/[MITgcm]/MITgcm/pkg/mom_fluxform/mom_fluxform.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_fluxform/mom_fluxform.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.31 - (hide annotations) (download)
Thu Dec 8 15:44:34 2005 UTC (18 years, 5 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint57y_post, checkpoint58, checkpoint57z_post
Changes since 1.30: +5 -1 lines
First step for a NLFS adjoint
o initially suppress rStar (new flag DISABLE_RSTAR_CODE)
o new init. routines for calc_r_star, calc_surf_dr
o still need to deal with ini_masks_etc
o testreport seemed happy

1 heimbach 1.31 C $Header: /u/gcmpack/MITgcm/pkg/mom_fluxform/mom_fluxform.F,v 1.30 2005/11/24 00:06:38 heimbach Exp $
2 adcroft 1.2 C $Name: $
3 adcroft 1.1
4 adcroft 1.3 CBOI
5     C !TITLE: pkg/mom\_advdiff
6     C !AUTHORS: adcroft@mit.edu
7 adcroft 1.4 C !INTRODUCTION: Flux-form Momentum Equations Package
8 adcroft 1.3 C
9     C Package "mom\_fluxform" provides methods for calculating explicit terms
10     C in the momentum equation cast in flux-form:
11     C \begin{eqnarray*}
12     C G^u & = & -\frac{1}{\rho} \partial_x \phi_h
13     C -\nabla \cdot {\bf v} u
14     C -fv
15     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^x
16     C + \mbox{metrics}
17     C \\
18     C G^v & = & -\frac{1}{\rho} \partial_y \phi_h
19     C -\nabla \cdot {\bf v} v
20     C +fu
21     C +\frac{1}{\rho} \nabla \cdot {\bf \tau}^y
22     C + \mbox{metrics}
23     C \end{eqnarray*}
24     C where ${\bf v}=(u,v,w)$ and $\tau$, the stress tensor, includes surface
25     C stresses as well as internal viscous stresses.
26     CEOI
27    
28 edhill 1.13 #include "MOM_FLUXFORM_OPTIONS.h"
29 adcroft 1.1
30 adcroft 1.3 CBOP
31     C !ROUTINE: MOM_FLUXFORM
32    
33     C !INTERFACE: ==========================================================
34 adcroft 1.1 SUBROUTINE MOM_FLUXFORM(
35     I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
36 jmc 1.23 I KappaRU, KappaRV,
37 adcroft 1.1 U fVerU, fVerV,
38 jmc 1.23 O guDiss, gvDiss,
39     I myTime, myIter, myThid)
40 adcroft 1.3
41     C !DESCRIPTION:
42     C Calculates all the horizontal accelerations except for the implicit surface
43     C pressure gradient and implciit vertical viscosity.
44 adcroft 1.1
45 adcroft 1.3 C !USES: ===============================================================
46 adcroft 1.1 C == Global variables ==
47 adcroft 1.3 IMPLICIT NONE
48 adcroft 1.1 #include "SIZE.h"
49     #include "DYNVARS.h"
50     #include "FFIELDS.h"
51     #include "EEPARAMS.h"
52     #include "PARAMS.h"
53     #include "GRID.h"
54     #include "SURFACE.h"
55    
56 adcroft 1.3 C !INPUT PARAMETERS: ===================================================
57     C bi,bj :: tile indices
58     C iMin,iMax,jMin,jMAx :: loop ranges
59     C k :: vertical level
60     C kUp :: =1 or 2 for consecutive k
61     C kDown :: =2 or 1 for consecutive k
62     C KappaRU :: vertical viscosity
63     C KappaRV :: vertical viscosity
64     C fVerU :: vertical flux of U, 2 1/2 dim for pipe-lining
65     C fVerV :: vertical flux of V, 2 1/2 dim for pipe-lining
66 jmc 1.23 C guDiss :: dissipation tendency (all explicit terms), u component
67     C gvDiss :: dissipation tendency (all explicit terms), v component
68 jmc 1.8 C myTime :: current time
69 adcroft 1.3 C myIter :: current time-step number
70     C myThid :: thread number
71     INTEGER bi,bj,iMin,iMax,jMin,jMax
72     INTEGER k,kUp,kDown
73 adcroft 1.1 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74     _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75     _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
76     _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
77 jmc 1.23 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78     _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 jmc 1.8 _RL myTime
80 adcroft 1.2 INTEGER myIter
81 adcroft 1.1 INTEGER myThid
82    
83 adcroft 1.3 C !OUTPUT PARAMETERS: ==================================================
84     C None - updates gU() and gV() in common blocks
85    
86     C !LOCAL VARIABLES: ====================================================
87     C i,j :: loop indices
88     C vF :: viscous flux
89     C v4F :: bi-harmonic viscous flux
90     C cF :: Coriolis acceleration
91     C mT :: Metric terms
92     C fZon :: zonal fluxes
93     C fMer :: meridional fluxes
94 jmc 1.23 C fVrUp,fVrDw :: vertical viscous fluxes at interface k-1 & k
95 adcroft 1.3 INTEGER i,j
96     _RL vF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97     _RL v4F(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98     _RL cF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99     _RL mT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100     _RL fZon(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101     _RL fMer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 jmc 1.23 _RL fVrUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103     _RL fVrDw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 adcroft 1.1 C afFacMom - Tracer parameters for turning terms
