/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.38 - (show annotations) (download)
Wed May 27 01:35:25 2009 UTC (14 years, 11 months ago) by dfer
Branch: MAIN
CVS Tags: checkpoint61t, checkpoint61r, checkpoint61s, checkpoint61p, checkpoint61q
Changes since 1.37: +4 -12 lines
Fix computations of L4rdt.

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_common/mom_calc_visc.F,v 1.37 2009/04/06 23:47:06 heimbach Exp $
2 C $Name: $
3
4 #include "MOM_COMMON_OPTIONS.h"
5
6
7 SUBROUTINE MOM_CALC_VISC(
8 I bi,bj,k,
9 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10 O harmonic,biharmonic,useVariableViscosity,
11 I hDiv,vort3,tension,strain,KE,hFacZ,
12 I myThid)
13
14 IMPLICIT NONE
15 C
16 C Calculate horizontal viscosities (L is typical grid width)
17 C harmonic viscosity=
18 C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19 C +0.25*L**2*viscAhGrid/deltaT
20 C +sqrt((viscC2leith/pi)**6*grad(Vort3)**2
21 C +(viscC2leithD/pi)**6*grad(hDiv)**2)*L**3
22 C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23 C
24 C biharmonic viscosity=
25 C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26 C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27 C +0.125*L**5*sqrt((viscC4leith/pi)**6*grad(Vort3)**2
28 C +(viscC4leithD/pi)**6*grad(hDiv)**2)
29 C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30 C
31 C Note that often 0.125*L**2 is the scale between harmonic and
32 C biharmonic (see Griffies and Hallberg (2000))
33 C This allows the same value of the coefficient to be used
34 C for roughly similar results with biharmonic and harmonic
35 C
36 C LIMITERS -- limit min and max values of viscosities
37 C viscAhReMax is min value for grid point harmonic Reynolds num
38 C harmonic viscosity>sqrt(2*KE)*L/viscAhReMax
39 C
40 C viscA4ReMax is min value for grid point biharmonic Reynolds num
41 C biharmonic viscosity>sqrt(2*KE)*L**3/8/viscA4ReMax
42 C
43 C viscAhgridmax is CFL stability limiter for harmonic viscosity
44 C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45 C
46 C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47 C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48 C
49 C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50 C harmonic viscosity>0.25*viscAhgridmin*L**2/deltaT
51 C biharmonic viscosity>viscA4gridmin*L**4/32/deltaT (approx)
52
53
54 C
55 C RECOMMENDED VALUES
56 C viscC2Leith=1-3
57 C viscC2LeithD=1-3
58 C viscC4Leith=1-3
59 C viscC4LeithD=1.5-3
60 C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
61 C 0.2-0.9 (Smagorinsky,1993)
62 C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
63 C viscAhReMax>=1, (<2 suppresses a computational mode)
64 C viscA4ReMax>=1, (<2 suppresses a computational mode)
65 C viscAhgridmax=1
66 C viscA4gridmax=1
67 C viscAhgrid<1
68 C viscA4grid<1
69 C viscAhgridmin<<1
70 C viscA4gridmin<<1
71
72 C == Global variables ==
73 #include "SIZE.h"
74 #include "GRID.h"
75 #include "EEPARAMS.h"
76 #include "PARAMS.h"
77 #ifdef ALLOW_NONHYDROSTATIC
78 #include "NH_VARS.h"
79 #endif
80 #ifdef ALLOW_AUTODIFF_TAMC
81 #include "tamc.h"
82 #include "tamc_keys.h"
83 #endif /* ALLOW_AUTODIFF_TAMC */
84
85 C == Routine arguments ==
86 INTEGER bi,bj,k
87 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
94 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
95 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
96 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 INTEGER myThid
98 LOGICAL harmonic,biharmonic,useVariableViscosity
99
100 C == Local variables ==
101 INTEGER I,J
102 #ifdef ALLOW_NONHYDROSTATIC
103 INTEGER kp1
104 #endif
105 INTEGER lockey_1, lockey_2
106 _RL smag2fac, smag4fac
107 _RL leith2fac, leith4fac
108 _RL leithD2fac, leithD4fac
109 _RL viscAhRe_max, viscA4Re_max
110 _RL Alin,grdVrt,grdDiv, keZpt
111 _RL recip_dt,L2,L3,L4,L5,L2rdt,L4rdt
112 _RL Uscl,U4scl
113 _RL divDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RL divDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RL vrtDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RL vrtDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
133 _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
134 _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
135 _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
136 _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
137 LOGICAL calcLeith, calcSmag
138
139 #ifdef ALLOW_AUTODIFF_TAMC
140 act1 = bi - myBxLo(myThid)
141 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
142 act2 = bj - myByLo(myThid)
143 max2 = myByHi(myThid) - myByLo(myThid) + 1
144 act3 = myThid - 1
145 max3 = nTx*nTy
146 act4 = ikey_dynamics - 1
147 ikey = (act1 + 1) + act2*max1
148 & + act3*max1*max2
149 & + act4*max1*max2*max3
150 lockey_1 = (ikey-1)*Nr + k
151 #endif /* ALLOW_AUTODIFF_TAMC */
152
153 C-- Set flags which are used in this S/R and elsewhere :
154 useVariableViscosity=
155 & (viscAhGrid.NE.0.)
