/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.21 - (show annotations) (download)
Thu Nov 24 00:06:37 2005 UTC (18 years, 7 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint58e_post, checkpoint57y_post, checkpoint57y_pre, checkpoint58, checkpoint57x_post, checkpoint58d_post, checkpoint58c_post, checkpoint58a_post, checkpoint57z_post, checkpoint58b_post
Changes since 1.20: +39 -1 lines
o Disable useVariableViscosity for adjoint for time being
  (there are a number of extensive recomputations)
o Initialize certain variables needed for adjoint

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_common/mom_calc_visc.F,v 1.20 2005/10/12 20:24:22 jmc Exp $
2 C $Name: $
3
4 #include "MOM_COMMON_OPTIONS.h"
5
6
7 SUBROUTINE MOM_CALC_VISC(
8 I bi,bj,k,
9 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10 O harmonic,biharmonic,useVariableViscosity,
11 I hDiv,vort3,tension,strain,KE,hFacZ,
12 I myThid)
13
14 IMPLICIT NONE
15 C
16 C Calculate horizontal viscosities (L is typical grid width)
17 C harmonic viscosity=
18 C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19 C +0.25*L**2*viscAhGrid/deltaT
20 C +sqrt((viscC2leith/pi)**6*grad(Vort3)**2
21 C +(viscC2leithD/pi)**6*grad(hDiv)**2)*L**3
22 C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23 C
24 C biharmonic viscosity=
25 C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26 C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27 C +0.125*L**5*sqrt((viscC4leith/pi)**6*grad(Vort3)**2
28 C +(viscC4leithD/pi)**6*grad(hDiv)**2)
29 C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30 C
31 C Note that often 0.125*L**2 is the scale between harmonic and
32 C biharmonic (see Griffies and Hallberg (2000))
33 C This allows the same value of the coefficient to be used
34 C for roughly similar results with biharmonic and harmonic
35 C
36 C LIMITERS -- limit min and max values of viscosities
37 C viscAhRemax is min value for grid point harmonic Reynolds num
38 C harmonic viscosity>sqrt(2*KE)*L/viscAhRemax
39 C
40 C viscA4Remax is min value for grid point biharmonic Reynolds num
41 C biharmonic viscosity>sqrt(2*KE)*L**3/8/viscA4Remax
42 C
43 C viscAhgridmax is CFL stability limiter for harmonic viscosity
44 C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45 C
46 C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47 C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48 C
49 C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50 C harmonic viscosity>0.25*viscAhgridmax*L**2/deltaT
51 C biharmonic viscosity>viscA4gridmax*L**4/32/deltaT (approx)
52 C
53 C RECOMMENDED VALUES
54 C viscC2Leith=1-3
55 C viscC2LeithD=1-3
56 C viscC4Leith=1-3
57 C viscC4LeithD=1.5-3
58 C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
59 C 0.2-0.9 (Smagorinsky,1993)
60 C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
61 C viscAhRemax>=1, (<2 suppresses a computational mode)
62 C viscA4Remax>=1, (<2 suppresses a computational mode)
63 C viscAhgridmax=1
64 C viscA4gridmax=1
65 C viscAhgrid<1
66 C viscA4grid<1
67 C viscAhgridmin<<1
68 C viscA4gridmin<<1
69
70 C == Global variables ==
71 #include "SIZE.h"
72 #include "GRID.h"
73 #include "EEPARAMS.h"
74 #include "PARAMS.h"
75
76 C == Routine arguments ==
77 INTEGER bi,bj,k
78 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 INTEGER myThid
89 LOGICAL harmonic,biharmonic,useVariableViscosity
90
91 C == Local variables ==
92 INTEGER I,J
93 _RL smag2fac, smag4fac
94 _RL leith2fac, leith4fac
95 _RL leithD2fac, leithD4fac
96 _RL viscAhRe_max, viscA4Re_max
97 _RL Alin,grdVrt,grdDiv, keZpt
98 _RL recip_dt,L2,L3,L4,L5,L2rdt,L4rdt
99 _RL Uscl,U4scl
100 _RL divDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL divDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL vrtDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL vrtDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105 _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106 _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107 _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108 _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109 _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111 _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113 _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 LOGICAL calcLeith,calcSmag
125
126 useVariableViscosity=
127 & (viscAhGrid.NE.0.)
