/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.34 - (hide annotations) (download)
Thu Mar 30 19:49:41 2006 UTC (18 years, 1 month ago) by jmc
Branch: MAIN
CVS Tags: checkpoint58d_post
Changes since 1.33: +17 -7 lines
3.D Coriolis (NH): deal with general orientation of the grid X-axis.

1 jmc 1.34 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.33 2006/03/17 23:18:05 jmc Exp $
2 adcroft 1.2 C $Name: $
3 adcroft 1.1
4 adcroft 1.3 CBOI
5     C !TITLE: pkg/mom\_advdiff
6     C !AUTHORS: adcroft@mit.edu
7 adcroft 1.4 C !INTRODUCTION: Flux-form Momentum Equations Package
8 adcroft 1.3 C
9     C Package "mom\_fluxform" provides methods for calculating explicit terms
10     C in the momentum equation cast in flux-form:
11     C \begin{eqnarray*}
12     C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13     C -\nabla \cdot {\bf v} u
14     C -fv
15     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16     C + \mbox{metrics}
17     C \\
18     C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19     C -\nabla \cdot {\bf v} v
20     C +fu
21     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22     C + \mbox{metrics}
23     C \end{eqnarray*}
24     C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25     C stresses as well as internal viscous stresses.
26     CEOI
27    
28 edhill 1.13 #include "MOM_FLUXFORM_OPTIONS.h"
29 adcroft 1.1
30 adcroft 1.3 CBOP
31     C !ROUTINE: MOM_FLUXFORM
32    
33     C !INTERFACE: ==========================================================
34 adcroft 1.1 SUBROUTINE MOM_FLUXFORM(
35     I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 jmc 1.23 I KappaRU, KappaRV,
37 adcroft 1.1 U fVerU, fVerV,
38 jmc 1.23 O guDiss, gvDiss,
39     I myTime, myIter, myThid)
40 adcroft 1.3
41     C !DESCRIPTION:
42     C Calculates all the horizontal accelerations except for the implicit surface
43     C pressure gradient and implciit vertical viscosity.
44 adcroft 1.1
45 adcroft 1.3 C !USES: ===============================================================
46 adcroft 1.1 C == Global variables ==
47 adcroft 1.3 IMPLICIT NONE
48 adcroft 1.1 #include "SIZE.h"
49     #include "DYNVARS.h"
50     #include "FFIELDS.h"
51     #include "EEPARAMS.h"
52     #include "PARAMS.h"
53     #include "GRID.h"
54     #include "SURFACE.h"
55    
56 adcroft 1.3 C !INPUT PARAMETERS: ===================================================
57     C bi,bj :: tile indices
58     C iMin,iMax,jMin,jMAx :: loop ranges
59     C k :: vertical level
60     C kUp :: =1 or 2 for consecutive k
61     C kDown :: =2 or 1 for consecutive k
62     C KappaRU :: vertical viscosity
63     C KappaRV :: vertical viscosity
64     C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
65     C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
66 jmc 1.23 C guDiss :: dissipation tendency (all explicit terms), u component
67     C gvDiss :: dissipation tendency (all explicit terms), v component
68 jmc 1.8 C myTime :: current time
69 adcroft 1.3 C myIter :: current time-step number
70     C myThid :: thread number
71     INTEGER bi,bj,iMin,iMax,jMin,jMax
72     INTEGER k,kUp,kDown
73 adcroft 1.1 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74     _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75     _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
76     _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
77 jmc 1.23 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78     _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 jmc 1.8 _RL myTime
80 adcroft 1.2 INTEGER myIter
81 adcroft 1.1 INTEGER myThid
82    
83 adcroft 1.3 C !OUTPUT PARAMETERS: ==================================================
84     C None - updates gU() and gV() in common blocks
85    
86     C !LOCAL VARIABLES: ====================================================
87     C i,j :: loop indices
88     C vF :: viscous flux
89     C v4F :: bi-harmonic viscous flux
90     C cF :: Coriolis acceleration
91     C mT :: Metric terms
92     C fZon :: zonal fluxes
93     C fMer :: meridional fluxes
94 jmc 1.23 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
95 adcroft 1.3 INTEGER i,j
96     _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97     _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98     _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99     _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100     _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101     _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 jmc 1.23 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103     _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 jmc 1.33 C afFacMom :: Tracer parameters for turning terms on and off.
