/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.31 - (show annotations) (download)
Wed Nov 14 16:00:33 2007 UTC (16 years, 7 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint59m, checkpoint59l, checkpoint59o, checkpoint59n, checkpoint59k
Changes since 1.30: +12 -19 lines
revert to version 1.29 after an accidental check-in (these
nice interfaces make me sloppy ...)

1 C $Header: $
2 C $Name: $
3
4 #include "MOM_COMMON_OPTIONS.h"
5
6
7 SUBROUTINE MOM_CALC_VISC(
8 I bi,bj,k,
9 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10 O harmonic,biharmonic,useVariableViscosity,
11 I hDiv,vort3,tension,strain,KE,hFacZ,
12 I myThid)
13
14 IMPLICIT NONE
15 C
16 C Calculate horizontal viscosities (L is typical grid width)
17 C harmonic viscosity=
18 C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19 C +0.25*L**2*viscAhGrid/deltaT
20 C +sqrt((viscC2leith/pi)**6*grad(Vort3)**2
21 C +(viscC2leithD/pi)**6*grad(hDiv)**2)*L**3
22 C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23 C
24 C biharmonic viscosity=
25 C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26 C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27 C +0.125*L**5*sqrt((viscC4leith/pi)**6*grad(Vort3)**2
28 C +(viscC4leithD/pi)**6*grad(hDiv)**2)
29 C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30 C
31 C Note that often 0.125*L**2 is the scale between harmonic and
32 C biharmonic (see Griffies and Hallberg (2000))
33 C This allows the same value of the coefficient to be used
34 C for roughly similar results with biharmonic and harmonic
35 C
36 C LIMITERS -- limit min and max values of viscosities
37 C viscAhRemax is min value for grid point harmonic Reynolds num
38 C harmonic viscosity>sqrt(2*KE)*L/viscAhRemax
39 C
40 C viscA4Remax is min value for grid point biharmonic Reynolds num
41 C biharmonic viscosity>sqrt(2*KE)*L**3/8/viscA4Remax
42 C
43 C viscAhgridmax is CFL stability limiter for harmonic viscosity
44 C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45 C
46 C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47 C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48 C
49 C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50 C harmonic viscosity>0.25*viscAhgridmin*L**2/deltaT
51 C biharmonic viscosity>viscA4gridmin*L**4/32/deltaT (approx)
52
53
54 C
55 C RECOMMENDED VALUES
56 C viscC2Leith=1-3
57 C viscC2LeithD=1-3
58 C viscC4Leith=1-3
59 C viscC4LeithD=1.5-3
60 C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
61 C 0.2-0.9 (Smagorinsky,1993)
62 C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
63 C viscAhRemax>=1, (<2 suppresses a computational mode)
64 C viscA4Remax>=1, (<2 suppresses a computational mode)
65 C viscAhgridmax=1
66 C viscA4gridmax=1
67 C viscAhgrid<1
68 C viscA4grid<1
69 C viscAhgridmin<<1
70 C viscA4gridmin<<1
71
72 C == Global variables ==
73 #include "SIZE.h"
74 #include "GRID.h"
75 #include "EEPARAMS.h"
76 #include "PARAMS.h"
77 #ifdef ALLOW_NONHYDROSTATIC
78 #include "NH_VARS.h"
79 #endif
80
81 C == Routine arguments ==
82 INTEGER bi,bj,k
83 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93 INTEGER myThid
94 LOGICAL harmonic,biharmonic,useVariableViscosity
95
96 C == Local variables ==
97 INTEGER I,J
98 #ifdef ALLOW_NONHYDROSTATIC
99 INTEGER kp1
100 #endif
101 _RL smag2fac, smag4fac
102 _RL leith2fac, leith4fac
103 _RL leithD2fac, leithD4fac
104 _RL viscAhRe_max, viscA4Re_max
105 _RL Alin,grdVrt,grdDiv, keZpt
106 _RL recip_dt,L2,L3,L4,L5,L2rdt,L4rdt
107 _RL Uscl,U4scl
108 _RL divDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109 _RL divDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 _RL vrtDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111 _RL vrtDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113 _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126 _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127 _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128 _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129 _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130 _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131 _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132 LOGICAL calcLeith,calcSmag
133
134 useVariableViscosity=
135 & (viscAhGrid.NE.0.)
