/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.36 - (show annotations) (download)
Wed Oct 22 00:28:47 2008 UTC (15 years, 8 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint61f, checkpoint61g, checkpoint61e, checkpoint61j, checkpoint61k, checkpoint61h, checkpoint61i
Changes since 1.35: +3 -3 lines
changes in FILL_CS_CORNER_TR_RL argument list.

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_common/mom_calc_visc.F,v 1.35 2008/04/22 22:50:11 jmc Exp $
2 C $Name: $
3
4 #include "MOM_COMMON_OPTIONS.h"
5
6
7 SUBROUTINE MOM_CALC_VISC(
8 I bi,bj,k,
9 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10 O harmonic,biharmonic,useVariableViscosity,
11 I hDiv,vort3,tension,strain,KE,hFacZ,
12 I myThid)
13
14 IMPLICIT NONE
15 C
16 C Calculate horizontal viscosities (L is typical grid width)
17 C harmonic viscosity=
18 C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19 C +0.25*L**2*viscAhGrid/deltaT
20 C +sqrt((viscC2leith/pi)**6*grad(Vort3)**2
21 C +(viscC2leithD/pi)**6*grad(hDiv)**2)*L**3
22 C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23 C
24 C biharmonic viscosity=
25 C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26 C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27 C +0.125*L**5*sqrt((viscC4leith/pi)**6*grad(Vort3)**2
28 C +(viscC4leithD/pi)**6*grad(hDiv)**2)
29 C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30 C
31 C Note that often 0.125*L**2 is the scale between harmonic and
32 C biharmonic (see Griffies and Hallberg (2000))
33 C This allows the same value of the coefficient to be used
34 C for roughly similar results with biharmonic and harmonic
35 C
36 C LIMITERS -- limit min and max values of viscosities
37 C viscAhReMax is min value for grid point harmonic Reynolds num
38 C harmonic viscosity>sqrt(2*KE)*L/viscAhReMax
39 C
40 C viscA4ReMax is min value for grid point biharmonic Reynolds num
41 C biharmonic viscosity>sqrt(2*KE)*L**3/8/viscA4ReMax
42 C
43 C viscAhgridmax is CFL stability limiter for harmonic viscosity
44 C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45 C
46 C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47 C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48 C
49 C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50 C harmonic viscosity>0.25*viscAhgridmin*L**2/deltaT
51 C biharmonic viscosity>viscA4gridmin*L**4/32/deltaT (approx)
52
53
54 C
55 C RECOMMENDED VALUES
56 C viscC2Leith=1-3
57 C viscC2LeithD=1-3
58 C viscC4Leith=1-3
59 C viscC4LeithD=1.5-3
60 C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
61 C 0.2-0.9 (Smagorinsky,1993)
62 C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
63 C viscAhReMax>=1, (<2 suppresses a computational mode)
64 C viscA4ReMax>=1, (<2 suppresses a computational mode)
65 C viscAhgridmax=1
66 C viscA4gridmax=1
67 C viscAhgrid<1
68 C viscA4grid<1
69 C viscAhgridmin<<1
70 C viscA4gridmin<<1
71
72 C == Global variables ==
73 #include "SIZE.h"
74 #include "GRID.h"
75 #include "EEPARAMS.h"
76 #include "PARAMS.h"
77 #ifdef ALLOW_NONHYDROSTATIC
78 #include "NH_VARS.h"
79 #endif