156 & .OR.(viscA4Grid.NE.0.)
157 & .OR.(viscC2leith.NE.0.)
158 & .OR.(viscC2leithD.NE.0.)
159 & .OR.(viscC4leith.NE.0.)
160 & .OR.(viscC4leithD.NE.0.)
161 & .OR.(viscC2smag.NE.0.)
162 & .OR.(viscC4smag.NE.0.)
163
164 harmonic=
165 & (viscAh.NE.0.)
166 & .OR.(viscAhD.NE.0.)
167 & .OR.(viscAhZ.NE.0.)
168 & .OR.(viscAhGrid.NE.0.)
169 & .OR.(viscC2leith.NE.0.)
170 & .OR.(viscC2leithD.NE.0.)
171 & .OR.(viscC2smag.NE.0.)
172
173 biharmonic=
174 & (viscA4.NE.0.)
175 & .OR.(viscA4D.NE.0.)
176 & .OR.(viscA4Z.NE.0.)
177 & .OR.(viscA4Grid.NE.0.)
178 & .OR.(viscC4leith.NE.0.)
179 & .OR.(viscC4leithD.NE.0.)
180 & .OR.(viscC4smag.NE.0.)
181
182 IF (useVariableViscosity) THEN
183 C---- variable viscosity :
184
185 IF ((harmonic).AND.(viscAhReMax.NE.0.)) THEN
186 viscAhRe_max=SQRT(2. _d 0)/viscAhReMax
187 ELSE
188 viscAhRe_max=0. _d 0
189 ENDIF
190
191 IF ((biharmonic).AND.(viscA4ReMax.NE.0.)) THEN
192 viscA4Re_max=0.125 _d 0*SQRT(2. _d 0)/viscA4ReMax
193 ELSE
194 viscA4Re_max=0. _d 0
195 ENDIF
196
197 calcLeith=
198 & (viscC2leith.NE.0.)
199 & .OR.(viscC2leithD.NE.0.)
200 & .OR.(viscC4leith.NE.0.)
201 & .OR.(viscC4leithD.NE.0.)
202
203 calcSmag=
204 & (viscC2smag.NE.0.)
205 & .OR.(viscC4smag.NE.0.)
206
207 IF (deltaTmom.NE.0.) THEN
208 recip_dt=1. _d 0/deltaTmom
209 ELSE
210 recip_dt=0. _d 0
211 ENDIF
212
213 IF (calcSmag) THEN
214 smag2fac=(viscC2smag/pi)**2
215 smag4fac=0.125 _d 0*(viscC4smag/pi)**2
216 ELSE
217 smag2fac=0. _d 0
218 smag4fac=0. _d 0
219 ENDIF
220
221 IF (calcLeith) THEN
222 IF (useFullLeith) THEN
223 leith2fac =(viscC2leith /pi)**6
224 leithD2fac=(viscC2leithD/pi)**6
225 leith4fac =0.015625 _d 0*(viscC4leith /pi)**6
226 leithD4fac=0.015625 _d 0*(viscC4leithD/pi)**6
227 ELSE
228 leith2fac =(viscC2leith /pi)**3
229 leithD2fac=(viscC2leithD/pi)**3
230 leith4fac =0.125 _d 0*(viscC4leith /pi)**3
231 leithD4fac=0.125 _d 0*(viscC4leithD/pi)**3
232 ENDIF
233 ELSE
234 leith2fac=0. _d 0
235 leith4fac=0. _d 0
236 leithD2fac=0. _d 0
237 leithD4fac=0. _d 0
238 ENDIF
239
240 #ifdef ALLOW_AUTODIFF_TAMC
241 cphtest IF ( calcLeith .OR. calcSmag ) THEN
242 cphtest STOP 'calcLeith or calcSmag not implemented for ADJOINT'
243 cphtest ENDIF
244 #endif
245 DO j=1-Oly,sNy+Oly
246 DO i=1-Olx,sNx+Olx
247 viscAh_D(i,j)=viscAhD
248 viscAh_Z(i,j)=viscAhZ
249 viscA4_D(i,j)=viscA4D
250 viscA4_Z(i,j)=viscA4Z
