/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.28 - (show annotations) (download)
Thu Oct 11 13:22:00 2007 UTC (16 years, 8 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint59i
Changes since 1.27: +12 -19 lines
reorganize some if-statements and replace some powers by
multiplication thus speeding up the code by 30%, again thanks to
Jens-Olaf Beismann

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_common/mom_calc_visc.F,v 1.27 2007/08/16 02:20:40 jmc Exp $
2 C $Name: $
3
4 #include "MOM_COMMON_OPTIONS.h"
5
6
7 SUBROUTINE MOM_CALC_VISC(
8 I bi,bj,k,
9 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10 O harmonic,biharmonic,useVariableViscosity,
11 I hDiv,vort3,tension,strain,KE,hFacZ,
12 I myThid)
13
14 IMPLICIT NONE
15 C
16 C Calculate horizontal viscosities (L is typical grid width)
17 C harmonic viscosity=
18 C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19 C +0.25*L**2*viscAhGrid/deltaT
20 C +sqrt((viscC2leith/pi)**6*grad(Vort3)**2
21 C +(viscC2leithD/pi)**6*grad(hDiv)**2)*L**3
22 C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23 C
24 C biharmonic viscosity=
25 C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26 C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27 C +0.125*L**5*sqrt((viscC4leith/pi)**6*grad(Vort3)**2
28 C +(viscC4leithD/pi)**6*grad(hDiv)**2)
29 C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30 C
31 C Note that often 0.125*L**2 is the scale between harmonic and
32 C biharmonic (see Griffies and Hallberg (2000))
33 C This allows the same value of the coefficient to be used
34 C for roughly similar results with biharmonic and harmonic
35 C
36 C LIMITERS -- limit min and max values of viscosities
37 C viscAhRemax is min value for grid point harmonic Reynolds num
38 C harmonic viscosity>sqrt(2*KE)*L/viscAhRemax
39 C
40 C viscA4Remax is min value for grid point biharmonic Reynolds num
41 C biharmonic viscosity>sqrt(2*KE)*L**3/8/viscA4Remax
42 C
43 C viscAhgridmax is CFL stability limiter for harmonic viscosity
44 C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45 C
46 C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47 C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48 C
49 C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50 C harmonic viscosity>0.25*viscAhgridmin*L**2/deltaT
51 C biharmonic viscosity>viscA4gridmin*L**4/32/deltaT (approx)
52
53
54 C
55 C RECOMMENDED VALUES
56 C viscC2Leith=1-3
57 C viscC2LeithD=1-3
58 C viscC4Leith=1-3
59 C viscC4LeithD=1.5-3
60 C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
61 C 0.2-0.9 (Smagorinsky,1993)
62 C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
63 C viscAhRemax>=1, (<2 suppresses a computational mode)
64 C viscA4Remax>=1, (<2 suppresses a computational mode)
65 C viscAhgridmax=1
66 C viscA4gridmax=1
67 C viscAhgrid<1
68 C viscA4grid<1
69 C viscAhgridmin<<1
70 C viscA4gridmin<<1
71
72 C == Global variables ==
73 #include "SIZE.h"
74 #include "GRID.h"
75 #include "EEPARAMS.h"
76 #include "PARAMS.h"
77 #ifdef ALLOW_NONHYDROSTATIC
78 #include "NH_VARS.h"
79 #endif
80
81 C == Routine arguments ==
82 INTEGER bi,bj,k
83 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93 INTEGER myThid
94 LOGICAL harmonic,biharmonic,useVariableViscosity
95
96 C == Local variables ==
97 INTEGER I,J
98 INTEGER kp1
99 _RL smag2fac, smag4fac
100 _RL leith2fac, leith4fac
101 _RL leithD2fac, leithD4fac
102 _RL viscAhRe_max, viscA4Re_max
103 _RL Alin,grdVrt,grdDiv, keZpt
104 _RL recip_dt,L2,L3,L4,L5,L2rdt,L4rdt
105 _RL Uscl,U4scl
106 _RL divDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107 _RL divDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108 _RL vrtDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109 _RL vrtDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111 _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113 _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 LOGICAL calcLeith,calcSmag
131
132 useVariableViscosity=
133 & (viscAhGrid.NE.0.)