105     C vfFacMom
106 adcroft 1.1 C pfFacMom afFacMom - Advective terms
107     C cfFacMom vfFacMom - Eddy viscosity terms
108 jmc 1.33 C mtFacMom pfFacMom - Pressure terms
109 adcroft 1.1 C cfFacMom - Coriolis terms
110     C foFacMom - Forcing
111 jmc 1.33 C mtFacMom - Metric term
112 jmc 1.23 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
113 adcroft 1.1 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114     _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115     _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116     _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119     _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120     _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 jmc 1.8 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122     _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 adcroft 1.18 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 baylor 1.25 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125     _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126     _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127     _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 adcroft 1.18 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131     _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 adcroft 1.1 _RL uDudxFac
133     _RL AhDudxFac
134     _RL vDudyFac
135     _RL AhDudyFac
136     _RL rVelDudrFac
137     _RL ArDudrFac
138     _RL fuFac
139     _RL mtFacU
140 jmc 1.33 _RL mtNHFacU
141 adcroft 1.1 _RL uDvdxFac
142     _RL AhDvdxFac
143     _RL vDvdyFac
144     _RL AhDvdyFac
145     _RL rVelDvdrFac
146     _RL ArDvdrFac
147     _RL fvFac
148     _RL mtFacV
149 jmc 1.33 _RL mtNHFacV
150 jmc 1.29 _RL sideMaskFac
151 baylor 1.25 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
152 adcroft 1.3 CEOP
153 adcroft 1.1
154     C Initialise intermediate terms
155 jmc 1.23 DO j=1-OLy,sNy+OLy
156     DO i=1-OLx,sNx+OLx
157 adcroft 1.1 vF(i,j) = 0.
158     v4F(i,j) = 0.
159     cF(i,j) = 0.
160     mT(i,j) = 0.
161     fZon(i,j) = 0.
162     fMer(i,j) = 0.
163 jmc 1.23 fVrUp(i,j)= 0.
164     fVrDw(i,j)= 0.
165     rTransU(i,j)= 0.
166     rTransV(i,j)= 0.
167 adcroft 1.18 strain(i,j) = 0.
168 jmc 1.23 tension(i,j)= 0.
169     guDiss(i,j) = 0.
170     gvDiss(i,j) = 0.
171 heimbach 1.30 #ifdef ALLOW_AUTODIFF_TAMC
172     vort3(i,j) = 0. _d 0
173     strain(i,j) = 0. _d 0
174     tension(i,j) = 0. _d 0
175     #endif
176 adcroft 1.1 ENDDO
177     ENDDO
178    
179     C-- Term by term tracer parmeters
180     C o U momentum equation
181     uDudxFac = afFacMom*1.
182     AhDudxFac = vfFacMom*1.
183     vDudyFac = afFacMom*1.
184     AhDudyFac = vfFacMom*1.
185     rVelDudrFac = afFacMom*1.
186     ArDudrFac = vfFacMom*1.
187 jmc 1.33 mtFacU = mtFacMom*1.
188     mtNHFacU = 1.
189 adcroft 1.1 fuFac = cfFacMom*1.
190     C o V momentum equation
191     uDvdxFac = afFacMom*1.
192     AhDvdxFac = vfFacMom*1.
193     vDvdyFac = afFacMom*1.
194     AhDvdyFac = vfFacMom*1.
195     rVelDvdrFac = afFacMom*1.
196     ArDvdrFac = vfFacMom*1.
197 jmc 1.33 mtFacV = mtFacMom*1.
198     mtNHFacV = 1.
199 adcroft 1.1 fvFac = cfFacMom*1.