251 c
252 visca4_zsmg(i,j) = 0. _d 0
253 viscah_zsmg(i,j) = 0. _d 0
254 c
255 viscAh_Dlth(i,j) = 0. _d 0
256 viscA4_Dlth(i,j) = 0. _d 0
257 viscAh_DlthD(i,j)= 0. _d 0
258 viscA4_DlthD(i,j)= 0. _d 0
259 c
260 viscAh_DSmg(i,j) = 0. _d 0
261 viscA4_DSmg(i,j) = 0. _d 0
262 c
263 viscAh_ZLth(i,j) = 0. _d 0
264 viscA4_ZLth(i,j) = 0. _d 0
265 viscAh_ZLthD(i,j)= 0. _d 0
266 viscA4_ZLthD(i,j)= 0. _d 0
267 ENDDO
268 ENDDO
269
270 C- Initialise to zero gradient of vorticity & divergence:
271 DO j=1-Oly,sNy+Oly
272 DO i=1-Olx,sNx+Olx
273 divDx(i,j) = 0.
274 divDy(i,j) = 0.
275 vrtDx(i,j) = 0.
276 vrtDy(i,j) = 0.
277 ENDDO
278 ENDDO
279
280 IF (calcLeith) THEN
281 C horizontal gradient of horizontal divergence:
282
283 C- gradient in x direction:
284 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
285 IF (useCubedSphereExchange) THEN
286 C to compute d/dx(hDiv), fill corners with appropriate values:
287 CALL FILL_CS_CORNER_TR_RL( 1, .FALSE.,
288 & hDiv, bi,bj, myThid )
289 ENDIF
290 cph-exch2#endif
291 DO j=2-Oly,sNy+Oly-1
292 DO i=2-Olx,sNx+Olx-1
293 divDx(i,j) = (hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)
294 ENDDO
295 ENDDO
296
297 C- gradient in y direction:
298 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
299 IF (useCubedSphereExchange) THEN
300 C to compute d/dy(hDiv), fill corners with appropriate values:
301 CALL FILL_CS_CORNER_TR_RL( 2, .FALSE.,
302 & hDiv, bi,bj, myThid )
303 ENDIF
304 cph-exch2#endif
305 DO j=2-Oly,sNy+Oly-1
306 DO i=2-Olx,sNx+Olx-1
307 divDy(i,j) = (hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)
308 ENDDO
309 ENDDO
310
311 C horizontal gradient of vertical vorticity:
312 C- gradient in x direction:
313 DO j=2-Oly,sNy+Oly
314 DO i=2-Olx,sNx+Olx-1
315 vrtDx(i,j) = (vort3(i+1,j)-vort3(i,j))
316 & *recip_DXG(i,j,bi,bj)
317 & *maskS(i,j,k,bi,bj)
318 ENDDO
319 ENDDO
320 C- gradient in y direction:
321 DO j=2-Oly,sNy+Oly-1
322 DO i=2-Olx,sNx+Olx
323 vrtDy(i,j) = (vort3(i,j+1)-vort3(i,j))
324 & *recip_DYG(i,j,bi,bj)
325 & *maskW(i,j,k,bi,bj)
326 ENDDO
327 ENDDO
328
329 ENDIF
330
331 DO j=2-Oly,sNy+Oly-1
332 DO i=2-Olx,sNx+Olx-1
333 CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
334
335 #ifdef ALLOW_AUTODIFF_TAMC
336 # ifndef AUTODIFF_DISABLE_LEITH
337 lockey_2 = i+olx + (sNx+2*olx)*(j+oly-1)
338 & + (sNx+2*olx)*(sNy+2*oly)*(lockey_1-1)