134 & .OR.(viscA4Grid.NE.0.)
135 & .OR.(viscC2leith.NE.0.)
136 & .OR.(viscC2leithD.NE.0.)
137 & .OR.(viscC4leith.NE.0.)
138 & .OR.(viscC4leithD.NE.0.)
139 & .OR.(viscC2smag.NE.0.)
140 & .OR.(viscC4smag.NE.0.)
141
142 harmonic=
143 & (viscAh.NE.0.)
144 & .OR.(viscAhD.NE.0.)
145 & .OR.(viscAhZ.NE.0.)
146 & .OR.(viscAhGrid.NE.0.)
147 & .OR.(viscC2leith.NE.0.)
148 & .OR.(viscC2leithD.NE.0.)
149 & .OR.(viscC2smag.NE.0.)
150
151 IF ((harmonic).and.(viscAhremax.ne.0.)) THEN
152 viscAhre_max=sqrt(2. _d 0)/viscAhRemax
153 ELSE
154 viscAhre_max=0. _d 0
155 ENDIF
156
157 biharmonic=
158 & (viscA4.NE.0.)
159 & .OR.(viscA4D.NE.0.)
160 & .OR.(viscA4Z.NE.0.)
161 & .OR.(viscA4Grid.NE.0.)
162 & .OR.(viscC4leith.NE.0.)
163 & .OR.(viscC4leithD.NE.0.)
164 & .OR.(viscC4smag.NE.0.)
165
166 IF ((biharmonic).and.(viscA4remax.ne.0.)) THEN
167 viscA4re_max=0.125 _d 0*sqrt(2. _d 0)/viscA4Remax
168 ELSE
169 viscA4re_max=0. _d 0
170 ENDIF
171
172 calcleith=
173 & (viscC2leith.NE.0.)
174 & .OR.(viscC2leithD.NE.0.)
175 & .OR.(viscC4leith.NE.0.)
176 & .OR.(viscC4leithD.NE.0.)
177
178 calcsmag=
179 & (viscC2smag.NE.0.)
180 & .OR.(viscC4smag.NE.0.)
181
182 IF (deltaTmom.NE.0.) THEN
183 recip_dt=1. _d 0/deltaTmom
184 ELSE
185 recip_dt=0. _d 0
186 ENDIF
187
188 IF (calcsmag) THEN
189 smag2fac=(viscC2smag/pi)**2
190 smag4fac=0.125 _d 0*(viscC4smag/pi)**2
191 ELSE
192 smag2fac=0. _d 0
193 smag4fac=0. _d 0
194 ENDIF
195
196 IF (calcleith) THEN
197 IF (useFullLeith) THEN
198 leith2fac =(viscC2leith /pi)**6
199 leithD2fac=(viscC2leithD/pi)**6
200 leith4fac =0.015625 _d 0*(viscC4leith /pi)**6
201 leithD4fac=0.015625 _d 0*(viscC4leithD/pi)**6
202 ELSE
203 leith2fac =(viscC2leith /pi)**3
204 leithD2fac=(viscC2leithD/pi)**3
205 leith4fac =0.125 _d 0*(viscC4leith /pi)**3
206 leithD4fac=0.125 _d 0*(viscC4leithD/pi)**3
207 ENDIF
208 ELSE
209 leith2fac=0. _d 0
210 leith4fac=0. _d 0
211 leithD2fac=0. _d 0
212 leithD4fac=0. _d 0
213 ENDIF
214
215 #ifdef ALLOW_AUTODIFF_TAMC
216 IF ( calcLeith .OR. calcSmag ) THEN
217 STOP 'calcLeith or calcSmag not implemented for ADJOINT'
218 ENDIF
219 #endif
220 DO j=1-Oly,sNy+Oly
221 DO i=1-Olx,sNx+Olx
222 viscAh_D(i,j)=viscAhD
223 viscAh_Z(i,j)=viscAhZ
224 viscA4_D(i,j)=viscA4D
225 viscA4_Z(i,j)=viscA4Z
226 c
227 visca4_zsmg(i,j) = 0. _d 0
228 viscah_zsmg(i,j) = 0. _d 0
229 c
230 viscAh_Dlth(i,j) = 0. _d 0
231 viscA4_Dlth(i,j) = 0. _d 0
232 viscAh_DlthD(i,j)= 0. _d 0
233 viscA4_DlthD(i,j)= 0. _d 0
234 c
235 viscAh_DSmg(i,j) = 0. _d 0
236 viscA4_DSmg(i,j) = 0. _d 0
237 c
238 viscAh_ZLth(i,j) = 0. _d 0
239 viscA4_ZLth(i,j) = 0. _d 0
240 viscAh_ZLthD(i,j)= 0. _d 0
241 viscA4_ZLthD(i,j)= 0. _d 0
242 ENDDO
243 ENDDO
244
245 C - Viscosity
246 IF (useVariableViscosity) THEN
247
248 C- Initialise to zero gradient of vorticity & divergence:
249 DO j=1-Oly,sNy+Oly
250 DO i=1-Olx,sNx+Olx
251 divDx(i,j) = 0.
