx,sNx+Olx
285     IF ( hFacZ(i,j).EQ.0. ) THEN
286     vort3(i,j) = sideMaskFac*vort3(i,j)
287     strain(i,j) = sideMaskFac*strain(i,j)
288     ENDIF
289     ENDDO
290     ENDDO
291     #ifdef ALLOW_DIAGNOSTICS
292     IF ( useDiagnostics ) THEN
293     CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
294     CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
295     CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
296     CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
297     ENDIF
298     #endif
299     ENDIF
300 adcroft 1.18
301 jmc 1.8 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
302     IF (momAdvection.AND.k.EQ.1) THEN
303    
304     C- Calculate vertical transports above U & V points (West & South face):
305 heimbach 1.35
306     #ifdef ALLOW_AUTODIFF_TAMC
307 heimbach 1.36 # ifdef NONLIN_FRSURF
308     # ifndef DISABLE_RSTAR_CODE
309 heimbach 1.35 CADJ STORE dwtransc(:,:,bi,bj) =
310     CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
311     CADJ STORE dwtransu(:,:,bi,bj) =
312     CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
313     CADJ STORE dwtransv(:,:,bi,bj) =
314     CADJ & comlev1_bibj_k, key = imomkey, byte = isbyte
315 heimbach 1.36 # endif
316     # endif /* NONLIN_FRSURF */
317 heimbach 1.35 #endif /* ALLOW_AUTODIFF_TAMC */
318 jmc 1.23 CALL MOM_CALC_RTRANS( k, bi, bj,
319     O rTransU, rTransV,
320     I myTime, myIter, myThid)
321 jmc 1.8
322     C- Free surface correction term (flux at k=1)
323 jmc 1.23 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
324     O fVerU(1-OLx,1-OLy,kUp), myThid )
325 jmc 1.8
326 jmc 1.23 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
327     O fVerV(1-OLx,1-OLy,kUp), myThid )
328 jmc 1.8
329     C--- endif momAdvection & k=1
330     ENDIF
331    
332    
333     C--- Calculate vertical transports (at k+1) below U & V points :
334     IF (momAdvection) THEN
335 jmc 1.23 CALL MOM_CALC_RTRANS( k+1, bi, bj,
336     O rTransU, rTransV,
337     I myTime, myIter, myThid)
338 jmc 1.8 ENDIF
339    
340 baylor 1.25 IF (momViscosity) THEN
341     CALL MOM_CALC_VISC(
342     I bi,bj,k,
343     O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
344     O harmonic,biharmonic,useVariableViscosity,
345 jmc 1.26 I hDiv,vort3,tension,strain,KE,hFacZ,
346 baylor 1.25 I myThid)
347     ENDIF
348 jmc 1.8
349 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
350    
351 adcroft 1.1 C---- Zonal momentum equation starts here
352    
353 jmc 1.23 IF (momAdvection) THEN
354     C--- Calculate mean fluxes (advection) between cells for zonal flow.
355 adcroft 1.1
356     C-- Zonal flux (fZon is at east face of "u" cell)
357 jmc 1.23 C Mean flow component of zonal flux -> fZon
358     CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
359 adcroft 1.1
360     C-- Meridional flux (fMer is at south face of "u" cell)
361 jmc 1.23 C Mean flow component of meridional flux -> fMer
362     CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
363 adcroft 1.1
364     C-- Vertical flux (fVer is at upper face of "u" cell)
365 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVer
366     CALL MOM_U_ADV_WU(
367     I bi,bj,k+1,uVel,wVel,rTransU,
368     O fVerU(1-OLx,1-OLy,kDown), myThid )
369 adcroft 1.1
370     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
371 jmc 1.23 DO j=jMin,jMax
372     DO i=iMin,iMax
373     gU(i,j,k,bi,bj) =
374 adcroft 1.1 #ifdef OLD_UV_GEOM
375 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
376     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
377 adcroft 1.1 #else
378 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
379     & *recip_rAw(i,j,bi,bj)
380 adcroft 1.1 #endif
381 jmc 1.23 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
382     & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
383     & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
384     & )
385     ENDDO
386     ENDDO
387 adcroft 1.1
388 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
389     IF ( useDiagnostics ) THEN
390     CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)
391     CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)
392     CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),
393     & 'ADVrE_Um',k,1,2,bi,bj,myThid)
394     ENDIF
395     #endif
396    
397 jmc 1.8 #ifdef NONLIN_FRSURF
398     C-- account for 3.D divergence of the flow in rStar coordinate:
399 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
400 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
401     DO j=jMin,jMax
402     DO i=iMin,iMax
403     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
404 jmc 1.8 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
405     & *uVel(i,j,k,bi,bj)