105     C vfFacMom on and off.
106     C pfFacMom afFacMom - Advective terms
107     C cfFacMom vfFacMom - Eddy viscosity terms
108     C mTFacMom pfFacMom - Pressure terms
109     C cfFacMom - Coriolis terms
110     C foFacMom - Forcing
111     C mTFacMom - Metric term
112 jmc 1.23 C uDudxFac, AhDudxFac, etc ... individual term parameters for switching terms off
113 adcroft 1.1 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114     _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115     _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116     _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119     _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120     _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 jmc 1.8 _RL rTransU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122     _RL rTransV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 adcroft 1.18 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 baylor 1.25 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125     _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126     _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127     _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 adcroft 1.18 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131     _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 adcroft 1.1 _RL uDudxFac
133     _RL AhDudxFac
134     _RL vDudyFac
135     _RL AhDudyFac
136     _RL rVelDudrFac
137     _RL ArDudrFac
138     _RL fuFac
139     _RL mtFacU
140     _RL uDvdxFac
141     _RL AhDvdxFac
142     _RL vDvdyFac
143     _RL AhDvdyFac
144     _RL rVelDvdrFac
145     _RL ArDvdrFac
146     _RL fvFac
147     _RL mtFacV
148 jmc 1.29 _RL sideMaskFac
149 baylor 1.25 LOGICAL bottomDragTerms,harmonic,biharmonic,useVariableViscosity
150 adcroft 1.3 CEOP
151 adcroft 1.1
152     C Initialise intermediate terms
153 jmc 1.23 DO j=1-OLy,sNy+OLy
154     DO i=1-OLx,sNx+OLx
155 adcroft 1.1 vF(i,j) = 0.
156     v4F(i,j) = 0.
157     cF(i,j) = 0.
158     mT(i,j) = 0.
159     fZon(i,j) = 0.
160     fMer(i,j) = 0.
161 jmc 1.23 fVrUp(i,j)= 0.
162     fVrDw(i,j)= 0.
163     rTransU(i,j)= 0.
164     rTransV(i,j)= 0.
165 adcroft 1.18 strain(i,j) = 0.
166 jmc 1.23 tension(i,j)= 0.
167     guDiss(i,j) = 0.
168     gvDiss(i,j) = 0.
169 heimbach 1.30 #ifdef ALLOW_AUTODIFF_TAMC
170     vort3(i,j) = 0. _d 0
171     strain(i,j) = 0. _d 0
172     tension(i,j) = 0. _d 0
173     #endif
174 adcroft 1.1 ENDDO
175     ENDDO
176    
177     C-- Term by term tracer parmeters
178     C o U momentum equation
179     uDudxFac = afFacMom*1.
180     AhDudxFac = vfFacMom*1.
181     vDudyFac = afFacMom*1.
182     AhDudyFac = vfFacMom*1.
183     rVelDudrFac = afFacMom*1.
184     ArDudrFac = vfFacMom*1.
185     mTFacU = mtFacMom*1.
186     fuFac = cfFacMom*1.
187     C o V momentum equation
188     uDvdxFac = afFacMom*1.
189     AhDvdxFac = vfFacMom*1.
190     vDvdyFac = afFacMom*1.
