/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download)
Tue Sep 20 20:41:43 2005 UTC (19 years ago) by baylor
Branch: MAIN
Changes since 1.4: +282 -199 lines
Cleaner version of mom_calc_visc.F and added diagnostics for different viscosities.

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vi_hdissip.F,v 1.25 2005/04/11 14:47:24 dimitri Exp $
2 C $Name: $
3
4 #include "MOM_COMMON_OPTIONS.h"
5
6
7 SUBROUTINE MOM_CALC_VISC(
8 I bi,bj,k,
9 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10 O harmonic,biharmonic,useVariableViscosity,
11 I hDiv,vort3,tension,strain,KE,hfacZ,
12 I myThid)
13
14 IMPLICIT NONE
15 C
16 C Calculate horizontal viscosities (L is typical grid width)
17 C harmonic viscosity=
18 C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19 C +0.25*L**2*viscAhGrid/deltaT
20 C +sqrt(viscC2leith**2*grad(Vort3)**2
21 C +viscC2leithD**2*grad(hDiv)**2)*L**3
22 C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23 C
24 C biharmonic viscosity=
25 C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26 C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27 C +0.125*L**5*sqrt(viscC4leith**2*grad(Vort3)**2
28 C +viscC4leithD**2*grad(hDiv)**2)
29 C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30 C
31 C Note that often 0.125*L**2 is the scale between harmonic and
32 C biharmonic (see Griffies and Hallberg (2000))
33 C This allows the same value of the coefficient to be used
34 C for roughly similar results with biharmonic and harmonic
35 C
36 C LIMITERS -- limit min and max values of viscosities
37 C viscAhRemax is min value for grid point harmonic Reynolds num
38 C harmonic viscosity>sqrt(2*KE)*L/2/viscAhRemax
39 C
40 C viscA4Remax is min value for grid point biharmonic Reynolds num
41 C biharmonic viscosity>sqrt(2*KE)*L**3/16/viscA4Remax
42 C
43 C viscAhgridmax is CFL stability limiter for harmonic viscosity
44 C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45 C
46 C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47 C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48 C
49 C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50 C harmonic viscosity>0.25*viscAhgridmax*L**2/deltaT
51 C biharmonic viscosity>viscA4gridmax*L**4/32/deltaT (approx)
52 C
53 C RECOMMENDED VALUES
54 C viscC2Leith=?
55 C viscC2LeithD=?
56 C viscC4Leith=?
57 C viscC4LeithD=?
58 C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
59 C 0.2-0.9 (Smagorinsky,1993)
60 C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
61 C viscAhRemax>=1
62 C viscA4Remax>=1
63 C viscAhgridmax=1
64 C viscA4gridmax=1
65 C viscAhgrid<1
66 C viscA4grid<1
67 C viscAhgridmin<<1
68 C viscA4gridmin<<1
69
70 C == Global variables ==
71 #include "SIZE.h"
72 #include "GRID.h"
73 #include "EEPARAMS.h"
74 #include "PARAMS.h"
75
76 C == Routine arguments ==
77 INTEGER bi,bj,k
78 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 INTEGER myThid
89 LOGICAL harmonic,biharmonic,useVariableViscosity
90
91 C == Local variables ==
92 INTEGER I,J
93 _RL smag2fac, smag4fac
94 _RL viscAhRemax, viscA4Remax
95 _RL Alin,Alinmin,grdVrt,grdDiv
96 _RL recip_dt,L2,L3,L4,L5,L2rdt,L4rdt
97 _RL Uscl,U4scl
98 _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105 _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106 _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107 _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108 _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109 _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111 _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113 _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 LOGICAL calcLeith,calcSmag
119
120 useVariableViscosity=
121 & (viscAhGrid.NE.0.)
122 & .OR.(viscA4Grid.NE.0.)
123 & .OR.(viscC2leith.NE.0.)
124 & .OR.(viscC2leithD.NE.0.)
125 & .OR.(viscC4leith.NE.0.)
126 & .OR.(viscC4leithD.NE.0.)
127 & .OR.(viscC2smag.NE.0.)
128 & .OR.(viscC4smag.NE.0.)
129
130 harmonic=
131 & (viscAh.NE.0.)
132 & .OR.(viscAhD.NE.0.)
133 & .OR.(viscAhZ.NE.0.)
134 & .OR.(viscAhGrid.NE.0.)
135 & .OR.(viscC2leith.NE.0.)