128 & .OR.(viscA4Grid.NE.0.)
129 & .OR.(viscC2leith.NE.0.)
130 & .OR.(viscC2leithD.NE.0.)
131 & .OR.(viscC4leith.NE.0.)
132 & .OR.(viscC4leithD.NE.0.)
133 & .OR.(viscC2smag.NE.0.)
134 & .OR.(viscC4smag.NE.0.)
135
136 harmonic=
137 & (viscAh.NE.0.)
138 & .OR.(viscAhD.NE.0.)
139 & .OR.(viscAhZ.NE.0.)
140 & .OR.(viscAhGrid.NE.0.)
141 & .OR.(viscC2leith.NE.0.)
142 & .OR.(viscC2leithD.NE.0.)
143 & .OR.(viscC2smag.NE.0.)
144
145 IF ((harmonic).and.(viscAhremax.ne.0.)) THEN
146 viscAhre_max=sqrt(2. _d 0)/viscAhRemax
147 ELSE
148 viscAhre_max=0. _d 0
149 ENDIF
150
151 biharmonic=
152 & (viscA4.NE.0.)
153 & .OR.(viscA4D.NE.0.)
154 & .OR.(viscA4Z.NE.0.)
155 & .OR.(viscA4Grid.NE.0.)
156 & .OR.(viscC4leith.NE.0.)
157 & .OR.(viscC4leithD.NE.0.)
158 & .OR.(viscC4smag.NE.0.)
159
160 IF ((biharmonic).and.(viscA4remax.ne.0.)) THEN
161 viscA4re_max=0.125 _d 0*sqrt(2. _d 0)/viscA4Remax
162 ELSE
163 viscA4re_max=0. _d 0
164 ENDIF
165
166 calcleith=
167 & (viscC2leith.NE.0.)
168 & .OR.(viscC2leithD.NE.0.)
169 & .OR.(viscC4leith.NE.0.)
170 & .OR.(viscC4leithD.NE.0.)
171
172 calcsmag=
173 & (viscC2smag.NE.0.)
174 & .OR.(viscC4smag.NE.0.)
175
176 IF (deltaTmom.NE.0.) THEN
177 recip_dt=1. _d 0/deltaTmom
178 ELSE
179 recip_dt=0. _d 0
180 ENDIF
181
182 IF (calcsmag) THEN
183 smag2fac=(viscC2smag/pi)**2
184 smag4fac=0.125 _d 0*(viscC4smag/pi)**2
185 ELSE
186 smag2fac=0. _d 0
187 smag4fac=0. _d 0
188 ENDIF
189
190 IF (calcleith) THEN
191 IF (useFullLeith) THEN
192 leith2fac =(viscC2leith /pi)**6
193 leithD2fac=(viscC2leithD/pi)**6
194 leith4fac =0.015625 _d 0*(viscC4leith /pi)**6
195 leithD4fac=0.015625 _d 0*(viscC4leithD/pi)**6
196 ELSE
197 leith2fac =(viscC2leith /pi)**3
198 leithD2fac=(viscC2leithD/pi)**3
199 leith4fac =0.125 _d 0*(viscC4leith /pi)**3
200 leithD4fac=0.125 _d 0*(viscC4leithD/pi)**3
201 ENDIF
202 ELSE
203 leith2fac=0. _d 0
204 leith4fac=0. _d 0
205 leithD2fac=0. _d 0
206 leithD4fac=0. _d 0
207 ENDIF
208
209 #ifdef ALLOW_AUTODIFF_TAMC
210 DO j=1-Oly,sNy+Oly
211 DO i=1-Olx,sNx+Olx
212 viscAh_D(i,j)=viscAhD
213 viscAh_Z(i,j)=viscAhZ
214 viscA4_D(i,j)=viscA4D
215 viscA4_Z(i,j)=viscA4Z