191     AhDvdyFac = vfFacMom*1.
192     rVelDvdrFac = afFacMom*1.
193     ArDvdrFac = vfFacMom*1.
194     mTFacV = mtFacMom*1.
195     fvFac = cfFacMom*1.
196 jmc 1.23
197     IF (implicitViscosity) THEN
198     ArDudrFac = 0.
199     ArDvdrFac = 0.
200     ENDIF
201 adcroft 1.1
202 jmc 1.29 C note: using standard stencil (no mask) results in under-estimating
203     C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor
204     IF ( no_slip_sides ) THEN
205     sideMaskFac = sideDragFactor
206     ELSE
207     sideMaskFac = 0. _d 0
208     ENDIF
209    
210 adcroft 1.1 IF ( no_slip_bottom
211     & .OR. bottomDragQuadratic.NE.0.
212     & .OR. bottomDragLinear.NE.0.) THEN
213     bottomDragTerms=.TRUE.
214     ELSE
215     bottomDragTerms=.FALSE.
216     ENDIF
217    
218     C-- Calculate open water fraction at vorticity points
219     CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
220    
221     C---- Calculate common quantities used in both U and V equations
222     C Calculate tracer cell face open areas
223     DO j=1-OLy,sNy+OLy
224     DO i=1-OLx,sNx+OLx
225     xA(i,j) = _dyG(i,j,bi,bj)
226     & *drF(k)*_hFacW(i,j,k,bi,bj)
227     yA(i,j) = _dxG(i,j,bi,bj)
228     & *drF(k)*_hFacS(i,j,k,bi,bj)
229     ENDDO
230     ENDDO
231    
232     C Make local copies of horizontal flow field
233     DO j=1-OLy,sNy+OLy
234     DO i=1-OLx,sNx+OLx
235     uFld(i,j) = uVel(i,j,k,bi,bj)
236     vFld(i,j) = vVel(i,j,k,bi,bj)
237     ENDDO
238     ENDDO
239    
240     C Calculate velocity field "volume transports" through tracer cell faces.
241     DO j=1-OLy,sNy+OLy
242     DO i=1-OLx,sNx+OLx
243     uTrans(i,j) = uFld(i,j)*xA(i,j)
244     vTrans(i,j) = vFld(i,j)*yA(i,j)
245     ENDDO
246     ENDDO
247    
248 baylor 1.25 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
249 jmc 1.29 IF ( momViscosity) THEN
250     CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
251     CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
252     CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,tension,myThid)
253     CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,strain,myThid)
254     DO j=1-Oly,sNy+Oly
255     DO i=1-Olx,sNx+Olx
256     IF ( hFacZ(i,j).EQ.0. ) THEN
257     vort3(i,j) = sideMaskFac*vort3(i,j)
258     strain(i,j) = sideMaskFac*strain(i,j)
259     ENDIF
260     ENDDO
261     ENDDO
262     #ifdef ALLOW_DIAGNOSTICS
263     IF ( useDiagnostics ) THEN
264     CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid)
265     CALL DIAGNOSTICS_FILL(vort3, 'momVort3',k,1,2,bi,bj,myThid)
266     CALL DIAGNOSTICS_FILL(tension,'Tension ',k,1,2,bi,bj,myThid)
267     CALL DIAGNOSTICS_FILL(strain, 'Strain ',k,1,2,bi,bj,myThid)
268     ENDIF
269     #endif
270     ENDIF
271 adcroft 1.18
272 jmc 1.8 C--- First call (k=1): compute vertical adv. flux fVerU(kUp) & fVerV(kUp)
273     IF (momAdvection.AND.k.EQ.1) THEN
274    
275     C- Calculate vertical transports above U & V points (West & South face):
276 jmc 1.23 CALL MOM_CALC_RTRANS( k, bi, bj,
277     O rTransU, rTransV,
278     I myTime, myIter, myThid)
279 jmc 1.8
280     C- Free surface correction term (flux at k=1)
281 jmc 1.23 CALL MOM_U_ADV_WU( bi,bj,k,uVel,wVel,rTransU,
282     O fVerU(1-OLx,1-OLy,kUp), myThid )
283 jmc 1.8
284 jmc 1.23 CALL MOM_V_ADV_WV( bi,bj,k,vVel,wVel,rTransV,
285     O fVerV(1-OLx,1-OLy,kUp), myThid )
286 jmc 1.8
287     C--- endif momAdvection & k=1
288     ENDIF
289    
290    
291     C--- Calculate vertical transports (at k+1) below U & V points :
292     IF (momAdvection) THEN
293 jmc 1.23 CALL MOM_CALC_RTRANS( k+1, bi, bj,
294     O rTransU, rTransV,
295     I myTime, myIter, myThid)
296 jmc 1.8 ENDIF
297    
298 baylor 1.25 IF (momViscosity) THEN
299     CALL MOM_CALC_VISC(
300     I bi,bj,k,
301     O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
302     O harmonic,biharmonic,useVariableViscosity,
303 jmc 1.26 I hDiv,vort3,tension,strain,KE,hFacZ,
304 baylor 1.25 I myThid)