200 jmc 1.23
201     IF (implicitViscosity) THEN
202     ArDudrFac = 0.
203     ArDvdrFac = 0.
204     ENDIF
205 adcroft 1.1
206 jmc 1.29 C note: using standard stencil (no mask) results in under-estimating
207     C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
208     IF ( no_slip_sides ) THEN
209     sideMaskFac = sideDragFactor
210     ELSE
211     sideMaskFac = 0. _d 0
212     ENDIF
213    
214 adcroft 1.1 IF ( no_slip_bottom
215     & .OR. bottomDragQuadratic.NE.0.
216     & .OR. bottomDragLinear.NE.0.) THEN
217     bottomDragTerms=.TRUE.
218     ELSE
219     bottomDragTerms=.FALSE.
220     ENDIF
221    
222     C-- Calculate open water fraction at vorticity points
223     CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
224    
225     C---- Calculate common quantities used in both U and V equations
226     C Calculate tracer cell face open areas
227     DO j=1-OLy,sNy+OLy
228     DO i=1-OLx,sNx+OLx
229     xA(i,j) = _dyG(i,j,bi,bj)
230     & *drF(k)*_hFacW(i,j,k,bi,bj)
231     yA(i,j) = _dxG(i,j,bi,bj)
232     & *drF(k)*_hFacS(i,j,k,bi,bj)
233     ENDDO
234     ENDDO
235    
236     C Make local copies of horizontal flow field
237     DO j=1-OLy,sNy+OLy
238     DO i=1-OLx,sNx+OLx
239     uFld(i,j) = uVel(i,j,k,bi,bj)
240     vFld(i,j) = vVel(i,j,k,bi,bj)
241     ENDDO
242     ENDDO
243    
244     C Calculate velocity field "volume transports" through tracer cell faces.
245     DO j=1-OLy,sNy+OLy
246     DO i=1-OLx,sNx+OLx
247     uTrans(i,j) = uFld(i,j)*xA(i,j)
248     vTrans(i,j) = vFld(i,j)*yA(i,j)
249     ENDDO
250     ENDDO
251    
252 baylor 1.25 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
253 jmc 1.29 IF ( momViscosity) THEN
254     CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
255     CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
256     CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
257     CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
258     DO j=1-Oly,sNy+Oly
259     DO i=1-Olx,sNx+Olx
260     IF ( hFacZ(i,j).EQ.0. ) THEN
261     vort3(i,j) = sideMaskFac*vort3(i,j)
262     strain(i,j) = sideMaskFac*strain(i,j)
263     ENDIF
264     ENDDO
265     ENDDO
266     #ifdef ALLOW_DIAGNOSTICS
267     IF ( useDiagnostics ) THEN
268     CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
269     CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
270     CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
271     CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
272     ENDIF
273     #endif
274     ENDIF
275 adcroft 1.18
276 jmc 1.8 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
277     IF (momAdvection.AND.k.EQ.1) THEN
278    
279     C- Calculate vertical transports above U & V points (West & South face):
280 jmc 1.23 CALL MOM_CALC_RTRANS( k, bi, bj,
281     O rTransU, rTransV,
282     I myTime, myIter, myThid)
283 jmc 1.8
284     C- Free surface correction term (flux at k=1)
285 jmc 1.23 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
286     O fVerU(1-OLx,1-OLy,kUp), myThid )
287 jmc 1.8
288 jmc 1.23 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
289     O fVerV(1-OLx,1-OLy,kUp), myThid )
290 jmc 1.8
291     C--- endif momAdvection & k=1
292     ENDIF
293    
294    
295     C--- Calculate vertical transports (at k+1) below U & V points :
296     IF (momAdvection) THEN
297 jmc 1.23 CALL MOM_CALC_RTRANS( k+1, bi, bj,
298     O rTransU, rTransV,
299     I myTime, myIter, myThid)
300 jmc 1.8 ENDIF
301    
302 baylor 1.25 IF (momViscosity) THEN
303     CALL MOM_CALC_VISC(
304     I bi,bj,k,
305     O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
306     O harmonic,biharmonic,useVariableViscosity,
307 jmc 1.26 I hDiv,vort3,tension,strain,KE,hFacZ,
308 baylor 1.25 I myThid)