339 CADJ STORE viscA4_ZSmg(i,j)
340 CADJ & = comlev1_mom_ijk_loop , key=lockey_2, byte=isbyte
341 CADJ STORE viscAh_ZSmg(i,j)
342 CADJ & = comlev1_mom_ijk_loop , key=lockey_2, byte=isbyte
343 # endif
344 #endif /* ALLOW_AUTODIFF_TAMC */
345
346 C These are (powers of) length scales
347 IF (useAreaViscLength) THEN
348 L2=rA(i,j,bi,bj)
349 ELSE
350 L2=2. _d 0/((recip_DXF(I,J,bi,bj)**2+recip_DYF(I,J,bi,bj)**2))
351 ENDIF
352 L4rdt=0.03125 _d 0*recip_dt*L2**2
353 L3=(L2**1.5)
354 L4=(L2**2)
355 L5=(L2*L3)
356
357 L2rdt=0.25 _d 0*recip_dt*L2
358
359 C Velocity Reynolds Scale
360 IF ( viscAhRe_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
361 Uscl=SQRT(KE(i,j)*L2)*viscAhRe_max
362 ELSE
363 Uscl=0.
364 ENDIF
365 IF ( viscA4Re_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
366 U4scl=SQRT(KE(i,j))*L3*viscA4Re_max
367 ELSE
368 U4scl=0.
369 ENDIF
370
371 cph-leith#ifndef ALLOW_AUTODIFF_TAMC
372 #ifndef AUTODIFF_DISABLE_LEITH
373 IF (useFullLeith.AND.calcLeith) THEN
374 C This is the vector magnitude of the vorticity gradient squared
375 grdVrt=0.25 _d 0*( (vrtDx(i,j+1)*vrtDx(i,j+1)
376 & + vrtDx(i,j)*vrtDx(i,j) )
377 & + (vrtDy(i+1,j)*vrtDy(i+1,j)
378 & + vrtDy(i,j)*vrtDy(i,j) ) )
379
380 C This is the vector magnitude of grad (div.v) squared
381 C Using it in Leith serves to damp instabilities in w.
382 grdDiv=0.25 _d 0*( (divDx(i+1,j)*divDx(i+1,j)
383 & + divDx(i,j)*divDx(i,j) )
384 & + (divDy(i,j+1)*divDy(i,j+1)
385 & + divDy(i,j)*divDy(i,j) ) )
386
387 viscAh_DLth(i,j)=
388 & SQRT(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
389 viscA4_DLth(i,j)=
390 & SQRT(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
391 viscAh_DLthd(i,j)=
392 & SQRT(leithD2fac*grdDiv)*L3
393 viscA4_DLthd(i,j)=
394 & SQRT(leithD4fac*grdDiv)*L5
395 ELSEIF (calcLeith) THEN
396 C but this approximation will work on cube
397 c (and differs by as much as 4X)
398 grdVrt=MAX( ABS(vrtDx(i,j+1)), ABS(vrtDx(i,j)) )
399 grdVrt=MAX( grdVrt, ABS(vrtDy(i+1,j)) )
400 grdVrt=MAX( grdVrt, ABS(vrtDy(i,j)) )
401
402 c This approximation is good to the same order as above...
403 grdDiv=MAX( ABS(divDx(i+1,j)), ABS(divDx(i,j)) )
404 grdDiv=MAX( grdDiv, ABS(divDy(i,j+1)) )
405 grdDiv=MAX( grdDiv, ABS(divDy(i,j)) )
406
407 viscAh_Dlth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
408 viscA4_Dlth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
409 viscAh_DlthD(i,j)=((leithD2fac*grdDiv))*L3
410 viscA4_DlthD(i,j)=((leithD4fac*grdDiv))*L5
411 ELSE
412 viscAh_Dlth(i,j)=0. _d 0
413 viscA4_Dlth(i,j)=0. _d 0
414 viscAh_DlthD(i,j)=0. _d 0
415 viscA4_DlthD(i,j)=0. _d 0
416 ENDIF
417
418 IF (calcSmag) THEN
419 viscAh_DSmg(i,j)=L2