80 #ifdef ALLOW_AUTODIFF_TAMC
81 #include "tamc.h"
82 #include "tamc_keys.h"
83 #endif /* ALLOW_AUTODIFF_TAMC */
84
85 C == Routine arguments ==
86 INTEGER bi,bj,k
87 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
94 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
95 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
96 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 INTEGER myThid
98 LOGICAL harmonic,biharmonic,useVariableViscosity
99
100 C == Local variables ==
101 INTEGER I,J
102 #ifdef ALLOW_NONHYDROSTATIC
103 INTEGER kp1
104 #endif
105 INTEGER lockey_1, lockey_2
106 _RL smag2fac, smag4fac
107 _RL leith2fac, leith4fac
108 _RL leithD2fac, leithD4fac
109 _RL viscAhRe_max, viscA4Re_max
110 _RL Alin,grdVrt,grdDiv, keZpt
111 _RL recip_dt,L2,L3,L4,L5,L2rdt,L4rdt
112 _RL Uscl,U4scl
113 _RL divDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RL divDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RL vrtDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RL vrtDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
133 _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
134 _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
135 _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
136 _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
137 LOGICAL calcLeith, calcSmag
138
139 #ifdef ALLOW_AUTODIFF_TAMC
140 act1 = bi - myBxLo(myThid)
141 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
142 act2 = bj - myByLo(myThid)
143 max2 = myByHi(myThid) - myByLo(myThid) + 1
144 act3 = myThid - 1
145 max3 = nTx*nTy
146 act4 = ikey_dynamics - 1
147 ikey = (act1 + 1) + act2*max1
148 & + act3*max1*max2
149 & + act4*max1*max2*max3
150 lockey_1 = (ikey-1)*Nr + k
151 #endif /* ALLOW_AUTODIFF_TAMC */
152
153 C-- Set flags which are used in this S/R and elsewhere :
154 useVariableViscosity=
155 & (viscAhGrid.NE.0.)
156 & .OR.(viscA4Grid.NE.0.)
157 & .OR.(viscC2leith.NE.0.)
158 & .OR.(viscC2leithD.NE.0.)
159 & .OR.(viscC4leith.NE.0.)
160 & .OR.(viscC4leithD.NE.0.)
161 & .OR.(viscC2smag.NE.0.)
162 & .OR.(viscC4smag.NE.0.)
163
164 harmonic=
165 & (viscAh.NE.0.)
166 & .OR.(viscAhD.NE.0.)
167 & .OR.(viscAhZ.NE.0.)
168 & .OR.(viscAhGrid.NE.0.)
169 & .OR.(viscC2leith.NE.0.)
170 & .OR.(viscC2leithD.NE.0.)
171 & .OR.(viscC2smag.NE.0.)
172
173 biharmonic=
174 & (viscA4.NE.0.)
175 & .OR.(viscA4D.NE.0.)
176 & .OR.(viscA4Z.NE.0.)
177 & .OR.(viscA4Grid.NE.0.)
178 & .OR.(viscC4leith.NE.0.)
179 & .OR.(viscC4leithD.NE.0.)
180 & .OR.(viscC4smag.NE.0.)
181
182 IF (useVariableViscosity) THEN
183 C---- variable viscosity :
184
185 IF ((harmonic).AND.(viscAhReMax.NE.0.)) THEN
186 viscAhRe_max=SQRT(2. _d 0)/viscAhReMax
187 ELSE
188 viscAhRe_max=0. _d 0
189 ENDIF
190
191 IF ((biharmonic).AND.(viscA4ReMax.NE.0.)) THEN
192 viscA4Re_max=0.125 _d 0*SQRT(2. _d 0)/viscA4ReMax
193 ELSE
194 viscA4Re_max=0. _d 0
195 ENDIF
196
197 calcLeith=
198 & (viscC2leith.NE.0.)
199 & .OR.(viscC2leithD.NE.0.)
200 & .OR.(viscC4leith.NE.0.)
201 & .OR.(viscC4leithD.NE.0.)
202
203 calcSmag=
204 & (viscC2smag.NE.0.)
205 & .OR.(viscC4smag.NE.0.)