252 divDy(i,j) = 0.
253 vrtDx(i,j) = 0.
254 vrtDy(i,j) = 0.
255 ENDDO
256 ENDDO
257
258 IF (calcleith) THEN
259 C horizontal gradient of horizontal divergence:
260
261 C- gradient in x direction:
262 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
263 IF (useCubedSphereExchange) THEN
264 C to compute d/dx(hDiv), fill corners with appropriate values:
265 CALL FILL_CS_CORNER_TR_RL( .TRUE., .FALSE.,
266 & hDiv, bi,bj, myThid )
267 ENDIF
268 cph-exch2#endif
269 DO j=2-Oly,sNy+Oly-1
270 DO i=2-Olx,sNx+Olx-1
271 divDx(i,j) = (hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)
272 ENDDO
273 ENDDO
274
275 C- gradient in y direction:
276 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
277 IF (useCubedSphereExchange) THEN
278 C to compute d/dy(hDiv), fill corners with appropriate values:
279 CALL FILL_CS_CORNER_TR_RL(.FALSE., .FALSE.,
280 & hDiv, bi,bj, myThid )
281 ENDIF
282 cph-exch2#endif
283 DO j=2-Oly,sNy+Oly-1
284 DO i=2-Olx,sNx+Olx-1
285 divDy(i,j) = (hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)
286 ENDDO
287 ENDDO
288
289 C horizontal gradient of vertical vorticity:
290 C- gradient in x direction:
291 DO j=2-Oly,sNy+Oly
292 DO i=2-Olx,sNx+Olx-1
293 vrtDx(i,j) = (vort3(i+1,j)-vort3(i,j))
294 & *recip_DXG(i,j,bi,bj)
295 & *maskS(i,j,k,bi,bj)
296 ENDDO
297 ENDDO
298 C- gradient in y direction:
299 DO j=2-Oly,sNy+Oly-1
300 DO i=2-Olx,sNx+Olx
301 vrtDy(i,j) = (vort3(i,j+1)-vort3(i,j))
302 & *recip_DYG(i,j,bi,bj)
303 & *maskW(i,j,k,bi,bj)
304 ENDDO
305 ENDDO
306
307 ENDIF
308
309 DO j=2-Oly,sNy+Oly-1
310 DO i=2-Olx,sNx+Olx-1
311 CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
312
313 C These are (powers of) length scales
314 IF (useAreaViscLength) THEN
315 L2=rA(i,j,bi,bj)
316 L4rdt=0.03125 _d 0*recip_dt*L2**2
317 ELSE
318 L2=2. _d 0/((recip_DXF(I,J,bi,bj)**2+recip_DYF(I,J,bi,bj)**2))
319 L4rdt=recip_dt/( 6. _d 0*(recip_DXF(I,J,bi,bj)**4
320 & +recip_DYF(I,J,bi,bj)**4)
321 & +8. _d 0*((recip_DXF(I,J,bi,bj)
322 & *recip_DYF(I,J,bi,bj))**2) )