305     ENDIF
306 jmc 1.8
307 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
308    
309 adcroft 1.1 C---- Zonal momentum equation starts here
310    
311 jmc 1.23 IF (momAdvection) THEN
312     C--- Calculate mean fluxes (advection) between cells for zonal flow.
313 adcroft 1.1
314     C-- Zonal flux (fZon is at east face of "u" cell)
315 jmc 1.23 C Mean flow component of zonal flux -> fZon
316     CALL MOM_U_ADV_UU(bi,bj,k,uTrans,uFld,fZon,myThid)
317 adcroft 1.1
318     C-- Meridional flux (fMer is at south face of "u" cell)
319 jmc 1.23 C Mean flow component of meridional flux -> fMer
320     CALL MOM_U_ADV_VU(bi,bj,k,vTrans,uFld,fMer,myThid)
321 adcroft 1.1
322     C-- Vertical flux (fVer is at upper face of "u" cell)
323 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVer
324     CALL MOM_U_ADV_WU(
325     I bi,bj,k+1,uVel,wVel,rTransU,
326     O fVerU(1-OLx,1-OLy,kDown), myThid )
327 adcroft 1.1
328     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
329 jmc 1.23 DO j=jMin,jMax
330     DO i=iMin,iMax
331     gU(i,j,k,bi,bj) =
332 adcroft 1.1 #ifdef OLD_UV_GEOM
333 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
334     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
335 adcroft 1.1 #else
336 jmc 1.23 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
337     & *recip_rAw(i,j,bi,bj)
338 adcroft 1.1 #endif
339 jmc 1.23 & *( ( fZon(i,j ) - fZon(i-1,j) )*uDudxFac
340     & +( fMer(i,j+1) - fMer(i, j) )*vDudyFac
341     & +(fVerU(i,j,kDown) - fVerU(i,j,kUp))*rkSign*rVelDudrFac
342     & )
343     ENDDO
344     ENDDO
345 adcroft 1.1
346 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
347     IF ( useDiagnostics ) THEN
348     CALL DIAGNOSTICS_FILL(fZon,'ADVx_Um ',k,1,2,bi,bj,myThid)
349     CALL DIAGNOSTICS_FILL(fMer,'ADVy_Um ',k,1,2,bi,bj,myThid)
350     CALL DIAGNOSTICS_FILL(fVerU(1-Olx,1-Oly,kUp),
351     & 'ADVrE_Um',k,1,2,bi,bj,myThid)
352     ENDIF
353     #endif
354    
355 jmc 1.8 #ifdef NONLIN_FRSURF
356     C-- account for 3.D divergence of the flow in rStar coordinate:
357 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
358 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
359     DO j=jMin,jMax
360     DO i=iMin,iMax
361     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
362 jmc 1.8 & - (rStarExpW(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
363     & *uVel(i,j,k,bi,bj)
364 jmc 1.23 ENDDO
365     ENDDO
366     ENDIF
367     IF ( select_rStar.LT.0 ) THEN
368     DO j=jMin,jMax
369     DO i=iMin,iMax
370     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)
371     & - rStarDhWDt(i,j,bi,bj)*uVel(i,j,k,bi,bj)