406 jmc 1.23 ENDDO
407     ENDDO
408     ENDIF
409     IF ( select_rStar.LT.0 ) THEN
410     DO j=jMin,jMax
411     DO i=iMin,iMax
412     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
413     & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
414     ENDDO
415     ENDDO
416     ENDIF
417 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
418 jmc 1.23 #endif /* NONLIN_FRSURF */
419    
420     ELSE
421     C- if momAdvection / else
422     DO j=1-OLy,sNy+OLy
423     DO i=1-OLx,sNx+OLx
424     gU(i,j,k,bi,bj) = 0. _d 0
425     ENDDO
426 jmc 1.8 ENDDO
427 jmc 1.23
428     C- endif momAdvection.
429 jmc 1.8 ENDIF
430 jmc 1.23
431     IF (momViscosity) THEN
432     C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
433    
434     C Bi-harmonic term del^2 U -> v4F
435 baylor 1.25 IF (biharmonic)
436 jmc 1.23 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
437    
438     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
439 baylor 1.25 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
440 baylor 1.27 I viscAh_D,viscA4_D,myThid)
441 jmc 1.23
442     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
443 baylor 1.25 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
444 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
445 jmc 1.23
446     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
447     IF (.NOT.implicitViscosity) THEN
448     CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
449     CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
450     ENDIF
451    
452     C-- Tendency is minus divergence of the fluxes
453     DO j=jMin,jMax
454     DO i=iMin,iMax
455     guDiss(i,j) =
456     #ifdef OLD_UV_GEOM
457     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
458     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
459     #else
460     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
461     & *recip_rAw(i,j,bi,bj)
462     #endif
463     & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
464     & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
465     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
466     & )
467     ENDDO
468 jmc 1.8 ENDDO
469    
470 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
471     IF ( useDiagnostics ) THEN
472     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
473     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
474     IF (.NOT.implicitViscosity)
475     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
476     ENDIF
477     #endif
478    
479 adcroft 1.1 C-- No-slip and drag BCs appear as body forces in cell abutting topography
480 jmc 1.23 IF (no_slip_sides) THEN
481 adcroft 1.1 C- No-slip BCs impose a drag at walls...
482 baylor 1.27 CALL MOM_U_SIDEDRAG(
483     I bi,bj,k,
484     I uFld, v4f, hFacZ,
485     I viscAh_Z,viscA4_Z,
486     I harmonic,biharmonic,useVariableViscosity,
487     O vF,
488     I myThid)
489 jmc 1.23 DO j=jMin,jMax
490     DO i=iMin,iMax
491     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
492     ENDDO
493     ENDDO
494     ENDIF
495 adcroft 1.1 C- No-slip BCs impose a drag at bottom
496 jmc 1.23 IF (bottomDragTerms) THEN
497     CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
498     DO j=jMin,jMax
499     DO i=iMin,iMax
500     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
501     ENDDO
502     ENDDO
503     ENDIF
504    
505 mlosch 1.32 #ifdef ALLOW_SHELFICE
506     IF (useShelfIce) THEN
507     CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
508     DO j=jMin,jMax
509     DO i=iMin,iMax
510     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
511     ENDDO
512     ENDDO
513     ENDIF
514     #endif /* ALLOW_SHELFICE */
515    
516 jmc 1.23 C- endif momViscosity
517 adcroft 1.1 ENDIF
518    
519 jmc 1.12 C-- Forcing term (moved to timestep.F)
520     c IF (momForcing)
521     c & CALL EXTERNAL_FORCING_U(
522     c I iMin,iMax,jMin,jMax,bi,bj,k,
523     c I myTime,myThid)
524 adcroft 1.1
525     C-- Metric terms for curvilinear grid systems
526 adcroft 1.5 IF (useNHMTerms) THEN
527 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
528 adcroft 1.1 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
529     DO j=jMin,jMax
530     DO i=iMin,iMax
531 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j)