216 c
217 visca4_zsmg(i,j) = 0. _d 0
218 viscah_zsmg(i,j) = 0. _d 0
219 c
220 viscAh_Dlth(i,j) = 0. _d 0
221 viscA4_Dlth(i,j) = 0. _d 0
222 viscAh_DlthD(i,j)= 0. _d 0
223 viscA4_DlthD(i,j)= 0. _d 0
224 c
225 viscAh_DSmg(i,j) = 0. _d 0
226 viscA4_DSmg(i,j) = 0. _d 0
227 c
228 viscAh_ZLth(i,j) = 0. _d 0
229 viscA4_ZLth(i,j) = 0. _d 0
230 viscAh_ZLthD(i,j)= 0. _d 0
231 viscA4_ZLthD(i,j)= 0. _d 0
232 ENDDO
233 ENDDO
234 #endif
235
236
237
238 C - Viscosity
239 IF (useVariableViscosity) THEN
240 cph(
241 #ifndef ALLOW_AUTODIFF_TAMC
242 cph)
243
244 C- Initialise to zero gradient of vorticity & divergence:
245 DO j=1-Oly,sNy+Oly
246 DO i=1-Olx,sNx+Olx
247 divDx(i,j) = 0.
248 divDy(i,j) = 0.
249 vrtDx(i,j) = 0.
250 vrtDy(i,j) = 0.
251 ENDDO
252 ENDDO
253
254 IF (calcleith) THEN
255 C horizontal gradient of horizontal divergence:
256
257 C- gradient in x direction:
258 #ifndef ALLOW_AUTODIFF_TAMC
259 IF (useCubedSphereExchange) THEN
260 C to compute d/dx(hDiv), fill corners with appropriate values:
261 CALL FILL_CS_CORNER_TR_RL( .TRUE., hDiv, bi,bj, myThid )
262 ENDIF
263 #endif
264 DO j=2-Oly,sNy+Oly-1
265 DO i=2-Olx,sNx+Olx-1
266 divDx(i,j) = (hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)
267 ENDDO
268 ENDDO
269
270 C- gradient in y direction:
271 #ifndef ALLOW_AUTODIFF_TAMC
272 IF (useCubedSphereExchange) THEN
273 C to compute d/dy(hDiv), fill corners with appropriate values:
274 CALL FILL_CS_CORNER_TR_RL(.FALSE., hDiv, bi,bj, myThid )
275 ENDIF
276 #endif
277 DO j=2-Oly,sNy+Oly-1
278 DO i=2-Olx,sNx+Olx-1
279 divDy(i,j) = (hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)
280 ENDDO
281 ENDDO
282
283 C horizontal gradient of vertical vorticity:
284 C- gradient in x direction:
285 DO j=2-Oly,sNy+Oly
286 DO i=2-Olx,sNx+Olx-1
287 vrtDx(i,j) = (vort3(i+1,j)-vort3(i,j))
288 & *recip_DXG(i,j,bi,bj)
289 & *maskS(i,j,k,bi,bj)
290 ENDDO
291 ENDDO
292 C- gradient in y direction:
293 DO j=2-Oly,sNy+Oly-1
294 DO i=2-Olx,sNx+Olx
295 vrtDy(i,j) = (vort3(i,j+1)-vort3(i,j))
296 & *recip_DYG(i,j,bi,bj)
297 & *maskW(i,j,k,bi,bj)
298 ENDDO
299 ENDDO
300
301 ENDIF