136 & .OR.(viscA4Grid.NE.0.)
137 & .OR.(viscC2leith.NE.0.)
138 & .OR.(viscC2leithD.NE.0.)
139 & .OR.(viscC4leith.NE.0.)
140 & .OR.(viscC4leithD.NE.0.)
141 & .OR.(viscC2smag.NE.0.)
142 & .OR.(viscC4smag.NE.0.)
143
144 harmonic=
145 & (viscAh.NE.0.)
146 & .OR.(viscAhD.NE.0.)
147 & .OR.(viscAhZ.NE.0.)
148 & .OR.(viscAhGrid.NE.0.)
149 & .OR.(viscC2leith.NE.0.)
150 & .OR.(viscC2leithD.NE.0.)
151 & .OR.(viscC2smag.NE.0.)
152
153 IF ((harmonic).and.(viscAhremax.ne.0.)) THEN
154 viscAhre_max=sqrt(2. _d 0)/viscAhRemax
155 ELSE
156 viscAhre_max=0. _d 0
157 ENDIF
158
159 biharmonic=
160 & (viscA4.NE.0.)
161 & .OR.(viscA4D.NE.0.)
162 & .OR.(viscA4Z.NE.0.)
163 & .OR.(viscA4Grid.NE.0.)
164 & .OR.(viscC4leith.NE.0.)
165 & .OR.(viscC4leithD.NE.0.)
166 & .OR.(viscC4smag.NE.0.)
167
168 IF ((biharmonic).and.(viscA4remax.ne.0.)) THEN
169 viscA4re_max=0.125 _d 0*sqrt(2. _d 0)/viscA4Remax
170 ELSE
171 viscA4re_max=0. _d 0
172 ENDIF
173
174 calcleith=
175 & (viscC2leith.NE.0.)
176 & .OR.(viscC2leithD.NE.0.)
177 & .OR.(viscC4leith.NE.0.)
178 & .OR.(viscC4leithD.NE.0.)
179
180 calcsmag=
181 & (viscC2smag.NE.0.)
182 & .OR.(viscC4smag.NE.0.)
183
184 IF (deltaTmom.NE.0.) THEN
185 recip_dt=1. _d 0/deltaTmom
186 ELSE
187 recip_dt=0. _d 0
188 ENDIF
189
190 IF (calcsmag) THEN
191 smag2fac=(viscC2smag/pi)**2
192 smag4fac=0.125 _d 0*(viscC4smag/pi)**2
193 ELSE
194 smag2fac=0. _d 0
195 smag4fac=0. _d 0
196 ENDIF
197
198 IF (calcleith) THEN
199 IF (useFullLeith) THEN
200 leith2fac =(viscC2leith /pi)**6
201 leithD2fac=(viscC2leithD/pi)**6
202 leith4fac =0.015625 _d 0*(viscC4leith /pi)**6
203 leithD4fac=0.015625 _d 0*(viscC4leithD/pi)**6
204 ELSE
205 leith2fac =(viscC2leith /pi)**3
206 leithD2fac=(viscC2leithD/pi)**3
207 leith4fac =0.125 _d 0*(viscC4leith /pi)**3
208 leithD4fac=0.125 _d 0*(viscC4leithD/pi)**3
209 ENDIF
210 ELSE
211 leith2fac=0. _d 0
212 leith4fac=0. _d 0
213 leithD2fac=0. _d 0
214 leithD4fac=0. _d 0
215 ENDIF
216
217 #ifdef ALLOW_AUTODIFF_TAMC
218 IF ( calcLeith .OR. calcSmag ) THEN
219 STOP 'calcLeith or calcSmag not implemented for ADJOINT'
220 ENDIF
221 #endif
222 DO j=1-Oly,sNy+Oly
223 DO i=1-Olx,sNx+Olx
224 viscAh_D(i,j)=viscAhD
225 viscAh_Z(i,j)=viscAhZ
226 viscA4_D(i,j)=viscA4D
227 viscA4_Z(i,j)=viscA4Z
228 c
229 visca4_zsmg(i,j) = 0. _d 0
230 viscah_zsmg(i,j) = 0. _d 0
231 c
232 viscAh_Dlth(i,j) = 0. _d 0
233 viscA4_Dlth(i,j) = 0. _d 0
234 viscAh_DlthD(i,j)= 0. _d 0
235 viscA4_DlthD(i,j)= 0. _d 0
