8 |
|
|
9 |
C !INTERFACE: ========================================================== |
C !INTERFACE: ========================================================== |
10 |
SUBROUTINE MOM_CDSCHEME( |
SUBROUTINE MOM_CDSCHEME( |
11 |
I bi,bj,k, dPhiHydX,dPhiHydY, guFld,gvFld, |
I bi,bj,k,dPhiHydX,dPhiHydY, |
12 |
O guCor,gvCor, |
I myThid) |
|
I myTime, myIter, myThid) |
|
13 |
|
|
14 |
C !DESCRIPTION: |
C !DESCRIPTION: |
15 |
C The C-D scheme. The less said the better :-) |
C The C-D scheme. The less said the better :-) |
28 |
C bi,bj :: tile indices |
C bi,bj :: tile indices |
29 |
C k :: vertical level |
C k :: vertical level |
30 |
C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential |
C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential |
|
C guFld,gvFld :: Acceleration (U & V compon.) from the C grid |
|
|
C guCor,gvCor :: Coriolis terms (2 compon.) computed on C grid |
|
|
C myTime :: current time |
|
|
C myIter :: current time-step number |
|
31 |
C myThid :: thread number |
C myThid :: thread number |
|
|
|
32 |
INTEGER bi,bj,k |
INTEGER bi,bj,k |
33 |
_RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly) |
_RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly) |
34 |
_RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly) |
_RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly) |
|
_RL guFld(1-Olx:sNx+Olx,1-Oly:sNy+Oly) |
|
|
_RL gvFld(1-Olx:sNx+Olx,1-Oly:sNy+Oly) |
|
|
_RL guCor(1-Olx:sNx+Olx,1-Oly:sNy+Oly) |
|
|
_RL gvCor(1-Olx:sNx+Olx,1-Oly:sNy+Oly) |
|
|
_RL myTime |
|
|
INTEGER myIter |
|
35 |
INTEGER myThid |
INTEGER myThid |
36 |
|
|
37 |
|
|
68 |
phyFac = 0. |
phyFac = 0. |
69 |
ENDIF |
ENDIF |
70 |
|
|
|
C- Initialize output (dummy) arrays: |
|
|
c DO j=1-Oly,sNy+Oly |
|
|
c DO i=1-Olx,sNx+Olx |
|
|
c guCor(i,j) = 0. _d 0 |
|
|
c gvCor(i,j) = 0. _d 0 |
|
|
c ENDDO |
|
|
c ENDDO |
|
|
|
|
71 |
C Pressure extrapolated forward in time |
C Pressure extrapolated forward in time |
72 |
DO j=1-Oly,sNy+Oly |
DO j=1-Oly,sNy+Oly |
73 |
DO i=1-Olx,sNx+Olx |
DO i=1-Olx,sNx+Olx |
86 |
af(i,j) = -_maskS(i,j,k,bi,bj)*( |
af(i,j) = -_maskS(i,j,k,bi,bj)*( |
87 |
& _recip_dyC(i,j,bi,bj)*(pf(i,j)-pf(i,j-1)) |
& _recip_dyC(i,j,bi,bj)*(pf(i,j)-pf(i,j-1)) |
88 |
& +phyFac*dPhiHydY(i,j) ) |
& +phyFac*dPhiHydY(i,j) ) |
89 |
& + gvFld(i,j) |
& + gV(i,j,k,bi,bj) |
90 |
ENDDO |
ENDDO |
91 |
ENDDO |
ENDDO |
92 |
C Average to Vd point and add coriolis |
C Average to Vd point and add coriolis |
104 |
C Step forward Vd |
C Step forward Vd |
105 |
DO j=jMin,jMax |
DO j=jMin,jMax |
106 |
DO i=iMin,iMax |
DO i=iMin,iMax |
107 |
vVelD(i,j,k,bi,bj) = vVelD(i,j,k,bi,bj) + deltaTmom*vf(i,j) |
vVelD(i,j,k,bi,bj) = vVelD(i,j,k,bi,bj) + |
108 |
|
& deltaTmom*vf(i,j) |
109 |
ENDDO |
ENDDO |
110 |
ENDDO |
ENDDO |
111 |
C Relax D grid V to C grid V |
C Relax D grid V to C grid V |
112 |
DO j=jMin,jMax |
DO j=jMin,jMax |
113 |
DO i=iMin,iMax |
DO i=iMin,iMax |
114 |
vVelD(i,j,k,bi,bj) = ( rCD*vVelD(i,j,k,bi,bj) |
vVelD(i,j,k,bi,bj) = rCD*vVelD(i,j,k,bi,bj) |
115 |
& +(1. - rCD)*( |
& +(1. - rCD)*( |
116 |
& ab15*( |
& ab15*0.25*( |
117 |
& vVel(i ,j ,k,bi,bj)+vVel(i ,j+1,k,bi,bj) |