420 & *SQRT(tension(i,j)**2
421 & +0.25 _d 0*(strain(i+1, j )**2+strain( i ,j+1)**2
422 & +strain(i , j )**2+strain(i+1,j+1)**2))
423 viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
424 viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
425 ELSE
426 viscAh_DSmg(i,j)=0. _d 0
427 viscA4_DSmg(i,j)=0. _d 0
428 ENDIF
429 #endif /* AUTODIFF_DISABLE_LEITH */
430
431 C Harmonic on Div.u points
432 Alin=viscAhD+viscAhGrid*L2rdt
433 & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
434 viscAh_DMin(i,j)=MAX(viscAhGridMin*L2rdt,Uscl)
435 viscAh_D(i,j)=MAX(viscAh_DMin(i,j),Alin)
436 viscAh_DMax(i,j)=MIN(viscAhGridMax*L2rdt,viscAhMax)
437 viscAh_D(i,j)=MIN(viscAh_DMax(i,j),viscAh_D(i,j))
438
439 C BiHarmonic on Div.u points
440 Alin=viscA4D+viscA4Grid*L4rdt
441 & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
442 viscA4_DMin(i,j)=MAX(viscA4GridMin*L4rdt,U4scl)
443 viscA4_D(i,j)=MAX(viscA4_DMin(i,j),Alin)
444 viscA4_DMax(i,j)=MIN(viscA4GridMax*L4rdt,viscA4Max)
445 viscA4_D(i,j)=MIN(viscA4_DMax(i,j),viscA4_D(i,j))
446
447 #ifdef ALLOW_NONHYDROSTATIC
448 C-- Pass Viscosities to calc_gw, if constant, not necessary
449
450 kp1 = MIN(k+1,Nr)
451
452 IF ( k.EQ.1 ) THEN
453 C Prepare for next level (next call)
454 viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
455 viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
456
457 C These values dont get used
458 viscAh_W(i,j,k,bi,bj)=viscAh_D(i,j)
459 viscA4_W(i,j,k,bi,bj)=viscA4_D(i,j)
460
461 ELSEIF ( k.EQ.Nr ) THEN
462 viscAh_W(i,j,k,bi,bj)=viscAh_W(i,j,k,bi,bj)+0.5*viscAh_D(i,j)
463 viscA4_W(i,j,k,bi,bj)=viscA4_W(i,j,k,bi,bj)+0.5*viscA4_D(i,j)
464
465 ELSE
466 C Prepare for next level (next call)
467 viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
468 viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
469
470 C Note that previous call of this function has already added half.
471 viscAh_W(i,j,k,bi,bj)=viscAh_W(i,j,k,bi,bj)+0.5*viscAh_D(i,j)
472 viscA4_W(i,j,k,bi,bj)=viscA4_W(i,j,k,bi,bj)+0.5*viscA4_D(i,j)
473
474 ENDIF
475 #endif /* ALLOW_NONHYDROSTATIC */
476
477 CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
478 C These are (powers of) length scales
479 IF (useAreaViscLength) THEN
480 L2=rAz(i,j,bi,bj)
481 ELSE
482 L2=2. _d 0/((recip_DXV(I,J,bi,bj)**2+recip_DYU(I,J,bi,bj)**2))
483 ENDIF
484 L4rdt=0.03125 _d 0*recip_dt*L2**2
485 L3=(L2**1.5)
486 L4=(L2**2)
487 L5=(L2*L3)
488
489 L2rdt=0.25 _d 0*recip_dt*L2
490
491 C Velocity Reynolds Scale (Pb here at CS-grid corners !)
492 IF ( viscAhRe_max.GT.0. .OR. viscA4Re_max.GT.0. ) THEN
493 keZpt=0.25 _d 0*( (KE(i,j)+KE(i-1,j-1))
494 & +(KE(i-1,j)+KE(i,j-1)) )