323 ENDIF
324 L3=(L2**1.5)
325 L4=(L2**2)
326 L5=(L2*L3)
327
328 L2rdt=0.25 _d 0*recip_dt*L2
329
330 C Velocity Reynolds Scale
331 IF ( viscAhRe_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
332 Uscl=sqrt(KE(i,j)*L2)*viscAhRe_max
333 ELSE
334 Uscl=0.
335 ENDIF
336 IF ( viscA4Re_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
337 U4scl=sqrt(KE(i,j))*L3*viscA4Re_max
338 ELSE
339 U4scl=0.
340 ENDIF
341
342 #ifndef ALLOW_AUTODIFF_TAMC
343 IF (useFullLeith.and.calcleith) THEN
344 C This is the vector magnitude of the vorticity gradient squared
345 grdVrt=0.25 _d 0*( (vrtDx(i,j+1)*vrtDx(i,j+1)
346 & + vrtDx(i,j)*vrtDx(i,j) )
347 & + (vrtDy(i+1,j)*vrtDy(i+1,j)
348 & + vrtDy(i,j)*vrtDy(i,j) ) )
349
350 C This is the vector magnitude of grad (div.v) squared
351 C Using it in Leith serves to damp instabilities in w.
352 grdDiv=0.25 _d 0*( (divDx(i+1,j)*divDx(i+1,j)
353 & + divDx(i,j)*divDx(i,j) )
354 & + (divDy(i,j+1)*divDy(i,j+1)
355 & + divDy(i,j)*divDy(i,j) ) )
356
357 viscAh_DLth(i,j)=
358 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
359 viscA4_DLth(i,j)=
360 & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
361 viscAh_DLthd(i,j)=
362 & sqrt(leithD2fac*grdDiv)*L3
363 viscA4_DLthd(i,j)=
364 & sqrt(leithD4fac*grdDiv)*L5
365 ELSEIF (calcleith) THEN
366 C but this approximation will work on cube
367 c (and differs by as much as 4X)
368 grdVrt=max( abs(vrtDx(i,j+1)), abs(vrtDx(i,j)) )
369 grdVrt=max( grdVrt, abs(vrtDy(i+1,j)) )
370 grdVrt=max( grdVrt, abs(vrtDy(i,j)) )
371
372 c This approximation is good to the same order as above...
373 grdDiv=max( abs(divDx(i+1,j)), abs(divDx(i,j)) )
374 grdDiv=max( grdDiv, abs(divDy(i,j+1)) )
375 grdDiv=max( grdDiv, abs(divDy(i,j)) )
376
377 viscAh_Dlth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
378 viscA4_Dlth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
379 viscAh_DlthD(i,j)=((leithD2fac*grdDiv))*L3
380 viscA4_DlthD(i,j)=((leithD4fac*grdDiv))*L5
381 ELSE
382 viscAh_Dlth(i,j)=0. _d 0
383 viscA4_Dlth(i,j)=0. _d 0
384 viscAh_DlthD(i,j)=0. _d 0
385 viscA4_DlthD(i,j)=0. _d 0
386 ENDIF
387
388 IF (calcsmag) THEN
389 viscAh_DSmg(i,j)=L2
390 & *sqrt(tension(i,j)**2
391 & +0.25 _d 0*(strain(i+1, j )**2+strain( i ,j+1)**2
392 & +strain(i , j )**2+strain(i+1,j+1)**2))
393 viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
394 viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
395 ELSE
396 viscAh_DSmg(i,j)=0. _d 0
397 viscA4_DSmg(i,j)=0. _d 0
398 ENDIF
399 #endif /* ALLOW_AUTODIFF_TAMC */
400
401 C Harmonic on Div.u points
402 Alin=viscAhD+viscAhGrid*L2rdt
403 & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
404 viscAh_DMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
405 viscAh_D(i,j)=max(viscAh_DMin(i,j),Alin)
406 viscAh_DMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
407 viscAh_D(i,j)=min(viscAh_DMax(i,j),viscAh_D(i,j))
408
409 C BiHarmonic on Div.u points
410 Alin=viscA4D+viscA4Grid*L4rdt
411 & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
412 viscA4_DMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
413 viscA4_D(i,j)=max(viscA4_DMin(i,j),Alin)
414 viscA4_DMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
415 viscA4_D(i,j)=min(viscA4_DMax(i,j),viscA4_D(i,j))
416
417 #ifdef ALLOW_NONHYDROSTATIC
418 C /* Pass Viscosities to calc_gw, if constant, not necessary */
419
420 kp1 = MIN(k+1,Nr)
421
422 if (k .eq. 1) then
423 viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
424 viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
425
426 C /* These values dont get used */
427 viscAh_W(i,j,k,bi,bj)=viscAh_D(i,j)
428 viscA4_W(i,j,k,bi,bj)=viscA4_D(i,j)