136 & .OR.(viscC2leithD.NE.0.)
137 & .OR.(viscC2smag.NE.0.)
138
139 IF (harmonic) viscAhremax=50
140
141 biharmonic=
142 & (viscA4.NE.0.)
143 & .OR.(viscA4D.NE.0.)
144 & .OR.(viscA4Z.NE.0.)
145 & .OR.(viscA4Grid.NE.0.)
146 & .OR.(viscC4leith.NE.0.)
147 & .OR.(viscC4leithD.NE.0.)
148 & .OR.(viscC4smag.NE.0.)
149
150 IF (biharmonic) viscA4remax=50
151
152 calcleith=
153 & (viscC2leith.NE.0.)
154 & .OR.(viscC2leithD.NE.0.)
155 & .OR.(viscC4leith.NE.0.)
156 & .OR.(viscC4leithD.NE.0.)
157
158 calcsmag=
159 & (viscC2smag.NE.0.)
160 & .OR.(viscC4smag.NE.0.)
161
162 IF (deltaTmom.NE.0.) THEN
163 recip_dt=1./deltaTmom
164 ELSE
165 recip_dt=0.
166 ENDIF
167
168 IF (calcsmag) THEN
169 smag2fac=(viscC2smag/pi)**2
170 smag4fac=0.125*(viscC4smag/pi)**2
171 ENDIF
172
173 C - Viscosity
174 IF (useVariableViscosity) THEN
175 DO j=2-Oly,sNy+Oly-1
176 DO i=2-Olx,sNx+Olx-1
177 CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
178
179 C These are (powers of) length scales
180 L2=2./((recip_DXF(I,J,bi,bj)**2+recip_DYF(I,J,bi,bj)**2))
181 L3=(L2**1.5)
182 L4=(L2**2)
183 L5=(L2**2.5)
184
185 L2rdt=0.25*recip_dt*L2
186
187 L4rdt=recip_dt/( 6.*(recip_DXF(I,J,bi,bj)**4
188 & +recip_DYF(I,J,bi,bj)**4)
189 & +8.*((recip_DXF(I,J,bi,bj)
190 & *recip_DYF(I,J,bi,bj))**2) )
191
192 C Velocity Reynolds Scale
193 Uscl=sqrt(KE(i,j)*L2*0.5)/viscAhRemax
194 U4scl=0.125*L2*Uscl/viscA4Remax
195
196 IF (useFullLeith.and.calcleith) THEN
197 C This is the vector magnitude of the vorticity gradient squared
198 grdVrt=0.25*(
199 & ((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))**2
200 & +((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj))**2
201 & +((vort3(i+1,j+1)-vort3(i,j+1))*recip_DXG(i,j+1,bi,bj))**2
202 & +((vort3(i+1,j+1)-vort3(i+1,j))*recip_DYG(i+1,j,bi,bj))**2)
203
204 C This is the vector magnitude of grad (div.v) squared
205 C Using it in Leith serves to damp instabilities in w.
206 grdDiv=0.25*(
207 & ((hDiv(i+1,j)-hDiv(i,j))*recip_DXC(i+1,j,bi,bj))**2
208 & +((hDiv(i,j+1)-hDiv(i,j))*recip_DYC(i,j+1,bi,bj))**2
209 & +((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj))**2
210 & +((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj))**2)
211
212 viscAh_DLth(i,j)=
213 & sqrt(viscC2leith**2*grdVrt+viscC2leithD**2*grdDiv)*L3
214 viscA4_DLth(i,j)=
215 & sqrt(viscC4leith**2*grdVrt+viscC4leithD**2*grdDiv)*L5
216 viscAh_DLthd(i,j)=
217 & sqrt(viscC2leithD**2*grdDiv)*L3
218 viscA4_DLthd(i,j)=
219 & sqrt(viscC4leithD**2*grdDiv)*L5
220 ELSEIF (calcleith) THEN
221 C but this approximation will work on cube
222 c (and differs by as much as 4X)
223 grdVrt=abs((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))
224 grdVrt=max(grdVrt,
225 & abs((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj)))
226 grdVrt=max(grdVrt,
227 & abs((vort3(i+1,j+1)-vort3(i,j+1))*recip_DXG(i,j+1,bi,bj)))
228 grdVrt=max(grdVrt,
229 & abs((vort3(i+1,j+1)-vort3(i+1,j))*recip_DYG(i+1,j,bi,bj)))
230
231 grdDiv=abs((hDiv(i+1,j)-hDiv(i,j))*recip_DXC(i+1,j,bi,bj))
232 grdDiv=max(grdDiv,
233 & abs((hDiv(i,j+1)-hDiv(i,j))*recip_DYC(i,j+1,bi,bj)))
234 grdDiv=max(grdDiv,
235 & abs((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)))
236 grdDiv=max(grdDiv,
237 & abs((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)))
238
239 c This approximation is good to the same order as above...