206
207 IF (deltaTmom.NE.0.) THEN
208 recip_dt=1. _d 0/deltaTmom
209 ELSE
210 recip_dt=0. _d 0
211 ENDIF
212
213 IF (calcSmag) THEN
214 smag2fac=(viscC2smag/pi)**2
215 smag4fac=0.125 _d 0*(viscC4smag/pi)**2
216 ELSE
217 smag2fac=0. _d 0
218 smag4fac=0. _d 0
219 ENDIF
220
221 IF (calcLeith) THEN
222 IF (useFullLeith) THEN
223 leith2fac =(viscC2leith /pi)**6
224 leithD2fac=(viscC2leithD/pi)**6
225 leith4fac =0.015625 _d 0*(viscC4leith /pi)**6
226 leithD4fac=0.015625 _d 0*(viscC4leithD/pi)**6
227 ELSE
228 leith2fac =(viscC2leith /pi)**3
229 leithD2fac=(viscC2leithD/pi)**3
230 leith4fac =0.125 _d 0*(viscC4leith /pi)**3
231 leithD4fac=0.125 _d 0*(viscC4leithD/pi)**3
232 ENDIF
233 ELSE
234 leith2fac=0. _d 0
235 leith4fac=0. _d 0
236 leithD2fac=0. _d 0
237 leithD4fac=0. _d 0
238 ENDIF
239
240 #ifdef ALLOW_AUTODIFF_TAMC
241 cphtest IF ( calcLeith .OR. calcSmag ) THEN
242 cphtest STOP 'calcLeith or calcSmag not implemented for ADJOINT'
243 cphtest ENDIF
244 #endif
245 DO j=1-Oly,sNy+Oly
246 DO i=1-Olx,sNx+Olx
247 viscAh_D(i,j)=viscAhD
248 viscAh_Z(i,j)=viscAhZ
249 viscA4_D(i,j)=viscA4D
250 viscA4_Z(i,j)=viscA4Z
251 c
252 visca4_zsmg(i,j) = 0. _d 0
253 viscah_zsmg(i,j) = 0. _d 0
254 c
255 viscAh_Dlth(i,j) = 0. _d 0
256 viscA4_Dlth(i,j) = 0. _d 0
257 viscAh_DlthD(i,j)= 0. _d 0
258 viscA4_DlthD(i,j)= 0. _d 0
259 c
260 viscAh_DSmg(i,j) = 0. _d 0
261 viscA4_DSmg(i,j) = 0. _d 0
262 c
263 viscAh_ZLth(i,j) = 0. _d 0
264 viscA4_ZLth(i,j) = 0. _d 0
265 viscAh_ZLthD(i,j)= 0. _d 0
266 viscA4_ZLthD(i,j)= 0. _d 0
267 ENDDO
268 ENDDO
269
270 C- Initialise to zero gradient of vorticity & divergence:
271 DO j=1-Oly,sNy+Oly
272 DO i=1-Olx,sNx+Olx
273 divDx(i,j) = 0.
274 divDy(i,j) = 0.
275 vrtDx(i,j) = 0.
276 vrtDy(i,j) = 0.