429 else
430 C Note that previous call of this function has already added half.
431 viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
432 viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
433
434 viscAh_W(i,j,k,bi,bj)=viscAh_W(i,j,k,bi,bj)+0.5*viscAh_D(i,j)
435 viscA4_W(i,j,k,bi,bj)=viscA4_W(i,j,k,bi,bj)+0.5*viscA4_D(i,j)
436 endif
437 #endif /* ALLOW_NONHYDROSTATIC */
438
439 CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
440 C These are (powers of) length scales
441 IF (useAreaViscLength) THEN
442 L2=rAz(i,j,bi,bj)
443 L4rdt=0.125 _d 0*recip_dt*rAz(i,j,bi,bj)**2
444 ELSE
445 L2=2. _d 0/((recip_DXV(I,J,bi,bj)**2+recip_DYU(I,J,bi,bj)**2))
446 L4rdt=recip_dt/
447 & ( 6. _d 0*(recip_DXV(I,J,bi,bj)**4+recip_DYU(I,J,bi,bj)**4)
448 & +8. _d 0*((recip_DXV(I,J,bi,bj)*recip_DYU(I,J,bi,bj))**2))
449 ENDIF
450
451 L3=(L2**1.5)
452 L4=(L2**2)
453 L5=(L2*L3)
454
455 L2rdt=0.25 _d 0*recip_dt*L2
456
457 C Velocity Reynolds Scale (Pb here at CS-grid corners !)
458 IF ( viscAhRe_max.GT.0. .OR. viscA4Re_max.GT.0. ) THEN
459 keZpt=0.25 _d 0*( (KE(i,j)+KE(i-1,j-1))
460 & +(KE(i-1,j)+KE(i,j-1)) )