372     ENDDO
373     ENDDO
374     ENDIF
375 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
376 jmc 1.23 #endif /* NONLIN_FRSURF */
377    
378     ELSE
379     C- if momAdvection / else
380     DO j=1-OLy,sNy+OLy
381     DO i=1-OLx,sNx+OLx
382     gU(i,j,k,bi,bj) = 0. _d 0
383     ENDDO
384 jmc 1.8 ENDDO
385 jmc 1.23
386     C- endif momAdvection.
387 jmc 1.8 ENDIF
388 jmc 1.23
389     IF (momViscosity) THEN
390     C--- Calculate eddy fluxes (dissipation) between cells for zonal flow.
391    
392     C Bi-harmonic term del^2 U -> v4F
393 baylor 1.25 IF (biharmonic)
394 jmc 1.23 & CALL MOM_U_DEL2U(bi,bj,k,uFld,hFacZ,v4f,myThid)
395    
396     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
397 baylor 1.25 CALL MOM_U_XVISCFLUX(bi,bj,k,uFld,v4F,fZon,
398 baylor 1.27 I viscAh_D,viscA4_D,myThid)
399 jmc 1.23
400     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
401 baylor 1.25 CALL MOM_U_YVISCFLUX(bi,bj,k,uFld,v4F,hFacZ,fMer,
402 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
403 jmc 1.23
404     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
405     IF (.NOT.implicitViscosity) THEN
406     CALL MOM_U_RVISCFLUX(bi,bj, k, uVel,KappaRU,fVrUp,myThid)
407     CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,KappaRU,fVrDw,myThid)
408     ENDIF
409    
410     C-- Tendency is minus divergence of the fluxes
411     DO j=jMin,jMax
412     DO i=iMin,iMax
413     guDiss(i,j) =
414     #ifdef OLD_UV_GEOM
415     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)/
416     & ( 0.5 _d 0*(rA(i,j,bi,bj)+rA(i-1,j,bi,bj)) )
417     #else
418     & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
419     & *recip_rAw(i,j,bi,bj)
420     #endif
421     & *( ( fZon(i,j ) - fZon(i-1,j) )*AhDudxFac
422     & +( fMer(i,j+1) - fMer(i, j) )*AhDudyFac
423     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDudrFac
424     & )
425     ENDDO
426 jmc 1.8 ENDDO
427    
428 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
429     IF ( useDiagnostics ) THEN
430     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Um',k,1,2,bi,bj,myThid)
431     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Um',k,1,2,bi,bj,myThid)
432     IF (.NOT.implicitViscosity)
433     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Um',k,1,2,bi,bj,myThid)
434     ENDIF
435     #endif
436    
437 adcroft 1.1 C-- No-slip and drag BCs appear as body forces in cell abutting topography
438 jmc 1.23 IF (no_slip_sides) THEN
439 adcroft 1.1 C- No-slip BCs impose a drag at walls...
440 baylor 1.27 CALL MOM_U_SIDEDRAG(
441     I bi,bj,k,
442     I uFld, v4f, hFacZ,
443     I viscAh_Z,viscA4_Z,
444     I harmonic,biharmonic,useVariableViscosity,
445     O vF,
446     I myThid)
447 jmc 1.23 DO j=jMin,jMax
448     DO i=iMin,iMax
449     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
450     ENDDO
451     ENDDO
452     ENDIF
453 adcroft 1.1 C- No-slip BCs impose a drag at bottom
454 jmc 1.23 IF (bottomDragTerms) THEN
455     CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
456     DO j=jMin,jMax
457     DO i=iMin,iMax
458     gUdiss(i,j) = gUdiss(i,j) + vF(i,j)
459     ENDDO
460     ENDDO
461     ENDIF
462    
463     C- endif momViscosity
464 adcroft 1.1 ENDIF
465    
466 jmc 1.12 C-- Forcing term (moved to timestep.F)
467     c IF (momForcing)
468     c & CALL EXTERNAL_FORCING_U(
469     c I iMin,iMax,jMin,jMax,bi,bj,k,
470     c I myTime,myThid)
471 adcroft 1.1
472     C-- Metric terms for curvilinear grid systems
473 adcroft 1.5 IF (useNHMTerms) THEN
474     C o Non-hydrosatic metric terms
475 adcroft 1.1 CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
476     DO j=jMin,jMax
477     DO i=iMin,iMax
478     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
479     ENDDO
480     ENDDO
481 adcroft 1.5 ENDIF
482     IF (usingSphericalPolarMTerms) THEN
483 adcroft 1.1 CALL MOM_U_METRIC_SPHERE(bi,bj,k,uFld,vFld,mT,myThid)
