/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.40 - (show annotations) (download)
Thu Sep 17 16:57:13 2009 UTC (14 years, 9 months ago) by dfer
Branch: MAIN
CVS Tags: checkpoint61v, checkpoint61w, checkpoint61x
Changes since 1.39: +12 -27 lines
Move computation of length scales to mom_init_fixed.F (avoid recomputation
at each time-steps*levels).

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_common/mom_calc_visc.F,v 1.38 2009/05/27 01:35:25 dfer Exp $
2 C $Name: $
3
4 #include "MOM_COMMON_OPTIONS.h"
5
6
7 SUBROUTINE MOM_CALC_VISC(
8 I bi,bj,k,
9 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10 O harmonic,biharmonic,useVariableViscosity,
11 I hDiv,vort3,tension,strain,KE,hFacZ,
12 I myThid)
13
14 IMPLICIT NONE
15 C
16 C Calculate horizontal viscosities (L is typical grid width)
17 C harmonic viscosity=
18 C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19 C +0.25*L**2*viscAhGrid/deltaT
20 C +sqrt((viscC2leith/pi)**6*grad(Vort3)**2
21 C +(viscC2leithD/pi)**6*grad(hDiv)**2)*L**3
22 C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23 C
24 C biharmonic viscosity=
25 C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26 C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27 C +0.125*L**5*sqrt((viscC4leith/pi)**6*grad(Vort3)**2
28 C +(viscC4leithD/pi)**6*grad(hDiv)**2)
29 C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30 C
31 C Note that often 0.125*L**2 is the scale between harmonic and
32 C biharmonic (see Griffies and Hallberg (2000))
33 C This allows the same value of the coefficient to be used
34 C for roughly similar results with biharmonic and harmonic
35 C
36 C LIMITERS -- limit min and max values of viscosities
37 C viscAhReMax is min value for grid point harmonic Reynolds num
38 C harmonic viscosity>sqrt(2*KE)*L/viscAhReMax
39 C
40 C viscA4ReMax is min value for grid point biharmonic Reynolds num
41 C biharmonic viscosity>sqrt(2*KE)*L**3/8/viscA4ReMax
42 C
43 C viscAhgridmax is CFL stability limiter for harmonic viscosity
44 C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45 C
46 C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47 C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48 C
49 C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50 C harmonic viscosity>0.25*viscAhgridmin*L**2/deltaT
51 C biharmonic viscosity>viscA4gridmin*L**4/32/deltaT (approx)
52
53
54 C
55 C RECOMMENDED VALUES
56 C viscC2Leith=1-3
57 C viscC2LeithD=1-3
58 C viscC4Leith=1-3
59 C viscC4LeithD=1.5-3
60 C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
61 C 0.2-0.9 (Smagorinsky,1993)
62 C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
63 C viscAhReMax>=1, (<2 suppresses a computational mode)
64 C viscA4ReMax>=1, (<2 suppresses a computational mode)
65 C viscAhgridmax=1
66 C viscA4gridmax=1
67 C viscAhgrid<1
68 C viscA4grid<1
69 C viscAhgridmin<<1
70 C viscA4gridmin<<1
71
72 C == Global variables ==
73 #include "SIZE.h"
74 #include "GRID.h"
75 #include "EEPARAMS.h"
76 #include "PARAMS.h"
77 #ifdef ALLOW_NONHYDROSTATIC
78 #include "NH_VARS.h"
79 #endif
80 #ifdef ALLOW_AUTODIFF_TAMC
81 #include "tamc.h"
82 #include "tamc_keys.h"
83 #endif /* ALLOW_AUTODIFF_TAMC */
84 #include "MOM_VISC.h"
85
86 C == Routine arguments ==
87 INTEGER bi,bj,k
88 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
94 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
95 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
96 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 INTEGER myThid
99 LOGICAL harmonic,biharmonic,useVariableViscosity
100
101 C == Local variables ==
102 INTEGER I,J
103 #ifdef ALLOW_NONHYDROSTATIC
104 INTEGER kp1
105 #endif
106 INTEGER lockey_1, lockey_2
107 _RL smag2fac, smag4fac
108 _RL leith2fac, leith4fac
109 _RL leithD2fac, leithD4fac
110 _RL viscAhRe_max, viscA4Re_max
111 _RL Alin,grdVrt,grdDiv, keZpt
112 _RL L2,L3,L5,L2rdt,L4rdt
113 _RL Uscl,U4scl
114 _RL divDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RL divDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RL vrtDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL vrtDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
133 _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
134 _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
135 _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
136 _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
137 _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
138 LOGICAL calcLeith, calcSmag
139
140 #ifdef ALLOW_AUTODIFF_TAMC
141 act1 = bi - myBxLo(myThid)
142 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
143 act2 = bj - myByLo(myThid)
144 max2 = myByHi(myThid) - myByLo(myThid) + 1
145 act3 = myThid - 1
146 max3 = nTx*nTy
147 act4 = ikey_dynamics - 1
148 ikey = (act1 + 1) + act2*max1
149 & + act3*max1*max2
150 & + act4*max1*max2*max3
151 lockey_1 = (ikey-1)*Nr + k
152 #endif /* ALLOW_AUTODIFF_TAMC */
153
154 C-- Set flags which are used in this S/R and elsewhere :
155 useVariableViscosity=
156 & (viscAhGrid.NE.0.)