236 c
237 viscAh_DSmg(i,j) = 0. _d 0
238 viscA4_DSmg(i,j) = 0. _d 0
239 c
240 viscAh_ZLth(i,j) = 0. _d 0
241 viscA4_ZLth(i,j) = 0. _d 0
242 viscAh_ZLthD(i,j)= 0. _d 0
243 viscA4_ZLthD(i,j)= 0. _d 0
244 ENDDO
245 ENDDO
246
247 C - Viscosity
248 IF (useVariableViscosity) THEN
249
250 C- Initialise to zero gradient of vorticity & divergence:
251 DO j=1-Oly,sNy+Oly
252 DO i=1-Olx,sNx+Olx
253 divDx(i,j) = 0.
254 divDy(i,j) = 0.
255 vrtDx(i,j) = 0.
256 vrtDy(i,j) = 0.
257 ENDDO
258 ENDDO
259
260 IF (calcleith) THEN
261 C horizontal gradient of horizontal divergence:
262
263 C- gradient in x direction:
264 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
265 IF (useCubedSphereExchange) THEN
266 C to compute d/dx(hDiv), fill corners with appropriate values:
267 CALL FILL_CS_CORNER_TR_RL( .TRUE., .FALSE.,
268 & hDiv, bi,bj, myThid )
269 ENDIF
270 cph-exch2#endif
271 DO j=2-Oly,sNy+Oly-1
272 DO i=2-Olx,sNx+Olx-1
273 divDx(i,j) = (hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)
274 ENDDO
275 ENDDO
276
277 C- gradient in y direction:
278 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
279 IF (useCubedSphereExchange) THEN
280 C to compute d/dy(hDiv), fill corners with appropriate values:
281 CALL FILL_CS_CORNER_TR_RL(.FALSE., .FALSE.,
282 & hDiv, bi,bj, myThid )
283 ENDIF
284 cph-exch2#endif
285 DO j=2-Oly,sNy+Oly-1
286 DO i=2-Olx,sNx+Olx-1
287 divDy(i,j) = (hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)
288 ENDDO
289 ENDDO
290
291 C horizontal gradient of vertical vorticity:
292 C- gradient in x direction:
293 DO j=2-Oly,sNy+Oly
294 DO i=2-Olx,sNx+Olx-1
295 vrtDx(i,j) = (vort3(i+1,j)-vort3(i,j))
296 & *recip_DXG(i,j,bi,bj)
297 & *maskS(i,j,k,bi,bj)
298 ENDDO
299 ENDDO
300 C- gradient in y direction:
301 DO j=2-Oly,sNy+Oly-1
302 DO i=2-Olx,sNx+Olx
303 vrtDy(i,j) = (vort3(i,j+1)-vort3(i,j))
304 & *recip_DYG(i,j,bi,bj)
305 & *maskW(i,j,k,bi,bj)
306 ENDDO
307 ENDDO
308
309 ENDIF
310
311 DO j=2-Oly,sNy+Oly-1
312 DO i=2-Olx,sNx+Olx-1
313 CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
314
315 C These are (powers of) length scales
316 IF (useAreaViscLength) THEN
317 L2=rA(i,j,bi,bj)
318 L4rdt=0.03125 _d 0*recip_dt*L2**2
319 ELSE
320 L2=2. _d 0/((recip_DXF(I,J,bi,bj)**2+recip_DYF(I,J,bi,bj)**2))
321 L4rdt=recip_dt/( 6. _d 0*(recip_DXF(I,J,bi,bj)**4
322 & +recip_DYF(I,J,bi,bj)**4)
323 & +8. _d 0*((recip_DXF(I,J,bi,bj)
324 & *recip_DYF(I,J,bi,bj))**2) )