484     DO j=jMin,jMax
485     DO i=iMin,iMax
486     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
487     ENDDO
488     ENDDO
489 afe 1.20 ENDIF
490 afe 1.19 IF (usingCylindricalGrid) THEN
491     CALL MOM_U_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
492     DO j=jMin,jMax
493     DO i=iMin,iMax
494     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
495     ENDDO
496     ENDDO
497 adcroft 1.1 ENDIF
498    
499 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
500 adcroft 1.1
501     C---- Meridional momentum equation starts here
502    
503 jmc 1.23 IF (momAdvection) THEN
504     C--- Calculate mean fluxes (advection) between cells for meridional flow.
505     C Mean flow component of zonal flux -> fZon
506     CALL MOM_V_ADV_UV(bi,bj,k,uTrans,vFld,fZon,myThid)
507 adcroft 1.1
508     C-- Meridional flux (fMer is at north face of "v" cell)
509 jmc 1.23 C Mean flow component of meridional flux -> fMer
510     CALL MOM_V_ADV_VV(bi,bj,k,vTrans,vFld,fMer,myThid)
511 adcroft 1.1
512     C-- Vertical flux (fVer is at upper face of "v" cell)
513 jmc 1.23 C Mean flow component of vertical flux (at k+1) -> fVerV
514     CALL MOM_V_ADV_WV(
515     I bi,bj,k+1,vVel,wVel,rTransV,
516     O fVerV(1-OLx,1-OLy,kDown), myThid )
517 adcroft 1.1
518     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
519 jmc 1.23 DO j=jMin,jMax
520     DO i=iMin,iMax
521     gV(i,j,k,bi,bj) =
522 adcroft 1.1 #ifdef OLD_UV_GEOM
523 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
524     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
525 adcroft 1.1 #else
526 jmc 1.23 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
527     & *recip_rAs(i,j,bi,bj)
528 adcroft 1.1 #endif
529 jmc 1.23 & *( ( fZon(i+1,j) - fZon(i,j ) )*uDvdxFac
530     & +( fMer(i, j) - fMer(i,j-1) )*vDvdyFac
531     & +(fVerV(i,j,kDown) - fVerV(i,j,kUp))*rkSign*rVelDvdrFac
532     & )
533 jmc 1.24 ENDDO
534     ENDDO
535    
536     #ifdef ALLOW_DIAGNOSTICS
537     IF ( useDiagnostics ) THEN
538     CALL DIAGNOSTICS_FILL(fZon,'ADVx_Vm ',k,1,2,bi,bj,myThid)
539     CALL DIAGNOSTICS_FILL(fMer,'ADVy_Vm ',k,1,2,bi,bj,myThid)
540     CALL DIAGNOSTICS_FILL(fVerV(1-Olx,1-Oly,kUp),
541     & 'ADVrE_Vm',k,1,2,bi,bj,myThid)
542     ENDIF
543     #endif
544 adcroft 1.1
545 jmc 1.8 #ifdef NONLIN_FRSURF
546     C-- account for 3.D divergence of the flow in rStar coordinate:
547 heimbach 1.31 # ifndef DISABLE_RSTAR_CODE
548 jmc 1.23 IF ( select_rStar.GT.0 ) THEN
549     DO j=jMin,jMax
550     DO i=iMin,iMax
551     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
552 jmc 1.8 & - (rStarExpS(i,j,bi,bj) - 1. _d 0)/deltaTfreesurf
553     & *vVel(i,j,k,bi,bj)
554 jmc 1.23 ENDDO
555     ENDDO
556     ENDIF
557     IF ( select_rStar.LT.0 ) THEN
558     DO j=jMin,jMax
559     DO i=iMin,iMax
560     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)
561     & - rStarDhSDt(i,j,bi,bj)*vVel(i,j,k,bi,bj)