157 & .OR.(viscA4Grid.NE.0.)
158 & .OR.(viscC2leith.NE.0.)
159 & .OR.(viscC2leithD.NE.0.)
160 & .OR.(viscC4leith.NE.0.)
161 & .OR.(viscC4leithD.NE.0.)
162 & .OR.(viscC2smag.NE.0.)
163 & .OR.(viscC4smag.NE.0.)
164
165 harmonic=
166 & (viscAh.NE.0.)
167 & .OR.(viscAhD.NE.0.)
168 & .OR.(viscAhZ.NE.0.)
169 & .OR.(viscAhGrid.NE.0.)
170 & .OR.(viscC2leith.NE.0.)
171 & .OR.(viscC2leithD.NE.0.)
172 & .OR.(viscC2smag.NE.0.)
173
174 biharmonic=
175 & (viscA4.NE.0.)
176 & .OR.(viscA4D.NE.0.)
177 & .OR.(viscA4Z.NE.0.)
178 & .OR.(viscA4Grid.NE.0.)
179 & .OR.(viscC4leith.NE.0.)
180 & .OR.(viscC4leithD.NE.0.)
181 & .OR.(viscC4smag.NE.0.)
182
183 IF (useVariableViscosity) THEN
184 C---- variable viscosity :
185
186 IF ((harmonic).AND.(viscAhReMax.NE.0.)) THEN
187 viscAhRe_max=SQRT(2. _d 0)/viscAhReMax
188 ELSE
189 viscAhRe_max=0. _d 0
190 ENDIF
191
192 IF ((biharmonic).AND.(viscA4ReMax.NE.0.)) THEN
193 viscA4Re_max=0.125 _d 0*SQRT(2. _d 0)/viscA4ReMax
194 ELSE
195 viscA4Re_max=0. _d 0
196 ENDIF
197
198 calcLeith=
199 & (viscC2leith.NE.0.)
200 & .OR.(viscC2leithD.NE.0.)
201 & .OR.(viscC4leith.NE.0.)
202 & .OR.(viscC4leithD.NE.0.)
203
204 calcSmag=
205 & (viscC2smag.NE.0.)
206 & .OR.(viscC4smag.NE.0.)