240 viscAh_Dlth(i,j)=
241 & (viscC2leith*grdVrt+(viscC2leithD*grdDiv))*L3
242 viscA4_Dlth(i,j)=0.125*
243 & (viscC4leith*grdVrt+(viscC4leithD*grdDiv))*L5
244 viscAh_DlthD(i,j)=
245 & ((viscC2leithD*grdDiv))*L3
246 viscA4_DlthD(i,j)=0.125*
247 & ((viscC4leithD*grdDiv))*L5
248 ELSE
249 viscAh_Dlth(i,j)=0d0
250 viscA4_Dlth(i,j)=0d0
251 viscAh_DlthD(i,j)=0d0
252 viscA4_DlthD(i,j)=0d0
253 ENDIF
254
255 IF (calcsmag) THEN
256 viscAh_DSmg(i,j)=L2
257 & *sqrt(tension(i,j)**2
258 & +0.25*(strain(i+1, j )**2+strain( i ,j+1)**2
259 & +strain(i , j )**2+strain(i+1,j+1)**2))
260 viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
261 viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
262 ELSE
263 viscAh_DSmg(i,j)=0d0
264 viscA4_DSmg(i,j)=0d0
265 ENDIF
266
267 C Harmonic on Div.u points
268 Alin=viscAhD+viscAhGrid*L2rdt
269 & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
270 viscAh_DMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
271 viscAh_D(i,j)=max(viscAh_DMin(i,j),Alin)
272 viscAh_DMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
273 viscAh_D(i,j)=min(viscAh_DMax(i,j),viscAh_D(i,j))
274
275 C BiHarmonic on Div.u points
276 Alin=viscA4D+viscA4Grid*L4rdt
277 & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
278 viscA4_DMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
279 viscA4_D(i,j)=max(viscA4_DMin(i,j),Alin)
280 viscA4_DMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
281 viscA4_D(i,j)=min(viscA4_DMax(i,j),viscA4_D(i,j))
282
283 CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
284 C These are (powers of) length scales
285 L2=2./((recip_DXV(I,J,bi,bj)**2+recip_DYU(I,J,bi,bj)**2))
286 L3=(L2**1.5)
287 L4=(L2**2)
288 L5=(L2**2.5)
289
290 L2rdt=0.25*recip_dt*L2
291 L4rdt=recip_dt/
292 & ( 6.*(recip_DXF(I,J,bi,bj)**4+recip_DYF(I,J,bi,bj)**4)
293 & +8.*((recip_DXF(I,J,bi,bj)*recip_DYF(I,J,bi,bj))**2))
294
295 C Velocity Reynolds Scale
296 Uscl=sqrt((KE(i,j)+KE(i,j+1)+KE(i+1,j)+KE(i+1,j+1))*L2*0.125)/
297 & viscAhRemax
298 U4scl=0.125*L2*Uscl/viscA4Remax
299
300 C This is the vector magnitude of the vorticity gradient squared
301 IF (useFullLeith.and.calcleith) THEN
302 grdVrt=0.25*(
303 & ((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))**2
304 & +((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj))**2
305 & +((vort3(i-1,j)-vort3(i,j))*recip_DXG(i-1,j,bi,bj))**2
306 & +((vort3(i,j-1)-vort3(i,j))*recip_DYG(i,j-1,bi,bj))**2)
307
308 C This is the vector magnitude of grad(div.v) squared
309 grdDiv=0.25*(
310 & ((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj))**2
311 & +((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj))**2
312 & +((hDiv(i,j-1)-hDiv(i-1,j-1))*recip_DXC(i,j-1,bi,bj))**2
313 & +((hDiv(i-1,j)-hDiv(i-1,j-1))*recip_DYC(i-1,j,bi,bj))**2)
314
315 viscAh_ZLth(i,j)=
316 & sqrt(viscC2leith**2*grdVrt+viscC2leithD**2*grdDiv)*L3
317 viscA4_ZLth(i,j)=
318 & sqrt(viscC4leith**2*grdVrt+viscC4leithD**2*grdDiv)*L5
319 viscAh_ZLthD(i,j)=
320 & sqrt(viscC2leithD**2*grdDiv)*L3
321 viscA4_ZLthD(i,j)=
322 & sqrt(viscC4leithD**2*grdDiv)*L5
323
324 ELSEIF (calcleith) THEN
325 C but this approximation will work on cube (and differs by 4X)
326 grdVrt=abs((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))
327 grdVrt=max(grdVrt,
328 & abs((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj)))
329 grdVrt=max(grdVrt,
330 & abs((vort3(i-1,j)-vort3(i,j))*recip_DXG(i-1,j,bi,bj)))
331 grdVrt=max(grdVrt,
332 & abs((vort3(i,j-1)-vort3(i,j))*recip_DYG(i,j-1,bi,bj)))
333
334 grdDiv=abs((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj))