277 ENDDO
278 ENDDO
279
280 IF (calcLeith) THEN
281 C horizontal gradient of horizontal divergence:
282
283 C- gradient in x direction:
284 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
285 IF (useCubedSphereExchange) THEN
286 C to compute d/dx(hDiv), fill corners with appropriate values:
287 CALL FILL_CS_CORNER_TR_RL( 1, .FALSE.,
288 & hDiv, bi,bj, myThid )
289 ENDIF
290 cph-exch2#endif
291 DO j=2-Oly,sNy+Oly-1
292 DO i=2-Olx,sNx+Olx-1
293 divDx(i,j) = (hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)
294 ENDDO
295 ENDDO
296
297 C- gradient in y direction:
298 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
299 IF (useCubedSphereExchange) THEN
300 C to compute d/dy(hDiv), fill corners with appropriate values:
301 CALL FILL_CS_CORNER_TR_RL( 2, .FALSE.,
302 & hDiv, bi,bj, myThid )
303 ENDIF
304 cph-exch2#endif
305 DO j=2-Oly,sNy+Oly-1
306 DO i=2-Olx,sNx+Olx-1
307 divDy(i,j) = (hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)
308 ENDDO
309 ENDDO
310
311 C horizontal gradient of vertical vorticity:
312 C- gradient in x direction:
313 DO j=2-Oly,sNy+Oly
314 DO i=2-Olx,sNx+Olx-1
315 vrtDx(i,j) = (vort3(i+1,j)-vort3(i,j))
316 & *recip_DXG(i,j,bi,bj)
317 & *maskS(i,j,k,bi,bj)
318 ENDDO
319 ENDDO
320 C- gradient in y direction:
321 DO j=2-Oly,sNy+Oly-1
322 DO i=2-Olx,sNx+Olx
323 vrtDy(i,j) = (vort3(i,j+1)-vort3(i,j))
324 & *recip_DYG(i,j,bi,bj)
325 & *maskW(i,j,k,bi,bj)
326 ENDDO
327 ENDDO
328
329 ENDIF
330
331 DO j=2-Oly,sNy+Oly-1
332 DO i=2-Olx,sNx+Olx-1
333 CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
334
335 #ifdef ALLOW_AUTODIFF_TAMC
336 # ifndef AUTODIFF_DISABLE_LEITH
337 lockey_2 = i + sNx*(j-1) + sNx*sNy*(lockey_1-1)
338 CADJ STORE viscA4_ZSmg(i,j)
339 CADJ & = comlev1_mom_ijk_loop , key=lockey_2, byte=isbyte
340 CADJ STORE viscAh_ZSmg(i,j)
341 CADJ & = comlev1_mom_ijk_loop , key=lockey_2, byte=isbyte
342 # endif
343 #endif /* ALLOW_AUTODIFF_TAMC */
344
345 C These are (powers of) length scales
346 IF (useAreaViscLength) THEN
347 L2=rA(i,j,bi,bj)
348 L4rdt=0.03125 _d 0*recip_dt*L2**2
349 ELSE
350 L2=2. _d 0/((recip_DXF(I,J,bi,bj)**2+recip_DYF(I,J,bi,bj)**2))
351 L4rdt=recip_dt/( 6. _d 0*(recip_DXF(I,J,bi,bj)**4
352 & +recip_DYF(I,J,bi,bj)**4)
353 & +8. _d 0*((recip_DXF(I,J,bi,bj)
354 & *recip_DYF(I,J,bi,bj))**2) )
355 ENDIF
356 L3=(L2**1.5)
357 L4=(L2**2)
358 L5=(L2*L3)
359
360 L2rdt=0.25 _d 0*recip_dt*L2
361
362 C Velocity Reynolds Scale
363 IF ( viscAhRe_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
364 Uscl=SQRT(KE(i,j)*L2)*viscAhRe_max
365 ELSE
366 Uscl=0.
367 ENDIF
368 IF ( viscA4Re_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
369 U4scl=SQRT(KE(i,j))*L3*viscA4Re_max
370 ELSE
371 U4scl=0.
372 ENDIF
373
374 cph-leith#ifndef ALLOW_AUTODIFF_TAMC
375 #ifndef AUTODIFF_DISABLE_LEITH
376 IF (useFullLeith.AND.calcLeith) THEN
377 C This is the vector magnitude of the vorticity gradient squared
378 grdVrt=0.25 _d 0*( (vrtDx(i,j+1)*vrtDx(i,j+1)
379 & + vrtDx(i,j)*vrtDx(i,j) )
380 & + (vrtDy(i+1,j)*vrtDy(i+1,j)
381 & + vrtDy(i,j)*vrtDy(i,j) ) )