309     ENDIF
310 jmc 1.8
311 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
312    
313 adcroft 1.1 C---- Zonal momentum equation starts here
314    
315 jmc 1.23 IF (momAdvection) THEN
316     C--- Calculate mean fluxes (advection) between cells for zonal flow.
317 adcroft 1.1
318     C-- Zonal flux (fZon is at east face of "u" cell)
319 jmc 1.23 C Mean flow component of zonal flux -> fZon
320     CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
321 adcroft 1.1
322     C-- Meridional flux (fMer is at south face of "u" cell)
323 jmc 1.23 C Mean flow component of meridional flux -> fMer
324     CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
325 adcroft 1.1
326     C-- Vertical flux (fVer is at upper face of "u" cell)
327 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVer
328     CALL MOM_U_ADV_WU(
329     I bi,bj,k+1,uVel,wVel,rTransU,
330     O fVerU(1-OLx,1-OLy,kDown), myThid )
331 adcroft 1.1
332     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
333 jmc 1.23 DO j=jMin,jMax
334     DO i=iMin,iMax
335     gU(i,j,k,bi,bj) =
336 adcroft 1.1 #ifdef OLD_UV_GEOM
337 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
338     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
339 adcroft 1.1 #else
340 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
341     & *recip_rAw(i,j,bi,bj)
342 adcroft 1.1 #endif
343 jmc 1.23 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
344     & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
345     & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
346     & )
347     ENDDO
348     ENDDO
349 adcroft 1.1
350 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
351     IF ( useDiagnostics ) THEN
352     CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)
353     CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)
354     CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),
355     & 'ADVrE_Um',k,1,2,bi,bj,myThid)
356     ENDIF
357     #endif
358    
359 jmc 1.8 #ifdef NONLIN_FRSURF
360     C-- account for 3.D divergence of the flow in rStar coordinate:
361 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
362 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
363     DO j=jMin,jMax
364     DO i=iMin,iMax
365     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
366 jmc 1.8 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
367     & *uVel(i,j,k,bi,bj)
368 jmc 1.23 ENDDO
369     ENDDO
370     ENDIF
371     IF ( select_rStar.LT.0 ) THEN
372     DO j=jMin,jMax
373     DO i=iMin,iMax
374     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
375     & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
376     ENDDO
377     ENDDO
378     ENDIF
379 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
380 jmc 1.23 #endif /* NONLIN_FRSURF */
381    
382     ELSE
383     C- if momAdvection / else
384     DO j=1-OLy,sNy+OLy
385     DO i=1-OLx,sNx+OLx
386     gU(i,j,k,bi,bj) = 0. _d 0
387     ENDDO
388 jmc 1.8 ENDDO
389 jmc 1.23
390     C- endif momAdvection.
391 jmc 1.8 ENDIF
392 jmc 1.23
393     IF (momViscosity) THEN
394     C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
395    
396     C Bi-harmonic term del^2 U -> v4F
397 baylor 1.25 IF (biharmonic)
398 jmc 1.23 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
399    
400     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
401 baylor 1.25 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
402 baylor 1.27 I viscAh_D,viscA4_D,myThid)
403 jmc 1.23
404     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
405 baylor 1.25 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
406 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
407 jmc 1.23
408     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
409     IF (.NOT.implicitViscosity) THEN
410     CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
411     CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
412     ENDIF
413    
414     C-- Tendency is minus divergence of the fluxes
415     DO j=jMin,jMax
416     DO i=iMin,iMax
417     guDiss(i,j) =
418     #ifdef OLD_UV_GEOM
419     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
420     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
421     #else
422     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
423     & *recip_rAw(i,j,bi,bj)
424     #endif
425     & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
426     & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
427     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
428     & )
429     ENDDO
430 jmc 1.8 ENDDO
431    
432 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
433     IF ( useDiagnostics ) THEN
434     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
435     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
436     IF (.NOT.implicitViscosity)
437     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
438     ENDIF
439     #endif
440    
441 adcroft 1.1 C-- No-slip and drag BCs appear as body forces in cell abutting topography
442 jmc 1.23 IF (no_slip_sides) THEN
443 adcroft 1.1 C- No-slip BCs impose a drag at walls...