302
303 DO j=2-Oly,sNy+Oly-1
304 DO i=2-Olx,sNx+Olx-1
305 CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
306
307 C These are (powers of) length scales
308 IF (useAreaViscLength) THEN
309 L2=rA(i,j,bi,bj)
310 ELSE
311 L2=2. _d 0/((recip_DXF(I,J,bi,bj)**2+recip_DYF(I,J,bi,bj)**2))
312 ENDIF
313 L3=(L2**1.5)
314 L4=(L2**2)
315 L5=(L2**2.5)
316
317 L2rdt=0.25 _d 0*recip_dt*L2
318
319 IF (useAreaViscLength) THEN
320 L4rdt=0.125 _d 0*recip_dt*rA(i,j,bi,bj)**2
321 ELSE
322 L4rdt=recip_dt/( 6. _d 0*(recip_DXF(I,J,bi,bj)**4
323 & +recip_DYF(I,J,bi,bj)**4)
324 & +8. _d 0*((recip_DXF(I,J,bi,bj)
325 & *recip_DYF(I,J,bi,bj))**2) )
326 ENDIF
327
328 C Velocity Reynolds Scale
329 IF ( viscAhRe_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
330 Uscl=sqrt(KE(i,j)*L2)*viscAhRe_max
331 ELSE
332 Uscl=0.
333 ENDIF
334 IF ( viscA4Re_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
335 U4scl=sqrt(KE(i,j))*L3*viscA4Re_max
336 ELSE
337 U4scl=0.
338 ENDIF
339
340 IF (useFullLeith.and.calcleith) THEN
341 C This is the vector magnitude of the vorticity gradient squared
342 grdVrt=0.25 _d 0*( (vrtDx(i,j+1)*vrtDx(i,j+1)
343 & + vrtDx(i,j)*vrtDx(i,j) )
344 & + (vrtDy(i+1,j)*vrtDy(i+1,j)
345 & + vrtDy(i,j)*vrtDy(i,j) ) )
346
347 C This is the vector magnitude of grad (div.v) squared
348 C Using it in Leith serves to damp instabilities in w.
349 grdDiv=0.25 _d 0*( (divDx(i+1,j)*divDx(i+1,j)
350 & + divDx(i,j)*divDx(i,j) )
351 & + (divDy(i,j+1)*divDy(i,j+1)
352 & + divDy(i,j)*divDy(i,j) ) )
353
354 viscAh_DLth(i,j)=
355 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
356 viscA4_DLth(i,j)=
357 & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
358 viscAh_DLthd(i,j)=
359 & sqrt(leithD2fac*grdDiv)*L3
360 viscA4_DLthd(i,j)=
361 & sqrt(leithD4fac*grdDiv)*L5
362 ELSEIF (calcleith) THEN
363 C but this approximation will work on cube
364 c (and differs by as much as 4X)
365 grdVrt=max( abs(vrtDx(i,j+1)), abs(vrtDx(i,j)) )
366 grdVrt=max( grdVrt, abs(vrtDy(i+1,j)) )
367 grdVrt=max( grdVrt, abs(vrtDy(i,j)) )
368
369 c This approximation is good to the same order as above...