461 IF ( keZpt.GT.0. ) THEN
462 Uscl = sqrt(keZpt*L2)*viscAhRe_max
463 U4scl= sqrt(keZpt)*L3*viscA4Re_max
464 ELSE
465 Uscl =0.
466 U4scl=0.
467 ENDIF
468 ELSE
469 Uscl =0.
470 U4scl=0.
471 ENDIF
472
473 #ifndef ALLOW_AUTODIFF_TAMC
474 C This is the vector magnitude of the vorticity gradient squared
475 IF (useFullLeith.and.calcleith) THEN
476 grdVrt=0.25 _d 0*( (vrtDx(i-1,j)*vrtDx(i-1,j)
477 & + vrtDx(i,j)*vrtDx(i,j) )
478 & + (vrtDy(i,j-1)*vrtDy(i,j-1)
479 & + vrtDy(i,j)*vrtDy(i,j) ) )
480
481 C This is the vector magnitude of grad(div.v) squared
482 grdDiv=0.25 _d 0*( (divDx(i,j-1)*divDx(i,j-1)
483 & + divDx(i,j)*divDx(i,j) )
484 & + (divDy(i-1,j)*divDy(i-1,j)
485 & + divDy(i,j)*divDy(i,j) ) )
486
487 viscAh_ZLth(i,j)=
488 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
489 viscA4_ZLth(i,j)=
490 & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
491 viscAh_ZLthD(i,j)=
492 & sqrt(leithD2fac*grdDiv)*L3
493 viscA4_ZLthD(i,j)=
494 & sqrt(leithD4fac*grdDiv)*L5
495
496 ELSEIF (calcleith) THEN
497 C but this approximation will work on cube (and differs by 4X)
498 grdVrt=max( abs(vrtDx(i-1,j)), abs(vrtDx(i,j)) )
499 grdVrt=max( grdVrt, abs(vrtDy(i,j-1)) )
500 grdVrt=max( grdVrt, abs(vrtDy(i,j)) )
501
502 grdDiv=max( abs(divDx(i,j)), abs(divDx(i,j-1)) )
503 grdDiv=max( grdDiv, abs(divDy(i,j)) )
504 grdDiv=max( grdDiv, abs(divDy(i-1,j)) )
505
506 viscAh_ZLth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
507 viscA4_ZLth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
508 viscAh_ZLthD(i,j)=(leithD2fac*grdDiv)*L3
509 viscA4_ZLthD(i,j)=(leithD4fac*grdDiv)*L5
510 ELSE
511 viscAh_ZLth(i,j)=0. _d 0
512 viscA4_ZLth(i,j)=0. _d 0
513 viscAh_ZLthD(i,j)=0. _d 0
514 viscA4_ZLthD(i,j)=0. _d 0
515 ENDIF
516
517 IF (calcsmag) THEN
518 viscAh_ZSmg(i,j)=L2
519 & *sqrt(strain(i,j)**2
520 & +0.25 _d 0*(tension( i , j )**2+tension( i ,j-1)**2
521 & +tension(i-1, j )**2+tension(i-1,j-1)**2))
522 viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
523 viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
524 ENDIF
525 #endif /* ALLOW_AUTODIFF_TAMC */
526
527 C Harmonic on Zeta points
528 Alin=viscAhZ+viscAhGrid*L2rdt
529 & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
530 viscAh_ZMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
531 viscAh_Z(i,j)=max(viscAh_ZMin(i,j),Alin)
532 viscAh_ZMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
533 viscAh_Z(i,j)=min(viscAh_ZMax(i,j),viscAh_Z(i,j))
534
535 C BiHarmonic on Zeta points
536 Alin=viscA4Z+viscA4Grid*L4rdt
537 & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
538 viscA4_ZMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
539 viscA4_Z(i,j)=max(viscA4_ZMin(i,j),Alin)
540 viscA4_ZMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
541 viscA4_Z(i,j)=min(viscA4_ZMax(i,j),viscA4_Z(i,j))
542 ENDDO
543 ENDDO
544 ELSE
545 DO j=1-Oly,sNy+Oly
546 DO i=1-Olx,sNx+Olx
547 viscAh_D(i,j)=viscAhD
548 viscAh_Z(i,j)=viscAhZ
549 viscA4_D(i,j)=viscA4D
550 viscA4_Z(i,j)=viscA4Z
551 ENDDO
552 ENDDO
553 ENDIF
554
555 #ifdef ALLOW_DIAGNOSTICS
556 IF (useDiagnostics) THEN
557 CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
558 CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
559 CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
560 CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
561 #ifdef ALLOW_NONHYDROSTATIC
562 CALL DIAGNOSTICS_FILL(viscAh_W,'VISCAHW ',k,1,2,bi,bj,myThid)
563 CALL DIAGNOSTICS_FILL(viscA4_W,'VISCA4W ',k,1,2,bi,bj,myThid)
564 #endif
565
566 CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
567 CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
568 CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
569 CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
570
571 CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
572 CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
573 CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
574 CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
575
576 CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
577 CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
578 CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
579 CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
580
581 CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD'
582 & ,k,1,2,bi,bj,myThid)
583 CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD'
584 & ,k,1,2,bi,bj,myThid)
585 CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD'
586 & ,k,1,2,bi,bj,myThid)
587 CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD'
588 & ,k,1,2,bi,bj,myThid)
589
590 CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
591 CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
592 CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
593 CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
594 ENDIF
595 #endif
596
597 RETURN
598 END
599

  ViewVC Help
Powered by ViewVC 1.1.22