382
383 C This is the vector magnitude of grad (div.v) squared
384 C Using it in Leith serves to damp instabilities in w.
385 grdDiv=0.25 _d 0*( (divDx(i+1,j)*divDx(i+1,j)
386 & + divDx(i,j)*divDx(i,j) )
387 & + (divDy(i,j+1)*divDy(i,j+1)
388 & + divDy(i,j)*divDy(i,j) ) )
389
390 viscAh_DLth(i,j)=
391 & SQRT(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
392 viscA4_DLth(i,j)=
393 & SQRT(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
394 viscAh_DLthd(i,j)=
395 & SQRT(leithD2fac*grdDiv)*L3
396 viscA4_DLthd(i,j)=
397 & SQRT(leithD4fac*grdDiv)*L5
398 ELSEIF (calcLeith) THEN
399 C but this approximation will work on cube
400 c (and differs by as much as 4X)
401 grdVrt=MAX( ABS(vrtDx(i,j+1)), ABS(vrtDx(i,j)) )
402 grdVrt=MAX( grdVrt, ABS(vrtDy(i+1,j)) )
403 grdVrt=MAX( grdVrt, ABS(vrtDy(i,j)) )
404
405 c This approximation is good to the same order as above...
406 grdDiv=MAX( ABS(divDx(i+1,j)), ABS(divDx(i,j)) )
407 grdDiv=MAX( grdDiv, ABS(divDy(i,j+1)) )
408 grdDiv=MAX( grdDiv, ABS(divDy(i,j)) )
409
410 viscAh_Dlth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
411 viscA4_Dlth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
412 viscAh_DlthD(i,j)=((leithD2fac*grdDiv))*L3
413 viscA4_DlthD(i,j)=((leithD4fac*grdDiv))*L5
414 ELSE
415 viscAh_Dlth(i,j)=0. _d 0
416 viscA4_Dlth(i,j)=0. _d 0
417 viscAh_DlthD(i,j)=0. _d 0
418 viscA4_DlthD(i,j)=0. _d 0
419 ENDIF
420
421 IF (calcSmag) THEN
422 viscAh_DSmg(i,j)=L2
423 & *SQRT(tension(i,j)**2
424 & +0.25 _d 0*(strain(i+1, j )**2+strain( i ,j+1)**2
425 & +strain(i , j )**2+strain(i+1,j+1)**2))
426 viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
427 viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
428 ELSE
429 viscAh_DSmg(i,j)=0. _d 0
430 viscA4_DSmg(i,j)=0. _d 0
431 ENDIF
432 #endif /* AUTODIFF_DISABLE_LEITH */
433
434 C Harmonic on Div.u points
435 Alin=viscAhD+viscAhGrid*L2rdt
436 & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
437 viscAh_DMin(i,j)=MAX(viscAhGridMin*L2rdt,Uscl)
438 viscAh_D(i,j)=MAX(viscAh_DMin(i,j),Alin)
439 viscAh_DMax(i,j)=MIN(viscAhGridMax*L2rdt,viscAhMax)
440 viscAh_D(i,j)=MIN(viscAh_DMax(i,j),viscAh_D(i,j))
441
442 C BiHarmonic on Div.u points
443 Alin=viscA4D+viscA4Grid*L4rdt
444 & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
445 viscA4_DMin(i,j)=MAX(viscA4GridMin*L4rdt,U4scl)
446 viscA4_D(i,j)=MAX(viscA4_DMin(i,j),Alin)
447 viscA4_DMax(i,j)=MIN(viscA4GridMax*L4rdt,viscA4Max)
448 viscA4_D(i,j)=MIN(viscA4_DMax(i,j),viscA4_D(i,j))
449
450 #ifdef ALLOW_NONHYDROSTATIC
451 C-- Pass Viscosities to calc_gw, if constant, not necessary
452
453 kp1 = MIN(k+1,Nr)
454
455 IF ( k.EQ.1 ) THEN
456 C Prepare for next level (next call)
457 viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
458 viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
459
460 C These values dont get used
461 viscAh_W(i,j,k,bi,bj)=viscAh_D(i,j)
462 viscA4_W(i,j,k,bi,bj)=viscA4_D(i,j)
463
464 ELSEIF ( k.EQ.Nr ) THEN
465 viscAh_W(i,j,k,bi,bj)=viscAh_W(i,j,k,bi,bj)+0.5*viscAh_D(i,j)
466 viscA4_W(i,j,k,bi,bj)=viscA4_W(i,j,k,bi,bj)+0.5*viscA4_D(i,j)