370 grdDiv=max( abs(divDx(i+1,j)), abs(divDx(i,j)) )
371 grdDiv=max( grdDiv, abs(divDy(i,j+1)) )
372 grdDiv=max( grdDiv, abs(divDy(i,j)) )
373
374 viscAh_Dlth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
375 viscA4_Dlth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
376 viscAh_DlthD(i,j)=((leithD2fac*grdDiv))*L3
377 viscA4_DlthD(i,j)=((leithD4fac*grdDiv))*L5
378 ELSE
379 viscAh_Dlth(i,j)=0. _d 0
380 viscA4_Dlth(i,j)=0. _d 0
381 viscAh_DlthD(i,j)=0. _d 0
382 viscA4_DlthD(i,j)=0. _d 0
383 ENDIF
384
385
386 IF (calcsmag) THEN
387 viscAh_DSmg(i,j)=L2
388 & *sqrt(tension(i,j)**2
389 & +0.25 _d 0*(strain(i+1, j )**2+strain( i ,j+1)**2
390 & +strain(i , j )**2+strain(i+1,j+1)**2))
391 viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
392 viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
393 ELSE
394 viscAh_DSmg(i,j)=0. _d 0
395 viscA4_DSmg(i,j)=0. _d 0
396 ENDIF
397
398 C Harmonic on Div.u points
399 Alin=viscAhD+viscAhGrid*L2rdt
400 & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
401 viscAh_DMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
402 viscAh_D(i,j)=max(viscAh_DMin(i,j),Alin)
403 viscAh_DMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
404 viscAh_D(i,j)=min(viscAh_DMax(i,j),viscAh_D(i,j))
405
406 C BiHarmonic on Div.u points
407 Alin=viscA4D+viscA4Grid*L4rdt
408 & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
409 viscA4_DMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
410 viscA4_D(i,j)=max(viscA4_DMin(i,j),Alin)
411 viscA4_DMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
412 viscA4_D(i,j)=min(viscA4_DMax(i,j),viscA4_D(i,j))
413
414 CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
415 C These are (powers of) length scales
416 IF (useAreaViscLength) THEN
417 L2=rAz(i,j,bi,bj)
418 ELSE
419 L2=2. _d 0/((recip_DXV(I,J,bi,bj)**2+recip_DYU(I,J,bi,bj)**2))
420 ENDIF
421
422 L3=(L2**1.5)
423 L4=(L2**2)
424 L5=(L2**2.5)
425
426 L2rdt=0.25 _d 0*recip_dt*L2
427 IF (useAreaViscLength) THEN
428 L4rdt=0.125 _d 0*recip_dt*rAz(i,j,bi,bj)**2
429 ELSE
430 L4rdt=recip_dt/
431 & ( 6. _d 0*(recip_DXV(I,J,bi,bj)**4+recip_DYU(I,J,bi,bj)**4)
432 & +8. _d 0*((recip_DXV(I,J,bi,bj)*recip_DYU(I,J,bi,bj))**2))
433 ENDIF
434
435 C Velocity Reynolds Scale (Pb here at CS-grid corners !)
436 IF ( viscAhRe_max.GT.0. .OR. viscA4Re_max.GT.0. ) THEN
437 keZpt=0.25 _d 0*( (KE(i,j)+KE(i-1,j-1))
438 & +(KE(i-1,j)+KE(i,j-1)) )