207
208 IF (calcSmag) THEN
209 smag2fac=(viscC2smag/pi)**2
210 smag4fac=0.125 _d 0*(viscC4smag/pi)**2
211 ELSE
212 smag2fac=0. _d 0
213 smag4fac=0. _d 0
214 ENDIF
215
216 IF (calcLeith) THEN
217 IF (useFullLeith) THEN
218 leith2fac =(viscC2leith /pi)**6
219 leithD2fac=(viscC2leithD/pi)**6
220 leith4fac =0.015625 _d 0*(viscC4leith /pi)**6
221 leithD4fac=0.015625 _d 0*(viscC4leithD/pi)**6
222 ELSE
223 leith2fac =(viscC2leith /pi)**3
224 leithD2fac=(viscC2leithD/pi)**3
225 leith4fac =0.125 _d 0*(viscC4leith /pi)**3
226 leithD4fac=0.125 _d 0*(viscC4leithD/pi)**3
227 ENDIF
228 ELSE
229 leith2fac=0. _d 0
230 leith4fac=0. _d 0
231 leithD2fac=0. _d 0
232 leithD4fac=0. _d 0
233 ENDIF
234
235 #ifdef ALLOW_AUTODIFF_TAMC
236 cphtest IF ( calcLeith .OR. calcSmag ) THEN
237 cphtest STOP 'calcLeith or calcSmag not implemented for ADJOINT'
238 cphtest ENDIF
239 #endif
240 DO j=1-Oly,sNy+Oly
241 DO i=1-Olx,sNx+Olx
242 viscAh_D(i,j)=viscAhD
243 viscAh_Z(i,j)=viscAhZ
244 viscA4_D(i,j)=viscA4D
245 viscA4_Z(i,j)=viscA4Z
246 c
247 visca4_zsmg(i,j) = 0. _d 0
248 viscah_zsmg(i,j) = 0. _d 0
249 c
250 viscAh_Dlth(i,j) = 0. _d 0
251 viscA4_Dlth(i,j) = 0. _d 0
252 viscAh_DlthD(i,j)= 0. _d 0
253 viscA4_DlthD(i,j)= 0. _d 0
254 c
255 viscAh_DSmg(i,j) = 0. _d 0
256 viscA4_DSmg(i,j) = 0. _d 0
257 c
258 viscAh_ZLth(i,j) = 0. _d 0
259 viscA4_ZLth(i,j) = 0. _d 0
260 viscAh_ZLthD(i,j)= 0. _d 0
261 viscA4_ZLthD(i,j)= 0. _d 0
262 ENDDO
263 ENDDO
264
265 C- Initialise to zero gradient of vorticity & divergence:
266 DO j=1-Oly,sNy+Oly
267 DO i=1-Olx,sNx+Olx
268 divDx(i,j) = 0.
269 divDy(i,j) = 0.
270 vrtDx(i,j) = 0.
271 vrtDy(i,j) = 0.
272 ENDDO
273 ENDDO
274
275 IF (calcLeith) THEN
276 C horizontal gradient of horizontal divergence:
277
278 C- gradient in x direction:
279 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
280 IF (useCubedSphereExchange) THEN
281 C to compute d/dx(hDiv), fill corners with appropriate values:
282 CALL FILL_CS_CORNER_TR_RL( 1, .FALSE.,
283 & hDiv, bi,bj, myThid )
284 ENDIF
285 cph-exch2#endif
286 DO j=2-Oly,sNy+Oly-1
287 DO i=2-Olx,sNx+Olx-1
288 divDx(i,j) = (hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)
289 ENDDO
290 ENDDO
291
292 C- gradient in y direction:
293 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
294 IF (useCubedSphereExchange) THEN
295 C to compute d/dy(hDiv), fill corners with appropriate values:
296 CALL FILL_CS_CORNER_TR_RL( 2, .FALSE.,
297 & hDiv, bi,bj, myThid )
298 ENDIF
299 cph-exch2#endif
300 DO j=2-Oly,sNy+Oly-1
301 DO i=2-Olx,sNx+Olx-1
302 divDy(i,j) = (hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)
303 ENDDO
304 ENDDO
305
306 C horizontal gradient of vertical vorticity:
307 C- gradient in x direction:
308 DO j=2-Oly,sNy+Oly
309 DO i=2-Olx,sNx+Olx-1
310 vrtDx(i,j) = (vort3(i+1,j)-vort3(i,j))
311 & *recip_DXG(i,j,bi,bj)
312 & *maskS(i,j,k,bi,bj)
313 ENDDO
314 ENDDO
315 C- gradient in y direction:
316 DO j=2-Oly,sNy+Oly-1
317 DO i=2-Olx,sNx+Olx
318 vrtDy(i,j) = (vort3(i,j+1)-vort3(i,j))
319 & *recip_DYG(i,j,bi,bj)
320 & *maskW(i,j,k,bi,bj)
321 ENDDO
322 ENDDO
323
324 ENDIF
325
326 DO j=2-Oly,sNy+Oly-1
327 DO i=2-Olx,sNx+Olx-1
328 CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
329
330 #ifdef ALLOW_AUTODIFF_TAMC
331 # ifndef AUTODIFF_DISABLE_LEITH
332 lockey_2 = i+olx + (sNx+2*olx)*(j+oly-1)
333 & + (sNx+2*olx)*(sNy+2*oly)*(lockey_1-1)