444 baylor 1.27 CALL MOM_U_SIDEDRAG(
445     I bi,bj,k,
446     I uFld, v4f, hFacZ,
447     I viscAh_Z,viscA4_Z,
448     I harmonic,biharmonic,useVariableViscosity,
449     O vF,
450     I myThid)
451 jmc 1.23 DO j=jMin,jMax
452     DO i=iMin,iMax
453     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
454     ENDDO
455     ENDDO
456     ENDIF
457 adcroft 1.1 C- No-slip BCs impose a drag at bottom
458 jmc 1.23 IF (bottomDragTerms) THEN
459     CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
460     DO j=jMin,jMax
461     DO i=iMin,iMax
462     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
463     ENDDO
464     ENDDO
465     ENDIF
466    
467 mlosch 1.32 #ifdef ALLOW_SHELFICE
468     IF (useShelfIce) THEN
469     CALL SHELFICE_U_DRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
470     DO j=jMin,jMax
471     DO i=iMin,iMax
472     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
473     ENDDO
474     ENDDO
475     ENDIF
476     #endif /* ALLOW_SHELFICE */
477    
478 jmc 1.23 C- endif momViscosity
479 adcroft 1.1 ENDIF
480    
481 jmc 1.12 C-- Forcing term (moved to timestep.F)
482     c IF (momForcing)
483     c & CALL EXTERNAL_FORCING_U(
484     c I iMin,iMax,jMin,jMax,bi,bj,k,
485     c I myTime,myThid)
486 adcroft 1.1
487     C-- Metric terms for curvilinear grid systems
488 adcroft 1.5 IF (useNHMTerms) THEN
489 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
490 adcroft 1.1 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
491     DO j=jMin,jMax
492     DO i=iMin,iMax
493 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtNHFacU*mT(i,j)
494 adcroft 1.1 ENDDO
495     ENDDO
496 adcroft 1.5 ENDIF
497 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
498     C o Spherical polar grid metric terms
499 adcroft 1.1 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
500     DO j=jMin,jMax
501     DO i=iMin,iMax
502 jmc 1.33 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
503 adcroft 1.1 ENDDO
504     ENDDO
505 afe 1.20 ENDIF
506 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
507     C o Cylindrical grid metric terms
508     CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
509     DO j=jMin,jMax
510     DO i=iMin,iMax
511     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mtFacU*mT(i,j)