467
468 ELSE
469 C Prepare for next level (next call)
470 viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
471 viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
472
473 C Note that previous call of this function has already added half.
474 viscAh_W(i,j,k,bi,bj)=viscAh_W(i,j,k,bi,bj)+0.5*viscAh_D(i,j)
475 viscA4_W(i,j,k,bi,bj)=viscA4_W(i,j,k,bi,bj)+0.5*viscA4_D(i,j)
476
477 ENDIF
478 #endif /* ALLOW_NONHYDROSTATIC */
479
480 CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
481 C These are (powers of) length scales
482 IF (useAreaViscLength) THEN
483 L2=rAz(i,j,bi,bj)
484 L4rdt=0.125 _d 0*recip_dt*rAz(i,j,bi,bj)**2
485 ELSE
486 L2=2. _d 0/((recip_DXV(I,J,bi,bj)**2+recip_DYU(I,J,bi,bj)**2))
487 L4rdt=recip_dt/
488 & ( 6. _d 0*(recip_DXV(I,J,bi,bj)**4+recip_DYU(I,J,bi,bj)**4)
489 & +8. _d 0*((recip_DXV(I,J,bi,bj)*recip_DYU(I,J,bi,bj))**2))
490 ENDIF
491
492 L3=(L2**1.5)
493 L4=(L2**2)
494 L5=(L2*L3)
495
496 L2rdt=0.25 _d 0*recip_dt*L2
497
498 C Velocity Reynolds Scale (Pb here at CS-grid corners !)
499 IF ( viscAhRe_max.GT.0. .OR. viscA4Re_max.GT.0. ) THEN
500 keZpt=0.25 _d 0*( (KE(i,j)+KE(i-1,j-1))
501 & +(KE(i-1,j)+KE(i,j-1)) )
502 IF ( keZpt.GT.0. ) THEN
503 Uscl = SQRT(keZpt*L2)*viscAhRe_max
504 U4scl= SQRT(keZpt)*L3*viscA4Re_max
505 ELSE
506 Uscl =0.
507 U4scl=0.
508 ENDIF
509 ELSE
510 Uscl =0.
511 U4scl=0.
512 ENDIF
513
514 #ifndef AUTODIFF_DISABLE_LEITH
515 C This is the vector magnitude of the vorticity gradient squared
516 IF (useFullLeith.AND.calcLeith) THEN
517 grdVrt=0.25 _d 0*( (vrtDx(i-1,j)*vrtDx(i-1,j)
518 & + vrtDx(i,j)*vrtDx(i,j) )
519 & + (vrtDy(i,j-1)*vrtDy(i,j-1)
520 & + vrtDy(i,j)*vrtDy(i,j) ) )
521
522 C This is the vector magnitude of grad(div.v) squared
523 grdDiv=0.25 _d 0*( (divDx(i,j-1)*divDx(i,j-1)
524 & + divDx(i,j)*divDx(i,j) )
525 & + (divDy(i-1,j)*divDy(i-1,j)
526 & + divDy(i,j)*divDy(i,j) ) )
527
528 viscAh_ZLth(i,j)=
529 & SQRT(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
530 viscA4_ZLth(i,j)=
531 & SQRT(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
532 viscAh_ZLthD(i,j)=
533 & SQRT(leithD2fac*grdDiv)*L3
534 viscA4_ZLthD(i,j)=
535 & SQRT(leithD4fac*grdDiv)*L5
536
537 ELSEIF (calcLeith) THEN
538 C but this approximation will work on cube (and differs by 4X)
539 grdVrt=MAX( ABS(vrtDx(i-1,j)), ABS(vrtDx(i,j)) )
540 grdVrt=MAX( grdVrt, ABS(vrtDy(i,j-1)) )
541 grdVrt=MAX( grdVrt, ABS(vrtDy(i,j)) )
542
543 grdDiv=MAX( ABS(divDx(i,j)), ABS(divDx(i,j-1)) )
544 grdDiv=MAX( grdDiv, ABS(divDy(i,j)) )
545 grdDiv=MAX( grdDiv, ABS(divDy(i-1,j)) )
546
547 viscAh_ZLth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
548 viscA4_ZLth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
549 viscAh_ZLthD(i,j)=(leithD2fac*grdDiv)*L3
550 viscA4_ZLthD(i,j)=(leithD4fac*grdDiv)*L5
551 ELSE
552 viscAh_ZLth(i,j)=0. _d 0
553 viscA4_ZLth(i,j)=0. _d 0
554 viscAh_ZLthD(i,j)=0. _d 0
555 viscA4_ZLthD(i,j)=0. _d 0
556 ENDIF
557
558 IF (calcSmag) THEN
559 viscAh_ZSmg(i,j)=L2
560 & *SQRT(strain(i,j)**2