334 CADJ STORE viscA4_ZSmg(i,j)
335 CADJ & = comlev1_mom_ijk_loop , key=lockey_2, byte=isbyte
336 CADJ STORE viscAh_ZSmg(i,j)
337 CADJ & = comlev1_mom_ijk_loop , key=lockey_2, byte=isbyte
338 # endif
339 #endif /* ALLOW_AUTODIFF_TAMC */
340
341 C These are (powers of) length scales
342 L2 = L2_D(i,j,bi,bj)
343 L2rdt = 0.25 _d 0*recip_dt*L2
344 L3 = L3_D(i,j,bi,bj)
345 L4rdt = L4rdt_D(i,j,bi,bj)
346 L5 = (L2*L3)
347
348 C Velocity Reynolds Scale
349 IF ( viscAhRe_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
350 Uscl=SQRT(KE(i,j)*L2)*viscAhRe_max
351 ELSE
352 Uscl=0.
353 ENDIF
354 IF ( viscA4Re_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
355 U4scl=SQRT(KE(i,j))*L3*viscA4Re_max
356 ELSE
357 U4scl=0.
358 ENDIF
359
360 cph-leith#ifndef ALLOW_AUTODIFF_TAMC
361 #ifndef AUTODIFF_DISABLE_LEITH
362 IF (useFullLeith.AND.calcLeith) THEN
363 C This is the vector magnitude of the vorticity gradient squared
364 grdVrt=0.25 _d 0*( (vrtDx(i,j+1)*vrtDx(i,j+1)
365 & + vrtDx(i,j)*vrtDx(i,j) )
366 & + (vrtDy(i+1,j)*vrtDy(i+1,j)
367 & + vrtDy(i,j)*vrtDy(i,j) ) )
368
369 C This is the vector magnitude of grad (div.v) squared
370 C Using it in Leith serves to damp instabilities in w.
371 grdDiv=0.25 _d 0*( (divDx(i+1,j)*divDx(i+1,j)
372 & + divDx(i,j)*divDx(i,j) )
373 & + (divDy(i,j+1)*divDy(i,j+1)
374 & + divDy(i,j)*divDy(i,j) ) )
375
376 viscAh_DLth(i,j)=
377 & SQRT(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
378 viscA4_DLth(i,j)=
379 & SQRT(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
380 viscAh_DLthd(i,j)=
381 & SQRT(leithD2fac*grdDiv)*L3
382 viscA4_DLthd(i,j)=
383 & SQRT(leithD4fac*grdDiv)*L5
384 ELSEIF (calcLeith) THEN
385 C but this approximation will work on cube
386 c (and differs by as much as 4X)
387 grdVrt=MAX( ABS(vrtDx(i,j+1)), ABS(vrtDx(i,j)) )
388 grdVrt=MAX( grdVrt, ABS(vrtDy(i+1,j)) )
389 grdVrt=MAX( grdVrt, ABS(vrtDy(i,j)) )
390
391 c This approximation is good to the same order as above...
392 grdDiv=MAX( ABS(divDx(i+1,j)), ABS(divDx(i,j)) )
393 grdDiv=MAX( grdDiv, ABS(divDy(i,j+1)) )
394 grdDiv=MAX( grdDiv, ABS(divDy(i,j)) )
395
396 viscAh_Dlth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
397 viscA4_Dlth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
398 viscAh_DlthD(i,j)=((leithD2fac*grdDiv))*L3
399 viscA4_DlthD(i,j)=((leithD4fac*grdDiv))*L5
400 ELSE
401 viscAh_Dlth(i,j)=0. _d 0
402 viscA4_Dlth(i,j)=0. _d 0
403 viscAh_DlthD(i,j)=0. _d 0
404 viscA4_DlthD(i,j)=0. _d 0
405 ENDIF
406
407 IF (calcSmag) THEN
408 viscAh_DSmg(i,j)=L2