495 IF ( keZpt.GT.0. ) THEN
496 Uscl = SQRT(keZpt*L2)*viscAhRe_max
497 U4scl= SQRT(keZpt)*L3*viscA4Re_max
498 ELSE
499 Uscl =0.
500 U4scl=0.
501 ENDIF
502 ELSE
503 Uscl =0.
504 U4scl=0.
505 ENDIF
506
507 #ifndef AUTODIFF_DISABLE_LEITH
508 C This is the vector magnitude of the vorticity gradient squared
509 IF (useFullLeith.AND.calcLeith) THEN
510 grdVrt=0.25 _d 0*( (vrtDx(i-1,j)*vrtDx(i-1,j)
511 & + vrtDx(i,j)*vrtDx(i,j) )
512 & + (vrtDy(i,j-1)*vrtDy(i,j-1)
513 & + vrtDy(i,j)*vrtDy(i,j) ) )
514
515 C This is the vector magnitude of grad(div.v) squared
516 grdDiv=0.25 _d 0*( (divDx(i,j-1)*divDx(i,j-1)
517 & + divDx(i,j)*divDx(i,j) )
518 & + (divDy(i-1,j)*divDy(i-1,j)
519 & + divDy(i,j)*divDy(i,j) ) )
520
521 viscAh_ZLth(i,j)=
522 & SQRT(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
523 viscA4_ZLth(i,j)=
524 & SQRT(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
525 viscAh_ZLthD(i,j)=
526 & SQRT(leithD2fac*grdDiv)*L3
527 viscA4_ZLthD(i,j)=
528 & SQRT(leithD4fac*grdDiv)*L5
529
530 ELSEIF (calcLeith) THEN
531 C but this approximation will work on cube (and differs by 4X)
532 grdVrt=MAX( ABS(vrtDx(i-1,j)), ABS(vrtDx(i,j)) )
533 grdVrt=MAX( grdVrt, ABS(vrtDy(i,j-1)) )
534 grdVrt=MAX( grdVrt, ABS(vrtDy(i,j)) )
535
536 grdDiv=MAX( ABS(divDx(i,j)), ABS(divDx(i,j-1)) )
537 grdDiv=MAX( grdDiv, ABS(divDy(i,j)) )
538 grdDiv=MAX( grdDiv, ABS(divDy(i-1,j)) )
539
540 viscAh_ZLth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
541 viscA4_ZLth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
542 viscAh_ZLthD(i,j)=(leithD2fac*grdDiv)*L3
543 viscA4_ZLthD(i,j)=(leithD4fac*grdDiv)*L5
544 ELSE
545 viscAh_ZLth(i,j)=0. _d 0
546 viscA4_ZLth(i,j)=0. _d 0
547 viscAh_ZLthD(i,j)=0. _d 0
548 viscA4_ZLthD(i,j)=0. _d 0
549 ENDIF
550
551 IF (calcSmag) THEN
552 viscAh_ZSmg(i,j)=L2
553 & *SQRT(strain(i,j)**2
554 & +0.25 _d 0*(tension( i , j )**2+tension( i ,j-1)**2
555 & +tension(i-1, j )**2+tension(i-1,j-1)**2))
556 viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
557 viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
558 ENDIF
559 #endif /* AUTODIFF_DISABLE_LEITH */
560
561 C Harmonic on Zeta points
562 Alin=viscAhZ+viscAhGrid*L2rdt
563 & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
564 viscAh_ZMin(i,j)=MAX(viscAhGridMin*L2rdt,Uscl)
565 viscAh_Z(i,j)=MAX(viscAh_ZMin(i,j),Alin)
566 viscAh_ZMax(i,j)=MIN(viscAhGridMax*L2rdt,viscAhMax)
567 viscAh_Z(i,j)=MIN(viscAh_ZMax(i,j),viscAh_Z(i,j))
568
569 C BiHarmonic on Zeta points
570 Alin=viscA4Z+viscA4Grid*L4rdt
571 & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
572 viscA4_ZMin(i,j)=MAX(viscA4GridMin*L4rdt,U4scl)
573 viscA4_Z(i,j)=MAX(viscA4_ZMin(i,j),Alin)
574 viscA4_ZMax(i,j)=MIN(viscA4GridMax*L4rdt,viscA4Max)
575 viscA4_Z(i,j)=MIN(viscA4_ZMax(i,j),viscA4_Z(i,j))
576 ENDDO
577 ENDDO
578
579 ELSE
580 C---- use constant viscosity (useVariableViscosity=F):
581
582 DO j=1-Oly,sNy+Oly
583 DO i=1-Olx,sNx+Olx
584 viscAh_D(i,j)=viscAhD
585 viscAh_Z(i,j)=viscAhZ
586 viscA4_D(i,j)=viscA4D
587 viscA4_Z(i,j)=viscA4Z
588 ENDDO
589 ENDDO
590
591 C---- variable/constant viscosity : end if/else block
592 ENDIF
593
594 #ifdef ALLOW_DIAGNOSTICS
595 IF (useDiagnostics) THEN
596 CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
597 CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
598 CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
599 CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
600
601 CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
602 CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
603 CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
604 CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
605
606 CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
607 CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
608 CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
609 CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
610
611 CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
612 CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
613 CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
614 CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
615
616 CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD'
617 & ,k,1,2,bi,bj,myThid)
618 CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD'
619 & ,k,1,2,bi,bj,myThid)
620 CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD'
621 & ,k,1,2,bi,bj,myThid)
622 CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD'
623 & ,k,1,2,bi,bj,myThid)
624
625 CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
626 CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
627 CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
628 CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
629 ENDIF
630 #endif
631
632 RETURN
633 END
634

  ViewVC Help
Powered by ViewVC 1.1.22