562     ENDDO
563     ENDDO
564     ENDIF
565 heimbach 1.31 # endif /* DISABLE_RSTAR_CODE */
566 jmc 1.23 #endif /* NONLIN_FRSURF */
567    
568     ELSE
569     C- if momAdvection / else
570     DO j=1-OLy,sNy+OLy
571     DO i=1-OLx,sNx+OLx
572     gV(i,j,k,bi,bj) = 0. _d 0
573     ENDDO
574 jmc 1.8 ENDDO
575 jmc 1.23
576     C- endif momAdvection.
577 jmc 1.8 ENDIF
578 jmc 1.23
579     IF (momViscosity) THEN
580     C--- Calculate eddy fluxes (dissipation) between cells for meridional flow.
581     C Bi-harmonic term del^2 V -> v4F
582 baylor 1.25 IF (biharmonic)
583 jmc 1.23 & CALL MOM_V_DEL2V(bi,bj,k,vFld,hFacZ,v4f,myThid)
584    
585     C Laplacian and bi-harmonic terms, Zonal Fluxes -> fZon
586 baylor 1.25 CALL MOM_V_XVISCFLUX(bi,bj,k,vFld,v4f,hFacZ,fZon,
587 baylor 1.27 I viscAh_Z,viscA4_Z,myThid)
588 jmc 1.23
589     C Laplacian and bi-harmonic termis, Merid Fluxes -> fMer
590 baylor 1.25 CALL MOM_V_YVISCFLUX(bi,bj,k,vFld,v4f,fMer,
591 baylor 1.27 I viscAh_D,viscA4_D,myThid)
592 jmc 1.23
593     C Eddy component of vertical flux (interior component only) -> fVrUp & fVrDw
594     IF (.NOT.implicitViscosity) THEN
595     CALL MOM_V_RVISCFLUX(bi,bj, k, vVel,KappaRV,fVrUp,myThid)
596     CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,KappaRV,fVrDw,myThid)
597     ENDIF
598    
599     C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
600     DO j=jMin,jMax
601     DO i=iMin,iMax
602     gvDiss(i,j) =
603     #ifdef OLD_UV_GEOM
604     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)/
605     & ( 0.5 _d 0*(_rA(i,j,bi,bj)+_rA(i,j-1,bi,bj)) )
606     #else
607     & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
608     & *recip_rAs(i,j,bi,bj)
609     #endif
610     & *( ( fZon(i+1,j) - fZon(i,j ) )*AhDvdxFac
611     & +( fMer(i, j) - fMer(i,j-1) )*AhDvdyFac
612     & +( fVrDw(i,j) - fVrUp(i,j) )*rkSign*ArDvdrFac
613     & )
614     ENDDO
615 jmc 1.8 ENDDO
616    
617 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
618     IF ( useDiagnostics ) THEN
619     CALL DIAGNOSTICS_FILL(fZon, 'VISCx_Vm',k,1,2,bi,bj,myThid)
620     CALL DIAGNOSTICS_FILL(fMer, 'VISCy_Vm',k,1,2,bi,bj,myThid)
621     IF (.NOT.implicitViscosity)
622     & CALL DIAGNOSTICS_FILL(fVrUp,'VISrE_Vm',k,1,2,bi,bj,myThid)
623     ENDIF
624     #endif
625    
626 adcroft 1.1 C-- No-slip and drag BCs appear as body forces in cell abutting topography
627 jmc 1.23 IF (no_slip_sides) THEN
628 adcroft 1.1 C- No-slip BCs impose a drag at walls...