325 ENDIF
326 L3=(L2**1.5)
327 L4=(L2**2)
328 L5=(L2*L3)
329
330 L2rdt=0.25 _d 0*recip_dt*L2
331
332 C Velocity Reynolds Scale
333 IF ( viscAhRe_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
334 Uscl=sqrt(KE(i,j)*L2)*viscAhRe_max
335 ELSE
336 Uscl=0.
337 ENDIF
338 IF ( viscA4Re_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
339 U4scl=sqrt(KE(i,j))*L3*viscA4Re_max
340 ELSE
341 U4scl=0.
342 ENDIF
343
344 #ifndef ALLOW_AUTODIFF_TAMC
345 IF (useFullLeith.and.calcleith) THEN
346 C This is the vector magnitude of the vorticity gradient squared
347 grdVrt=0.25 _d 0*( (vrtDx(i,j+1)*vrtDx(i,j+1)
348 & + vrtDx(i,j)*vrtDx(i,j) )
349 & + (vrtDy(i+1,j)*vrtDy(i+1,j)
350 & + vrtDy(i,j)*vrtDy(i,j) ) )
351
352 C This is the vector magnitude of grad (div.v) squared
353 C Using it in Leith serves to damp instabilities in w.
354 grdDiv=0.25 _d 0*( (divDx(i+1,j)*divDx(i+1,j)
355 & + divDx(i,j)*divDx(i,j) )
356 & + (divDy(i,j+1)*divDy(i,j+1)
357 & + divDy(i,j)*divDy(i,j) ) )
358
359 viscAh_DLth(i,j)=
360 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
361 viscA4_DLth(i,j)=
362 & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
363 viscAh_DLthd(i,j)=
364 & sqrt(leithD2fac*grdDiv)*L3
365 viscA4_DLthd(i,j)=
366 & sqrt(leithD4fac*grdDiv)*L5
367 ELSEIF (calcleith) THEN
368 C but this approximation will work on cube
369 c (and differs by as much as 4X)
370 grdVrt=max( abs(vrtDx(i,j+1)), abs(vrtDx(i,j)) )
371 grdVrt=max( grdVrt, abs(vrtDy(i+1,j)) )
372 grdVrt=max( grdVrt, abs(vrtDy(i,j)) )
373
374 c This approximation is good to the same order as above...
375 grdDiv=max( abs(divDx(i+1,j)), abs(divDx(i,j)) )
376 grdDiv=max( grdDiv, abs(divDy(i,j+1)) )
377 grdDiv=max( grdDiv, abs(divDy(i,j)) )
378
379 viscAh_Dlth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
380 viscA4_Dlth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
381 viscAh_DlthD(i,j)=((leithD2fac*grdDiv))*L3
382 viscA4_DlthD(i,j)=((leithD4fac*grdDiv))*L5
383 ELSE
384 viscAh_Dlth(i,j)=0. _d 0
385 viscA4_Dlth(i,j)=0. _d 0
386 viscAh_DlthD(i,j)=0. _d 0
387 viscA4_DlthD(i,j)=0. _d 0
388 ENDIF
389
390 IF (calcsmag) THEN
391 viscAh_DSmg(i,j)=L2
392 & *sqrt(tension(i,j)**2
393 & +0.25 _d 0*(strain(i+1, j )**2+strain( i ,j+1)**2
394 & +strain(i , j )**2+strain(i+1,j+1)**2))
395 viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
396 viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
397 ELSE
398 viscAh_DSmg(i,j)=0. _d 0
399 viscA4_DSmg(i,j)=0. _d 0
400 ENDIF
401 #endif /* ALLOW_AUTODIFF_TAMC */
402
403 C Harmonic on Div.u points
404 Alin=viscAhD+viscAhGrid*L2rdt
405 & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
406 viscAh_DMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
407 viscAh_D(i,j)=max(viscAh_DMin(i,j),Alin)
408 viscAh_DMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
409 viscAh_D(i,j)=min(viscAh_DMax(i,j),viscAh_D(i,j))
410
411 C BiHarmonic on Div.u points
412 Alin=viscA4D+viscA4Grid*L4rdt
413 & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
414 viscA4_DMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
415 viscA4_D(i,j)=max(viscA4_DMin(i,j),Alin)
416 viscA4_DMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
417 viscA4_D(i,j)=min(viscA4_DMax(i,j),viscA4_D(i,j))
418
419 #ifdef ALLOW_NONHYDROSTATIC
420 C /* Pass Viscosities to calc_gw, if constant, not necessary */
421
422 kp1 = MIN(k+1,Nr)
423
424 if (k .eq. 1) then
425 viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
426 viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
427
428 C /* These values dont get used */
429 viscAh_W(i,j,k,bi,bj)=viscAh_D(i,j)
430 viscA4_W(i,j,k,bi,bj)=viscA4_D(i,j)