532 adcroft 1.1 ENDDO
533     ENDDO
534 adcroft 1.5 ENDIF
535 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
536     C o Spherical polar grid metric terms
537 adcroft 1.1 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
538     DO j=jMin,jMax
539     DO i=iMin,iMax
540 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
541 adcroft 1.1 ENDDO
542     ENDDO
543 afe 1.20 ENDIF
544 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
545     C o Cylindrical grid metric terms
546     CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
547     DO j=jMin,jMax
548     DO i=iMin,iMax
549     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
550     ENDDO
551 afe 1.19 ENDDO
552 adcroft 1.1 ENDIF
553    
554 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
555 adcroft 1.1
556     C---- Meridional momentum equation starts here
557    
558 jmc 1.23 IF (momAdvection) THEN
559     C--- Calculate mean fluxes (advection) between cells for meridional flow.
560     C Mean flow component of zonal flux -> fZon
561     CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
562 adcroft 1.1
563     C-- Meridional flux (fMer is at north face of "v" cell)
564 jmc 1.23 C Mean flow component of meridional flux -> fMer
565     CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
566 adcroft 1.1
567     C-- Vertical flux (fVer is at upper face of "v" cell)
568 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVerV
569     CALL MOM_V_ADV_WV(
570     I bi,bj,k+1,vVel,wVel,rTransV,
571     O fVerV(1-OLx,1-OLy,kDown), myThid )
572 adcroft 1.1
573     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
574 jmc 1.23 DO j=jMin,jMax
575     DO i=iMin,iMax
576     gV(i,j,k,bi,bj) =
577 adcroft 1.1 #ifdef OLD_UV_GEOM
578 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
579     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
580 adcroft 1.1 #else
581 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
582     & *recip_rAs(i,j,bi,bj)
583 adcroft 1.1 #endif
584 jmc 1.23 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
585     & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
586     & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
587     & )
588 jmc 1.24 ENDDO
589     ENDDO
590    
591     #ifdef ALLOW_DIAGNOSTICS
592     IF ( useDiagnostics ) THEN
593     CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)
594     CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)
595     CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),
596     & 'ADVrE_Vm',k,1,2,bi,bj,myThid)
597     ENDIF
598     #endif
599 adcroft 1.1
600 jmc 1.8 #ifdef NONLIN_FRSURF
601     C-- account for 3.D divergence of the flow in rStar coordinate:
602 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
603 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
604     DO j=jMin,jMax
605     DO i=iMin,iMax
606     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
607 jmc 1.8 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
608     & *vVel(i,j,k,bi,bj)
609 jmc 1.23 ENDDO
610     ENDDO
611     ENDIF
612     IF ( select_rStar.LT.0 ) THEN
613     DO j=jMin,jMax
614     DO i=iMin,iMax
615     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
616     & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
617     ENDDO
618     ENDDO
619     ENDIF
620 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
621 jmc 1.23 #endif /* NONLIN_FRSURF */
622    
623     ELSE
624     C- if momAdvection / else
625     DO j=1-OLy,sNy+OLy
626     DO i=1-OLx,sNx+OLx
627     gV(i,j,k,bi,bj) = 0. _d 0
628     ENDDO
629 jmc 1.8 ENDDO
630 jmc 1.23
631     C- endif momAdvection.
632 jmc 1.8 ENDIF
633 jmc 1.23
634     IF (momViscosity) THEN
635     C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
636     C Bi-harmonic term del^2 V -> v4F
637 baylor 1.25 IF (biharmonic)
638 jmc 1.23 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
639    
640     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
641 baylor 1.25 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
642 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
643 jmc 1.23
644     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
645 baylor 1.25 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
646 baylor 1.27 I viscAh_D,viscA4_D,myThid)
647 jmc 1.23
648     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
649     IF (.NOT.implicitViscosity) THEN
650     CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
651     CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
652     ENDIF
653    
654     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
655     DO j=jMin,jMax
656     DO i=iMin,iMax
657     gvDiss(i,j) =
658     #ifdef OLD_UV_GEOM
659     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
660     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
661     #else
662     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
663     & *recip_rAs(i,j,bi,bj)
664     #endif
665     & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
666     & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
667     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
668     & )
669     ENDDO
670 jmc 1.8 ENDDO
671    
672 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
673     IF ( useDiagnostics ) THEN
674     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
675     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
676     IF (.NOT.implicitViscosity)
677     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
678     ENDIF
679     #endif
680    
681 adcroft 1.1 C-- No-slip and drag BCs appear as body forces in cell abutting topography
682 mlosch 1.32 IF (no_slip_sides) THEN
683 adcroft 1.1 C- No-slip BCs impose a drag at walls...