409 & *SQRT(tension(i,j)**2
410 & +0.25 _d 0*(strain(i+1, j )**2+strain( i ,j+1)**2
411 & +strain(i , j )**2+strain(i+1,j+1)**2))
412 viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
413 viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
414 ELSE
415 viscAh_DSmg(i,j)=0. _d 0
416 viscA4_DSmg(i,j)=0. _d 0
417 ENDIF
418 #endif /* AUTODIFF_DISABLE_LEITH */
419
420 C Harmonic on Div.u points
421 Alin=viscAhD+viscAhGrid*L2rdt
422 & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
423 viscAh_DMin(i,j)=MAX(viscAhGridMin*L2rdt,Uscl)
424 viscAh_D(i,j)=MAX(viscAh_DMin(i,j),Alin)
425 viscAh_DMax(i,j)=MIN(viscAhGridMax*L2rdt,viscAhMax)
426 viscAh_D(i,j)=MIN(viscAh_DMax(i,j),viscAh_D(i,j))
427
428 C BiHarmonic on Div.u points
429 Alin=viscA4D+viscA4Grid*L4rdt
430 & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
431 viscA4_DMin(i,j)=MAX(viscA4GridMin*L4rdt,U4scl)
432 viscA4_D(i,j)=MAX(viscA4_DMin(i,j),Alin)
433 viscA4_DMax(i,j)=MIN(viscA4GridMax*L4rdt,viscA4Max)
434 viscA4_D(i,j)=MIN(viscA4_DMax(i,j),viscA4_D(i,j))
435
436 #ifdef ALLOW_NONHYDROSTATIC
437 C-- Pass Viscosities to calc_gw, if constant, not necessary
438
439 kp1 = MIN(k+1,Nr)
440
441 IF ( k.EQ.1 ) THEN
442 C Prepare for next level (next call)
443 viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
444 viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
445
446 C These values dont get used
447 viscAh_W(i,j,k,bi,bj)=viscAh_D(i,j)
448 viscA4_W(i,j,k,bi,bj)=viscA4_D(i,j)
449
450 ELSEIF ( k.EQ.Nr ) THEN
451 viscAh_W(i,j,k,bi,bj)=viscAh_W(i,j,k,bi,bj)+0.5*viscAh_D(i,j)
452 viscA4_W(i,j,k,bi,bj)=viscA4_W(i,j,k,bi,bj)+0.5*viscA4_D(i,j)
453
454 ELSE
455 C Prepare for next level (next call)
456 viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
457 viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
458
459 C Note that previous call of this function has already added half.
460 viscAh_W(i,j,k,bi,bj)=viscAh_W(i,j,k,bi,bj)+0.5*viscAh_D(i,j)
461 viscA4_W(i,j,k,bi,bj)=viscA4_W(i,j,k,bi,bj)+0.5*viscA4_D(i,j)
462
463 ENDIF
464 #endif /* ALLOW_NONHYDROSTATIC */
465
466 CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
467 C These are (powers of) length scales
468 L2 = L2_Z(i,j,bi,bj)
469 L2rdt = 0.25 _d 0*recip_dt*L2
470 L3 = L3_Z(i,j,bi,bj)
471 L4rdt = L4rdt_Z(i,j,bi,bj)
472 L5 = (L2*L3)
473
474 C Velocity Reynolds Scale (Pb here at CS-grid corners !)
475 IF ( viscAhRe_max.GT.0. .OR. viscA4Re_max.GT.0. ) THEN
476 keZpt=0.25 _d 0*( (KE(i,j)+KE(i-1,j-1))
477 & +(KE(i-1,j)+KE(i,j-1)) )