431 else
432 C Note that previous call of this function has already added half.
433 viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
434 viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
435
436 viscAh_W(i,j,k,bi,bj)=viscAh_W(i,j,k,bi,bj)+0.5*viscAh_D(i,j)
437 viscA4_W(i,j,k,bi,bj)=viscA4_W(i,j,k,bi,bj)+0.5*viscA4_D(i,j)
438 endif
439 #endif /* ALLOW_NONHYDROSTATIC */
440
441 CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
442 C These are (powers of) length scales
443 IF (useAreaViscLength) THEN
444 L2=rAz(i,j,bi,bj)
445 L4rdt=0.125 _d 0*recip_dt*rAz(i,j,bi,bj)**2
446 ELSE
447 L2=2. _d 0/((recip_DXV(I,J,bi,bj)**2+recip_DYU(I,J,bi,bj)**2))
448 L4rdt=recip_dt/
449 & ( 6. _d 0*(recip_DXV(I,J,bi,bj)**4+recip_DYU(I,J,bi,bj)**4)
450 & +8. _d 0*((recip_DXV(I,J,bi,bj)*recip_DYU(I,J,bi,bj))**2))
451 ENDIF
452
453 L3=(L2**1.5)
454 L4=(L2**2)
455 L5=(L2*L3)
456
457 L2rdt=0.25 _d 0*recip_dt*L2
458
459 C Velocity Reynolds Scale (Pb here at CS-grid corners !)
460 IF ( viscAhRe_max.GT.0. .OR. viscA4Re_max.GT.0. ) THEN
461 keZpt=0.25 _d 0*( (KE(i,j)+KE(i-1,j-1))
462 & +(KE(i-1,j)+KE(i,j-1)) )