512     ENDDO
513 afe 1.19 ENDDO
514 adcroft 1.1 ENDIF
515    
516 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
517 adcroft 1.1
518     C---- Meridional momentum equation starts here
519    
520 jmc 1.23 IF (momAdvection) THEN
521     C--- Calculate mean fluxes (advection) between cells for meridional flow.
522     C Mean flow component of zonal flux -> fZon
523     CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
524 adcroft 1.1
525     C-- Meridional flux (fMer is at north face of "v" cell)
526 jmc 1.23 C Mean flow component of meridional flux -> fMer
527     CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
528 adcroft 1.1
529     C-- Vertical flux (fVer is at upper face of "v" cell)
530 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVerV
531     CALL MOM_V_ADV_WV(
532     I bi,bj,k+1,vVel,wVel,rTransV,
533     O fVerV(1-OLx,1-OLy,kDown), myThid )
534 adcroft 1.1
535     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
536 jmc 1.23 DO j=jMin,jMax
537     DO i=iMin,iMax
538     gV(i,j,k,bi,bj) =
539 adcroft 1.1 #ifdef OLD_UV_GEOM
540 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
541     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
542 adcroft 1.1 #else
543 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
544     & *recip_rAs(i,j,bi,bj)
545 adcroft 1.1 #endif
546 jmc 1.23 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
547     & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
548     & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
549     & )
550 jmc 1.24 ENDDO
551     ENDDO
552    
553     #ifdef ALLOW_DIAGNOSTICS
554     IF ( useDiagnostics ) THEN
555     CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)
556     CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)
557     CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),
558     & 'ADVrE_Vm',k,1,2,bi,bj,myThid)
559     ENDIF
560     #endif
561 adcroft 1.1
562 jmc 1.8 #ifdef NONLIN_FRSURF
563     C-- account for 3.D divergence of the flow in rStar coordinate:
564 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
565 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
566     DO j=jMin,jMax
567     DO i=iMin,iMax
568     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
569 jmc 1.8 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
570     & *vVel(i,j,k,bi,bj)
571 jmc 1.23 ENDDO
572     ENDDO
573     ENDIF
574     IF ( select_rStar.LT.0 ) THEN
575     DO j=jMin,jMax
576     DO i=iMin,iMax
577     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
578     & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
579     ENDDO
580     ENDDO
581     ENDIF
582 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
583 jmc 1.23 #endif /* NONLIN_FRSURF */
584    
585     ELSE
586     C- if momAdvection / else
587     DO j=1-OLy,sNy+OLy
588     DO i=1-OLx,sNx+OLx
589     gV(i,j,k,bi,bj) = 0. _d 0
590     ENDDO
591 jmc 1.8 ENDDO
592 jmc 1.23
593     C- endif momAdvection.
594 jmc 1.8 ENDIF
595 jmc 1.23
596     IF (momViscosity) THEN
597     C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
598     C Bi-harmonic term del^2 V -> v4F
599 baylor 1.25 IF (biharmonic)
600 jmc 1.23 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
601    
602     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
603 baylor 1.25 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
604 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
605 jmc 1.23
606     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
607 baylor 1.25 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
608 baylor 1.27 I viscAh_D,viscA4_D,myThid)
609 jmc 1.23
610     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
611     IF (.NOT.implicitViscosity) THEN
612     CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
613     CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
614     ENDIF
615    
616     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
617     DO j=jMin,jMax
618     DO i=iMin,iMax
619     gvDiss(i,j) =
620     #ifdef OLD_UV_GEOM
621     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
622     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
623     #else
624     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
625     & *recip_rAs(i,j,bi,bj)
626     #endif
627     & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
628     & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
629     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
630     & )
631     ENDDO
632 jmc 1.8 ENDDO
633    
634 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
635     IF ( useDiagnostics ) THEN
636     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
637     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
638     IF (.NOT.implicitViscosity)
639     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
640     ENDIF
641     #endif
642    
643 adcroft 1.1 C-- No-slip and drag BCs appear as body forces in cell abutting topography
644 mlosch 1.32 IF (no_slip_sides) THEN
645 adcroft 1.1 C- No-slip BCs impose a drag at walls...