629 baylor 1.27 CALL MOM_V_SIDEDRAG(
630     I bi,bj,k,
631     I vFld, v4f, hFacZ,
632     I viscAh_Z,viscA4_Z,
633     I harmonic,biharmonic,useVariableViscosity,
634     O vF,
635     I myThid)
636 jmc 1.23 DO j=jMin,jMax
637     DO i=iMin,iMax
638     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
639     ENDDO
640     ENDDO
641     ENDIF
642 adcroft 1.1 C- No-slip BCs impose a drag at bottom
643 jmc 1.23 IF (bottomDragTerms) THEN
644     CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
645     DO j=jMin,jMax
646     DO i=iMin,iMax
647     gvDiss(i,j) = gvDiss(i,j) + vF(i,j)
648     ENDDO
649     ENDDO
650     ENDIF
651    
652     C- endif momViscosity
653 adcroft 1.1 ENDIF
654    
655 jmc 1.12 C-- Forcing term (moved to timestep.F)
656     c IF (momForcing)
657     c & CALL EXTERNAL_FORCING_V(
658     c I iMin,iMax,jMin,jMax,bi,bj,k,
659     c I myTime,myThid)
660 adcroft 1.1
661     C-- Metric terms for curvilinear grid systems
662 adcroft 1.5 IF (useNHMTerms) THEN
663 adcroft 1.1 C o Spherical polar grid metric terms
664     CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
665     DO j=jMin,jMax
666     DO i=iMin,iMax
667     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
668     ENDDO
669     ENDDO
670 adcroft 1.5 ENDIF
671     IF (usingSphericalPolarMTerms) THEN
672 adcroft 1.1 CALL MOM_V_METRIC_SPHERE(bi,bj,k,uFld,mT,myThid)
673     DO j=jMin,jMax
674     DO i=iMin,iMax
675     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
676     ENDDO
677     ENDDO
678     ENDIF
679 afe 1.19 IF (usingCylindricalGrid) THEN
680     CALL MOM_V_METRIC_CYLINDER(bi,bj,k,uFld,vFld,mT,myThid)
681     DO j=jMin,jMax
682     DO i=iMin,iMax
683     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
684     ENDDO
685     ENDDO
686     ENDIF
687 adcroft 1.1
688 jmc 1.23 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
689 adcroft 1.1
690     C-- Coriolis term
691     C Note. As coded here, coriolis will not work with "thin walls"
692 jmc 1.12 c IF (useCDscheme) THEN
693     c CALL MOM_CDSCHEME(bi,bj,k,dPhiHydX,dPhiHydY,myThid)
694     c ELSE
695     IF (.NOT.useCDscheme) THEN
696     CALL MOM_U_CORIOLIS(bi,bj,k,vFld,cf,myThid)
697     DO j=jMin,jMax
698     DO i=iMin,iMax
699     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
700     ENDDO
701     ENDDO
702 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
703     IF ( useDiagnostics )
704     & CALL DIAGNOSTICS_FILL(cf,'Um_Cori ',k,1,2,bi,bj,myThid)
705     #endif
706 jmc 1.12 CALL MOM_V_CORIOLIS(bi,bj,k,uFld,cf,myThid)
707     DO j=jMin,jMax
708     DO i=iMin,iMax
709     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+fvFac*cf(i,j)
710     ENDDO
711     ENDDO
712 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
713     IF ( useDiagnostics )
714     & CALL DIAGNOSTICS_FILL(cf,'Vm_Cori ',k,1,2,bi,bj,myThid)
715     #endif
716 jmc 1.12 ENDIF
717    
718 adcroft 1.7 IF (nonHydrostatic.OR.quasiHydrostatic) THEN
719 adcroft 1.6 CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,cf,myThid)
720     DO j=jMin,jMax
721     DO i=iMin,iMax
722     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+fuFac*cf(i,j)
723     ENDDO
724     ENDDO
725     ENDIF
726 adcroft 1.1
727 jmc 1.23 C-- Set du/dt & dv/dt on boundaries to zero
728     DO j=jMin,jMax
729     DO i=iMin,iMax
730     gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
731     guDiss(i,j) = guDiss(i,j) *_maskW(i,j,k,bi,bj)
732     gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
733     gvDiss(i,j) = gvDiss(i,j) *_maskS(i,j,k,bi,bj)
734     ENDDO
735     ENDDO
736    
737 jmc 1.24 #ifdef ALLOW_DIAGNOSTICS
738     IF ( useDiagnostics ) THEN
739 baylor 1.28 CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid)
740 jmc 1.24 CALL DIAGNOSTICS_FILL(gU(1-Olx,1-Oly,k,bi,bj),
741     & 'Um_Advec',k,1,2,bi,bj,myThid)
742     CALL DIAGNOSTICS_FILL(gV(1-Olx,1-Oly,k,bi,bj),
743     & 'Vm_Advec',k,1,2,bi,bj,myThid)
744     IF (momViscosity) THEN
745     CALL DIAGNOSTICS_FILL(guDiss,'Um_Diss ',k,1,2,bi,bj,myThid)
746     CALL DIAGNOSTICS_FILL(gvDiss,'Vm_Diss ',k,1,2,bi,bj,myThid)
747     ENDIF
748     ENDIF
749     #endif /* ALLOW_DIAGNOSTICS */
750    
751 adcroft 1.1 RETURN
752     END

  ViewVC Help
Powered by ViewVC 1.1.22