& vVel(i ,j ,k,bi,bj)+vVel(i ,j+1,k,bi,bj) |
118 |
& +vVel(i-1,j ,k,bi,bj)+vVel(i-1,j+1,k,bi,bj) |
& +vVel(i-1,j ,k,bi,bj)+vVel(i-1,j+1,k,bi,bj) |
119 |
& )*0.25 |
& )*_maskW(i,j,k,bi,bj) |
120 |
& +ab05*( |
& + |
121 |
|
& ab05*0.25*( |
122 |
& vNM1(i ,j ,k,bi,bj)+vNM1(i ,j+1,k,bi,bj) |
& vNM1(i ,j ,k,bi,bj)+vNM1(i ,j+1,k,bi,bj) |
123 |
& +vNM1(i-1,j ,k,bi,bj)+vNM1(i-1,j+1,k,bi,bj) |
& +vNM1(i-1,j ,k,bi,bj)+vNM1(i-1,j+1,k,bi,bj) |
124 |
& )*0.25 |
& )*_maskW(i,j,k,bi,bj) |
125 |
& ) )*_maskW(i,j,k,bi,bj) |
& ) |
126 |
ENDDO |
ENDDO |
127 |
ENDDO |
ENDDO |
128 |
C Calculate coriolis force on U |
C Calculate coriolis force on U |
129 |
DO j=jMin,jMax |
DO j=jMin,jMax |
130 |
DO i=iMin,iMax |
DO i=iMin,iMax |
131 |
guCor(i,j) = |
guCD(i,j,k,bi,bj) = |
132 |
& 0.5*( _fCori(i ,j,bi,bj) + |
& 0.5*( _fCori(i ,j,bi,bj) + |
133 |
& _fCori(i-1,j,bi,bj) ) |
& _fCori(i-1,j,bi,bj) ) |
134 |
& *vVelD(i,j,k,bi,bj)*cfFacMom |
& *vVelD(i,j,k,bi,bj)*cfFacMom |
142 |
af(i,j) = -_maskW(i,j,k,bi,bj)*( |
af(i,j) = -_maskW(i,j,k,bi,bj)*( |
143 |
& _recip_dxC(i,j,bi,bj)*(pf(i,j)-pf(i-1,j)) |
& _recip_dxC(i,j,bi,bj)*(pf(i,j)-pf(i-1,j)) |
144 |
& +phxFac*dPhiHydX(i,j) ) |
& +phxFac*dPhiHydX(i,j) ) |
145 |
& + guFld(i,j) |
& + gU(i,j,k,bi,bj) |
146 |
ENDDO |
ENDDO |
147 |
ENDDO |
ENDDO |
148 |
C Average to Ud point and add coriolis |
C Average to Ud point and add coriolis |
160 |
C Step forward Ud |
C Step forward Ud |
161 |
DO j=jMin,jMax |
DO j=jMin,jMax |
162 |
DO i=iMin,iMax |
DO i=iMin,iMax |
163 |
uVelD(i,j,k,bi,bj) = uVelD(i,j,k,bi,bj) + deltaTmom*vf(i,j) |
uVelD(i,j,k,bi,bj) = uVelD(i,j,k,bi,bj) + |
164 |
|
& deltaTmom*vf(i,j)*_maskS(i,j,k,bi,bj) |
165 |
ENDDO |
ENDDO |
166 |
ENDDO |
ENDDO |
167 |
C Relax D grid U to C grid U |
C Relax D grid U to C grid U |
168 |
DO j=jMin,jMax |
DO j=jMin,jMax |
169 |
DO i=iMin,iMax |
DO i=iMin,iMax |
170 |
uVelD(i,j,k,bi,bj) = ( rCD*uVelD(i,j,k,bi,bj) |
uVelD(i,j,k,bi,bj) = rCD*uVelD(i,j,k,bi,bj) |
171 |
& +(1. - rCD)*( |
& +(1. - rCD)*( |
172 |
& ab15*( |
& ab15*0.25*( |
173 |
& uVel(i,j ,k,bi,bj)+uVel(i+1,j ,k,bi,bj) |
& uVel(i,j ,k,bi,bj)+uVel(i+1,j ,k,bi,bj) |
174 |
& +uVel(i,j-1,k,bi,bj)+uVel(i+1,j-1,k,bi,bj) |
& +uVel(i,j-1,k,bi,bj)+uVel(i+1,j-1,k,bi,bj) |
175 |
& )*0.25 |
& )*_maskS(i,j,k,bi,bj) |
176 |
& +ab05*( |
& + |
177 |
|
& ab05*0.25*( |
178 |
& uNM1(i,j ,k,bi,bj)+uNM1(i+1,j ,k,bi,bj) |
& uNM1(i,j ,k,bi,bj)+uNM1(i+1,j ,k,bi,bj) |
179 |
& +uNM1(i,j-1,k,bi,bj)+uNM1(i+1,j-1,k,bi,bj) |
& +uNM1(i,j-1,k,bi,bj)+uNM1(i+1,j-1,k,bi,bj) |
180 |
& )*0.25 |
& )*_maskS(i,j,k,bi,bj) |
181 |
& ) )*_maskS(i,j,k,bi,bj) |
& ) |
182 |
ENDDO |
ENDDO |
183 |
ENDDO |
ENDDO |
184 |
C Calculate coriolis force on V |
C Calculate coriolis force on V |
185 |
DO j=jMin,jMax |
DO j=jMin,jMax |
186 |
DO i=iMin,iMax |
DO i=iMin,iMax |
187 |
gvCor(i,j) = |
gvCD(i,j,k,bi,bj) = |
188 |
& -0.5*( _fCori(i ,j,bi,bj) |
& -0.5*( _fCori(i ,j,bi,bj) |
189 |
& +_fCori(i,j-1,bi,bj) ) |
& +_fCori(i,j-1,bi,bj) ) |
190 |
& *uVelD(i,j,k,bi,bj)*cfFacMom |
& *uVelD(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)*cfFacMom |
191 |
ENDDO |
ENDDO |
192 |
ENDDO |
ENDDO |
193 |
|
|