478 IF ( keZpt.GT.0. ) THEN
479 Uscl = SQRT(keZpt*L2)*viscAhRe_max
480 U4scl= SQRT(keZpt)*L3*viscA4Re_max
481 ELSE
482 Uscl =0.
483 U4scl=0.
484 ENDIF
485 ELSE
486 Uscl =0.
487 U4scl=0.
488 ENDIF
489
490 #ifndef AUTODIFF_DISABLE_LEITH
491 C This is the vector magnitude of the vorticity gradient squared
492 IF (useFullLeith.AND.calcLeith) THEN
493 grdVrt=0.25 _d 0*( (vrtDx(i-1,j)*vrtDx(i-1,j)
494 & + vrtDx(i,j)*vrtDx(i,j) )
495 & + (vrtDy(i,j-1)*vrtDy(i,j-1)
496 & + vrtDy(i,j)*vrtDy(i,j) ) )
497
498 C This is the vector magnitude of grad(div.v) squared
499 grdDiv=0.25 _d 0*( (divDx(i,j-1)*divDx(i,j-1)
500 & + divDx(i,j)*divDx(i,j) )
501 & + (divDy(i-1,j)*divDy(i-1,j)
502 & + divDy(i,j)*divDy(i,j) ) )
503
504 viscAh_ZLth(i,j)=
505 & SQRT(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
506 viscA4_ZLth(i,j)=
507 & SQRT(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
508 viscAh_ZLthD(i,j)=
509 & SQRT(leithD2fac*grdDiv)*L3
510 viscA4_ZLthD(i,j)=
511 & SQRT(leithD4fac*grdDiv)*L5
512
513 ELSEIF (calcLeith) THEN
514 C but this approximation will work on cube (and differs by 4X)
515 grdVrt=MAX( ABS(vrtDx(i-1,j)), ABS(vrtDx(i,j)) )
516 grdVrt=MAX( grdVrt, ABS(vrtDy(i,j-1)) )
517 grdVrt=MAX( grdVrt, ABS(vrtDy(i,j)) )
518
519 grdDiv=MAX( ABS(divDx(i,j)), ABS(divDx(i,j-1)) )
520 grdDiv=MAX( grdDiv, ABS(divDy(i,j)) )
521 grdDiv=MAX( grdDiv, ABS(divDy(i-1,j)) )
522
523 viscAh_ZLth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
524 viscA4_ZLth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
525 viscAh_ZLthD(i,j)=(leithD2fac*grdDiv)*L3
526 viscA4_ZLthD(i,j)=(leithD4fac*grdDiv)*L5
527 ELSE
528 viscAh_ZLth(i,j)=0. _d 0
529 viscA4_ZLth(i,j)=0. _d 0
530 viscAh_ZLthD(i,j)=0. _d 0
531 viscA4_ZLthD(i,j)=0. _d 0
532 ENDIF
533
534 IF (calcSmag) THEN
535 viscAh_ZSmg(i,j)=L2
536 & *SQRT(strain(i,j)**2
537 & +0.25 _d 0*(tension( i , j )**2+tension( i ,j-1)**2
538 & +tension(i-1, j )**2+tension(i-1,j-1)**2))
539 viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
540 viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
541 ENDIF
542 #endif /* AUTODIFF_DISABLE_LEITH */
543
544 C Harmonic on Zeta points
545 Alin=viscAhZ+viscAhGrid*L2rdt
546 & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
547 viscAh_ZMin(i,j)=MAX(viscAhGridMin*L2rdt,Uscl)
548 viscAh_Z(i,j)=MAX(viscAh_ZMin(i,j),Alin)
549 viscAh_ZMax(i,j)=MIN(viscAhGridMax*L2rdt,viscAhMax)
550 viscAh_Z(i,j)=MIN(viscAh_ZMax(i,j),viscAh_Z(i,j))
551
552 C BiHarmonic on Zeta points
553 Alin=viscA4Z+viscA4Grid*L4rdt
554 & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
555 viscA4_ZMin(i,j)=MAX(viscA4GridMin*L4rdt,U4scl)
556 viscA4_Z(i,j)=MAX(viscA4_ZMin(i,j),Alin)
557 viscA4_ZMax(i,j)=MIN(viscA4GridMax*L4rdt,viscA4Max)
558 viscA4_Z(i,j)=MIN(viscA4_ZMax(i,j),viscA4_Z(i,j))
559 ENDDO
560 ENDDO
561
562 ELSE
563 C---- use constant viscosity (useVariableViscosity=F):
564
565 DO j=1-Oly,sNy+Oly
566 DO i=1-Olx,sNx+Olx
567 viscAh_D(i,j)=viscAhD
568 viscAh_Z(i,j)=viscAhZ
569 viscA4_D(i,j)=viscA4D
570 viscA4_Z(i,j)=viscA4Z
571 ENDDO
572 ENDDO
573
574 C---- variable/constant viscosity : end if/else block
575 ENDIF
576
577 #ifdef ALLOW_DIAGNOSTICS
578 IF (useDiagnostics) THEN
579 CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
580 CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
581 CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
582 CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
583
584 CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
585 CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
586 CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
587 CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
588
589 CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
590 CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
591 CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
592 CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
593
594 CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
595 CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
596 CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
597 CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
598
599 CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD'
600 & ,k,1,2,bi,bj,myThid)
601 CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD'
602 & ,k,1,2,bi,bj,myThid)
603 CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD'
604 & ,k,1,2,bi,bj,myThid)
605 CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD'
606 & ,k,1,2,bi,bj,myThid)
607
608 CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
609 CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
610 CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
611 CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
612 ENDIF
613 #endif
614
615 RETURN
616 END
617

  ViewVC Help
Powered by ViewVC 1.1.22