439 IF ( keZpt.GT.0. ) THEN
440 Uscl = sqrt(keZpt*L2)*viscAhRe_max
441 U4scl= sqrt(keZpt)*L3*viscA4Re_max
442 ELSE
443 Uscl =0.
444 U4scl=0.
445 ENDIF
446 ELSE
447 Uscl =0.
448 U4scl=0.
449 ENDIF
450
451 C This is the vector magnitude of the vorticity gradient squared
452 IF (useFullLeith.and.calcleith) THEN
453 grdVrt=0.25 _d 0*( (vrtDx(i-1,j)*vrtDx(i-1,j)
454 & + vrtDx(i,j)*vrtDx(i,j) )
455 & + (vrtDy(i,j-1)*vrtDy(i,j-1)
456 & + vrtDy(i,j)*vrtDy(i,j) ) )
457
458 C This is the vector magnitude of grad(div.v) squared
459 grdDiv=0.25 _d 0*( (divDx(i,j-1)*divDx(i,j-1)
460 & + divDx(i,j)*divDx(i,j) )
461 & + (divDy(i-1,j)*divDy(i-1,j)
462 & + divDy(i,j)*divDy(i,j) ) )
463
464 viscAh_ZLth(i,j)=
465 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
466 viscA4_ZLth(i,j)=
467 & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
468 viscAh_ZLthD(i,j)=
469 & sqrt(leithD2fac*grdDiv)*L3
470 viscA4_ZLthD(i,j)=
471 & sqrt(leithD4fac*grdDiv)*L5
472
473 ELSEIF (calcleith) THEN
474 C but this approximation will work on cube (and differs by 4X)
475 grdVrt=max( abs(vrtDx(i-1,j)), abs(vrtDx(i,j)) )
476 grdVrt=max( grdVrt, abs(vrtDy(i,j-1)) )
477 grdVrt=max( grdVrt, abs(vrtDy(i,j)) )
478
479 grdDiv=max( abs(divDx(i,j)), abs(divDx(i,j-1)) )
480 grdDiv=max( grdDiv, abs(divDy(i,j)) )
481 grdDiv=max( grdDiv, abs(divDy(i-1,j)) )
482
483 viscAh_ZLth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
484 viscA4_ZLth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
485 viscAh_ZLthD(i,j)=(leithD2fac*grdDiv)*L3
486 viscA4_ZLthD(i,j)=(leithD4fac*grdDiv)*L5
487 ELSE
488 viscAh_ZLth(i,j)=0. _d 0
489 viscA4_ZLth(i,j)=0. _d 0
490 viscAh_ZLthD(i,j)=0. _d 0
491 viscA4_ZLthD(i,j)=0. _d 0
492 ENDIF
493
494 IF (calcsmag) THEN
495 viscAh_ZSmg(i,j)=L2
496 & *sqrt(strain(i,j)**2
497 & +0.25 _d 0*(tension( i , j )**2+tension( i ,j-1)**2
498 & +tension(i-1, j )**2+tension(i-1,j-1)**2))
499 viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
500 viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
501 ENDIF
502
503 C Harmonic on Zeta points
504 Alin=viscAhZ+viscAhGrid*L2rdt
505 & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
506 viscAh_ZMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
507 viscAh_Z(i,j)=max(viscAh_ZMin(i,j),Alin)
508 viscAh_ZMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
509 viscAh_Z(i,j)=min(viscAh_ZMax(i,j),viscAh_Z(i,j))
510
511 C BiHarmonic on Zeta points
512 Alin=viscA4Z+viscA4Grid*L4rdt
513 & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
514 viscA4_ZMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
515 viscA4_Z(i,j)=max(viscA4_ZMin(i,j),Alin)
516 viscA4_ZMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
517 viscA4_Z(i,j)=min(viscA4_ZMax(i,j),viscA4_Z(i,j))
518 ENDDO
519 ENDDO
520 cph(
521 #else
522 STOP 'useVariableViscosity not implemented for ADJOINT'
523 #endif /* ndef ALLOW_AUTODIFF_TAMC */
524 cph)
525 ELSE
526 DO j=1-Oly,sNy+Oly
527 DO i=1-Olx,sNx+Olx
528 viscAh_D(i,j)=viscAhD
529 viscAh_Z(i,j)=viscAhZ
530 viscA4_D(i,j)=viscA4D
531 viscA4_Z(i,j)=viscA4Z
532 ENDDO
533 ENDDO
534 ENDIF
535
536 #ifdef ALLOW_DIAGNOSTICS
537 IF (useDiagnostics) THEN
538 CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
539 CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
540 CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
541 CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
542
543 CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
544 CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
545 CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
546 CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
547
548 CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
549 CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
550 CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
551 CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
552
553 CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
554 CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
555 CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
556 CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
557
558 CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD'
559 & ,k,1,2,bi,bj,myThid)
560 CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD'
561 & ,k,1,2,bi,bj,myThid)
562 CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD'
563 & ,k,1,2,bi,bj,myThid)
564 CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD'
565 & ,k,1,2,bi,bj,myThid)
566
567 CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
568 CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
569 CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
570 CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
571 ENDIF
572 #endif
573
574 RETURN
575 END
576

  ViewVC Help
Powered by ViewVC 1.1.22