463 IF ( keZpt.GT.0. ) THEN
464 Uscl = sqrt(keZpt*L2)*viscAhRe_max
465 U4scl= sqrt(keZpt)*L3*viscA4Re_max
466 ELSE
467 Uscl =0.
468 U4scl=0.
469 ENDIF
470 ELSE
471 Uscl =0.
472 U4scl=0.
473 ENDIF
474
475 #ifndef ALLOW_AUTODIFF_TAMC
476 C This is the vector magnitude of the vorticity gradient squared
477 IF (useFullLeith.and.calcleith) THEN
478 grdVrt=0.25 _d 0*( (vrtDx(i-1,j)*vrtDx(i-1,j)
479 & + vrtDx(i,j)*vrtDx(i,j) )
480 & + (vrtDy(i,j-1)*vrtDy(i,j-1)
481 & + vrtDy(i,j)*vrtDy(i,j) ) )
482
483 C This is the vector magnitude of grad(div.v) squared
484 grdDiv=0.25 _d 0*( (divDx(i,j-1)*divDx(i,j-1)
485 & + divDx(i,j)*divDx(i,j) )
486 & + (divDy(i-1,j)*divDy(i-1,j)
487 & + divDy(i,j)*divDy(i,j) ) )
488
489 viscAh_ZLth(i,j)=
490 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
491 viscA4_ZLth(i,j)=
492 & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
493 viscAh_ZLthD(i,j)=
494 & sqrt(leithD2fac*grdDiv)*L3
495 viscA4_ZLthD(i,j)=
496 & sqrt(leithD4fac*grdDiv)*L5
497
498 ELSEIF (calcleith) THEN
499 C but this approximation will work on cube (and differs by 4X)
500 grdVrt=max( abs(vrtDx(i-1,j)), abs(vrtDx(i,j)) )
501 grdVrt=max( grdVrt, abs(vrtDy(i,j-1)) )
502 grdVrt=max( grdVrt, abs(vrtDy(i,j)) )
503
504 grdDiv=max( abs(divDx(i,j)), abs(divDx(i,j-1)) )
505 grdDiv=max( grdDiv, abs(divDy(i,j)) )
506 grdDiv=max( grdDiv, abs(divDy(i-1,j)) )
507
508 viscAh_ZLth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
509 viscA4_ZLth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
510 viscAh_ZLthD(i,j)=(leithD2fac*grdDiv)*L3
511 viscA4_ZLthD(i,j)=(leithD4fac*grdDiv)*L5
512 ELSE
513 viscAh_ZLth(i,j)=0. _d 0
514 viscA4_ZLth(i,j)=0. _d 0
515 viscAh_ZLthD(i,j)=0. _d 0
516 viscA4_ZLthD(i,j)=0. _d 0
517 ENDIF
518
519 IF (calcsmag) THEN
520 viscAh_ZSmg(i,j)=L2
521 & *sqrt(strain(i,j)**2
522 & +0.25 _d 0*(tension( i , j )**2+tension( i ,j-1)**2
523 & +tension(i-1, j )**2+tension(i-1,j-1)**2))
524 viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
525 viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
526 ENDIF
527 #endif /* ALLOW_AUTODIFF_TAMC */
528
529 C Harmonic on Zeta points
530 Alin=viscAhZ+viscAhGrid*L2rdt
531 & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
532 viscAh_ZMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
533 viscAh_Z(i,j)=max(viscAh_ZMin(i,j),Alin)
534 viscAh_ZMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
535 viscAh_Z(i,j)=min(viscAh_ZMax(i,j),viscAh_Z(i,j))
536
537 C BiHarmonic on Zeta points
538 Alin=viscA4Z+viscA4Grid*L4rdt
539 & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
540 viscA4_ZMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
541 viscA4_Z(i,j)=max(viscA4_ZMin(i,j),Alin)
542 viscA4_ZMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
543 viscA4_Z(i,j)=min(viscA4_ZMax(i,j),viscA4_Z(i,j))
544 ENDDO
545 ENDDO
546 ELSE
547 DO j=1-Oly,sNy+Oly
548 DO i=1-Olx,sNx+Olx
549 viscAh_D(i,j)=viscAhD
550 viscAh_Z(i,j)=viscAhZ
551 viscA4_D(i,j)=viscA4D
552 viscA4_Z(i,j)=viscA4Z
553 ENDDO
554 ENDDO
555 ENDIF
556
557 #ifdef ALLOW_DIAGNOSTICS
558 IF (useDiagnostics) THEN
559 CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
560 CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
561 CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
562 CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
563 #ifdef ALLOW_NONHYDROSTATIC
564 CALL DIAGNOSTICS_FILL(viscAh_W,'VISCAHW ',k,1,2,bi,bj,myThid)
565 CALL DIAGNOSTICS_FILL(viscA4_W,'VISCA4W ',k,1,2,bi,bj,myThid)
566 #endif
567
568 CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
569 CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
570 CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
571 CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
572
573 CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
574 CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
575 CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
576 CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
577
578 CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
579 CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
580 CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
581 CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
582
583 CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD'
584 & ,k,1,2,bi,bj,myThid)
585 CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD'
586 & ,k,1,2,bi,bj,myThid)
587 CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD'
588 & ,k,1,2,bi,bj,myThid)
589 CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD'
590 & ,k,1,2,bi,bj,myThid)
591
592 CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
593 CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
594 CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
595 CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
596 ENDIF
597 #endif
598
599 RETURN
600 END
601

  ViewVC Help
Powered by ViewVC 1.1.22