561 & +0.25 _d 0*(tension( i , j )**2+tension( i ,j-1)**2
562 & +tension(i-1, j )**2+tension(i-1,j-1)**2))
563 viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
564 viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
565 ENDIF
566 #endif /* AUTODIFF_DISABLE_LEITH */
567
568 C Harmonic on Zeta points
569 Alin=viscAhZ+viscAhGrid*L2rdt
570 & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
571 viscAh_ZMin(i,j)=MAX(viscAhGridMin*L2rdt,Uscl)
572 viscAh_Z(i,j)=MAX(viscAh_ZMin(i,j),Alin)
573 viscAh_ZMax(i,j)=MIN(viscAhGridMax*L2rdt,viscAhMax)
574 viscAh_Z(i,j)=MIN(viscAh_ZMax(i,j),viscAh_Z(i,j))
575
576 C BiHarmonic on Zeta points
577 Alin=viscA4Z+viscA4Grid*L4rdt
578 & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
579 viscA4_ZMin(i,j)=MAX(viscA4GridMin*L4rdt,U4scl)
580 viscA4_Z(i,j)=MAX(viscA4_ZMin(i,j),Alin)
581 viscA4_ZMax(i,j)=MIN(viscA4GridMax*L4rdt,viscA4Max)
582 viscA4_Z(i,j)=MIN(viscA4_ZMax(i,j),viscA4_Z(i,j))
583 ENDDO
584 ENDDO
585
586 ELSE
587 C---- use constant viscosity (useVariableViscosity=F):
588
589 DO j=1-Oly,sNy+Oly
590 DO i=1-Olx,sNx+Olx
591 viscAh_D(i,j)=viscAhD
592 viscAh_Z(i,j)=viscAhZ
593 viscA4_D(i,j)=viscA4D
594 viscA4_Z(i,j)=viscA4Z
595 ENDDO
596 ENDDO
597
598 C---- variable/constant viscosity : end if/else block
599 ENDIF
600
601 #ifdef ALLOW_DIAGNOSTICS
602 IF (useDiagnostics) THEN
603 CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
604 CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
605 CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
606 CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
607
608 CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
609 CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
610 CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
611 CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
612
613 CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
614 CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
615 CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
616 CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
617
618 CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
619 CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
620 CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
621 CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
622
623 CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD'
624 & ,k,1,2,bi,bj,myThid)
625 CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD'
626 & ,k,1,2,bi,bj,myThid)
627 CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD'
628 & ,k,1,2,bi,bj,myThid)
629 CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD'
630 & ,k,1,2,bi,bj,myThid)
631
632 CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
633 CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
634 CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
635 CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
636 ENDIF
637 #endif
638
639 RETURN
640 END
641

  ViewVC Help
Powered by ViewVC 1.1.22