646 baylor 1.27 CALL MOM_V_SIDEDRAG(
647     I bi,bj,k,
648     I vFld, v4f, hFacZ,
649     I viscAh_Z,viscA4_Z,
650     I harmonic,biharmonic,useVariableViscosity,
651     O vF,
652     I myThid)
653 jmc 1.23 DO j=jMin,jMax
654     DO i=iMin,iMax
655     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
656     ENDDO
657     ENDDO
658     ENDIF
659 adcroft 1.1 C- No-slip BCs impose a drag at bottom
660 jmc 1.23 IF (bottomDragTerms) THEN
661     CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
662     DO j=jMin,jMax
663     DO i=iMin,iMax
664     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
665     ENDDO
666     ENDDO
667     ENDIF
668    
669 mlosch 1.32 #ifdef ALLOW_SHELFICE
670     IF (useShelfIce) THEN
671     CALL SHELFICE_V_DRAG(bi,bj,k,vFld,KE,KappaRU,vF,myThid)
672     DO j=jMin,jMax
673     DO i=iMin,iMax
674     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
675     ENDDO
676     ENDDO
677     ENDIF
678     #endif /* ALLOW_SHELFICE */
679    
680 jmc 1.23 C- endif momViscosity
681 adcroft 1.1 ENDIF
682    
683 jmc 1.12 C-- Forcing term (moved to timestep.F)
684     c IF (momForcing)
685     c & CALL EXTERNAL_FORCING_V(
686     c I iMin,iMax,jMin,jMax,bi,bj,k,
687     c I myTime,myThid)
688 adcroft 1.1
689     C-- Metric terms for curvilinear grid systems
690 adcroft 1.5 IF (useNHMTerms) THEN
691 jmc 1.33 C o Non-Hydrostatic (spherical) metric terms
692 adcroft 1.1 CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
693     DO j=jMin,jMax
694     DO i=iMin,iMax
695 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtNHFacV*mT(i,j)
696 adcroft 1.1 ENDDO
697     ENDDO
698 adcroft 1.5 ENDIF
699 jmc 1.33 IF ( usingSphericalPolarGrid .AND. metricTerms ) THEN
700     C o Spherical polar grid metric terms
701 adcroft 1.1 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
702     DO j=jMin,jMax
703     DO i=iMin,iMax
704 jmc 1.33 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
705 adcroft 1.1 ENDDO
706     ENDDO
707     ENDIF
708 jmc 1.33 IF ( usingCylindricalGrid .AND. metricTerms ) THEN
709     C o Cylindrical grid metric terms
710     CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
711     DO j=jMin,jMax
712     DO i=iMin,iMax
713     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mtFacV*mT(i,j)
714     ENDDO
715     ENDDO
716 afe 1.19 ENDIF
717 adcroft 1.1
718 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
719 adcroft 1.1
720     C-- Coriolis term
721     C Note. As coded here, coriolis will not work with "thin walls"
722 jmc 1.12 c IF (useCDscheme) THEN
723     c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
724     c ELSE
725     IF (.NOT.useCDscheme) THEN
726     CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
727     DO j=jMin,jMax
728     DO i=iMin,iMax
729     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
730     ENDDO
731     ENDDO
732 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
733     IF ( useDiagnostics )
734     & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
735     #endif
736 jmc 1.12 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
737     DO j=jMin,jMax
738     DO i=iMin,iMax
739     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
740     ENDDO
741     ENDDO
742 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
743     IF ( useDiagnostics )
744     & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
745     #endif
746 jmc 1.12 ENDIF
747    
748 jmc 1.34 C-- 3.D Coriolis term (horizontal momentum, Eastward component: -f'*w)
749     IF ( nonHydrostatic.OR.quasiHydrostatic ) THEN
750     CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
751     DO j=jMin,jMax
752     DO i=iMin,iMax
753     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
754     ENDDO
755     ENDDO
756     IF ( usingCurvilinearGrid ) THEN
757     C- presently, non zero angleSinC array only supported with Curvilinear-Grid
758     CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
759     DO j=jMin,jMax
760     DO i=iMin,iMax
761     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
762     ENDDO
763 adcroft 1.6 ENDDO
764 jmc 1.34 ENDIF
765 adcroft 1.6 ENDIF
766 adcroft 1.1
767 jmc 1.23 C-- Set du/dt & dv/dt on boundaries to zero
768     DO j=jMin,jMax
769     DO i=iMin,iMax
770     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
771     guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
772     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
773     gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
774     ENDDO
775     ENDDO
776    
777 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
778     IF ( useDiagnostics ) THEN
779 baylor 1.28 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
780 jmc 1.24 CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),
781     & 'Um_Advec',k,1,2,bi,bj,myThid)
782     CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),
783     & 'Vm_Advec',k,1,2,bi,bj,myThid)
784     IF (momViscosity) THEN
785     CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
786     CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
787     ENDIF
788     ENDIF
789     #endif /* ALLOW_DIAGNOSTICS */
790    
791 adcroft 1.1 RETURN
792     END

  ViewVC Help
Powered by ViewVC 1.1.22