335 grdDiv=max(grdDiv,
336 & abs((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)))
337 grdDiv=max(grdDiv,
338 & abs((hDiv(i,j-1)-hDiv(i-1,j-1))*recip_DXG(i,j-1,bi,bj)))
339 grdDiv=max(grdDiv,
340 & abs((hDiv(i-1,j)-hDiv(i-1,j-1))*recip_DYG(i-1,j,bi,bj)))
341
342 viscAh_ZLth(i,j)=(viscC2leith*grdVrt
343 & +(viscC2leithD*grdDiv))*L3
344 viscA4_ZLth(i,j)=(viscC4leith*grdVrt
345 & +(viscC4leithD*grdDiv))*L5
346 viscAh_ZLthD(i,j)=((viscC2leithD*grdDiv))*L3
347 viscA4_ZLthD(i,j)=((viscC4leithD*grdDiv))*L5
348 ELSE
349 viscAh_ZLth(i,j)=0d0
350 viscA4_ZLth(i,j)=0d0
351 viscAh_ZLthD(i,j)=0d0
352 viscA4_ZLthD(i,j)=0d0
353 ENDIF
354
355 IF (calcsmag) THEN
356 viscAh_ZSmg(i,j)=L2
357 & *sqrt(strain(i,j)**2
358 & +0.25*(tension( i , j )**2+tension( i ,j-1)**2
359 & +tension(i-1, j )**2+tension(i-1,j-1)**2))
360 viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
361 viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
362 ENDIF
363
364 C Harmonic on Zeta points
365 Alin=viscAhZ+viscAhGrid*L2rdt
366 & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
367 viscAh_ZMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
368 viscAh_Z(i,j)=max(viscAh_ZMin(i,j),Alin)
369 viscAh_ZMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
370 viscAh_Z(i,j)=min(viscAh_ZMax(i,j),viscAh_Z(i,j))
371
372 C BiHarmonic on Zeta points
373 Alin=viscA4Z+viscA4Grid*L4rdt
374 & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
375 viscA4_ZMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
376 viscA4_Z(i,j)=max(viscA4_ZMin(i,j),Alin)
377 viscA4_ZMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
378 viscA4_Z(i,j)=min(viscA4_ZMax(i,j),viscA4_Z(i,j))
379 ENDDO
380 ENDDO
381 ELSE
382 DO j=1-Oly,sNy+Oly
383 DO i=1-Olx,sNx+Olx
384 viscAh_D(i,j)=viscAhD
385 viscAh_Z(i,j)=viscAhZ
386 viscA4_D(i,j)=viscA4D
387 viscA4_Z(i,j)=viscA4Z
388 ENDDO
389 ENDDO
390 ENDIF
391
392 #ifdef ALLOW_DIAGNOSTICS
393 IF (useDiagnostics) THEN
394 CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
395 CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
396 CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
397 CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
398
399 CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
400 CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
401 CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
402 CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
403
404 CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
405 CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
406 CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
407 CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
408
409 CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
410 CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
411 CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
412 CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
413
414 CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD',k,1,2,bi,bj,myThid)
415 CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD',k,1,2,bi,bj,myThid)
416 CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD',k,1,2,bi,bj,myThid)
417 CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD',k,1,2,bi,bj,myThid)
418
419 CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
420 CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
421 CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
422 CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
423 ENDIF
424 #endif
425
426 RETURN
427 END
428

  ViewVC Help
Powered by ViewVC 1.1.22