684 baylor 1.27 CALL MOM_V_SIDEDRAG(
685     I bi,bj,k,
686     I vFld, v4f, hFacZ,
687     I viscAh_Z,viscA4_Z,
688     I harmonic,biharmonic,useVariableViscosity,
689     O vF,
690     I myThid)
691 jmc 1.23 DO j=jMin,jMax
692     DO i=iMin,iMax
693     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
694     ENDDO
695     ENDDO
696     ENDIF
697 adcroft 1.1 C- No-slip BCs impose a drag at bottom
698 jmc 1.23 IF (bottomDragTerms) THEN
699     CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
700     DO j=jMin,jMax
701     DO i=iMin,iMax
702     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
703     ENDDO
704     ENDDO
705     ENDIF
706    
707 mlosch 1.32 #ifdef ALLOW_SHELFICE
708     IF (useShelfIce) THEN
709     CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRU,vF,myThid)
710     DO j=jMin,jMax
711     DO i=iMin,iMax
712     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
713     ENDDO
714     ENDDO
715     ENDIF
716     #endif /* ALLOW_SHELFICE */
717    
718 jmc 1.23 C- endif momViscosity
719 adcroft 1.1 ENDIF
720    
721 jmc 1.12 C-- Forcing term (moved to timestep.F)
722     c IF (momForcing)
723     c & CALL EXTERNAL_FORCING_V(
724     c I iMin,iMax,jMin,jMax,bi,bj,k,
725     c I myTime,myThid)
726 adcroft 1.1
727     C-- Metric terms for curvilinear grid systems
728 adcroft 1.5 IF (useNHMTerms) THEN
729 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
730 adcroft 1.1 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
731     DO j=jMin,jMax
732     DO i=iMin,iMax
733 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j)
734 adcroft 1.1 ENDDO
735     ENDDO
736 adcroft 1.5 ENDIF
737 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
738     C o Spherical polar grid metric terms
739 adcroft 1.1 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
740     DO j=jMin,jMax
741     DO i=iMin,iMax
742 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
743 adcroft 1.1 ENDDO
744     ENDDO
745     ENDIF
746 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
747     C o Cylindrical grid metric terms
748     CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
749     DO j=jMin,jMax
750     DO i=iMin,iMax
751     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
752     ENDDO
753     ENDDO
754 afe 1.19 ENDIF
755 adcroft 1.1
756 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
757 adcroft 1.1
758     C-- Coriolis term
759     C Note. As coded here, coriolis will not work with "thin walls"
760 jmc 1.12 c IF (useCDscheme) THEN
761     c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
762     c ELSE
763     IF (.NOT.useCDscheme) THEN
764     CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
765     DO j=jMin,jMax
766     DO i=iMin,iMax
767     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
768     ENDDO
769     ENDDO
770 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
771     IF ( useDiagnostics )
772     & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
773     #endif
774 jmc 1.12 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
775     DO j=jMin,jMax
776     DO i=iMin,iMax
777     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
778     ENDDO
779     ENDDO
780 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
781     IF ( useDiagnostics )
782     & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
783     #endif
784 jmc 1.12 ENDIF
785    
786 jmc 1.34 C-- 3.D Coriolis term (horizontal momentum, Eastward component: -f'*w)
787     IF ( nonHydrostatic.OR.quasiHydrostatic ) THEN
788     CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
789     DO j=jMin,jMax
790     DO i=iMin,iMax
791     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
792     ENDDO
793     ENDDO
794     IF ( usingCurvilinearGrid ) THEN
795     C- presently, non zero angleSinC array only supported with Curvilinear-Grid
796     CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
797     DO j=jMin,jMax
798     DO i=iMin,iMax
799     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
800     ENDDO
801 adcroft 1.6 ENDDO
802 jmc 1.34 ENDIF
803 adcroft 1.6 ENDIF
804 adcroft 1.1
805 jmc 1.23 C-- Set du/dt & dv/dt on boundaries to zero
806     DO j=jMin,jMax
807     DO i=iMin,iMax
808     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
809     guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
810     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
811     gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
812     ENDDO
813     ENDDO
814    
815 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
816     IF ( useDiagnostics ) THEN
817 baylor 1.28 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
818 jmc 1.24 CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),
819     & 'Um_Advec',k,1,2,bi,bj,myThid)
820     CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),
821     & 'Vm_Advec',k,1,2,bi,bj,myThid)
822     IF (momViscosity) THEN
823     CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
824     CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
825     ENDIF
826     ENDIF
827     #endif /* ALLOW_DIAGNOSTICS */
828    
829 adcroft 1.1 RETURN
830     END

  ViewVC Help
Powered by ViewVC 1.1.22