/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.18 - (show annotations) (download)
Mon Oct 10 18:45:30 2005 UTC (18 years, 8 months ago) by baylor
Branch: MAIN
Changes since 1.17: +5 -5 lines
Adding suggestions for values of coefficients.

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_common/mom_calc_visc.F,v 1.17 2005/10/10 17:23:07 baylor Exp $
2 C $Name: $
3
4 #include "MOM_COMMON_OPTIONS.h"
5
6
7 SUBROUTINE MOM_CALC_VISC(
8 I bi,bj,k,
9 O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10 O harmonic,biharmonic,useVariableViscosity,
11 I hDiv,vort3,tension,strain,KE,hFacZ,
12 I myThid)
13
14 IMPLICIT NONE
15 C
16 C Calculate horizontal viscosities (L is typical grid width)
17 C harmonic viscosity=
18 C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19 C +0.25*L**2*viscAhGrid/deltaT
20 C +sqrt((viscC2leith/pi)**6*grad(Vort3)**2
21 C +(viscC2leithD/pi)**6*grad(hDiv)**2)*L**3
22 C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23 C
24 C biharmonic viscosity=
25 C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26 C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27 C +0.125*L**5*sqrt((viscC4leith/pi)**6*grad(Vort3)**2
28 C +(viscC4leithD/pi)**6*grad(hDiv)**2)
29 C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30 C
31 C Note that often 0.125*L**2 is the scale between harmonic and
32 C biharmonic (see Griffies and Hallberg (2000))
33 C This allows the same value of the coefficient to be used
34 C for roughly similar results with biharmonic and harmonic
35 C
36 C LIMITERS -- limit min and max values of viscosities
37 C viscAhRemax is min value for grid point harmonic Reynolds num
38 C harmonic viscosity>sqrt(2*KE)*L/viscAhRemax
39 C
40 C viscA4Remax is min value for grid point biharmonic Reynolds num
41 C biharmonic viscosity>sqrt(2*KE)*L**3/8/viscA4Remax
42 C
43 C viscAhgridmax is CFL stability limiter for harmonic viscosity
44 C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45 C
46 C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47 C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48 C
49 C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50 C harmonic viscosity>0.25*viscAhgridmax*L**2/deltaT
51 C biharmonic viscosity>viscA4gridmax*L**4/32/deltaT (approx)
52 C
53 C RECOMMENDED VALUES
54 C viscC2Leith=1-3
55 C viscC2LeithD=1-3
56 C viscC4Leith=1-3
57 C viscC4LeithD=1.5-3
58 C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
59 C 0.2-0.9 (Smagorinsky,1993)
60 C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
61 C viscAhRemax>=1, (<2 suppresses a computational mode)
62 C viscA4Remax>=1, (<2 suppresses a computational mode)
63 C viscAhgridmax=1
64 C viscA4gridmax=1
65 C viscAhgrid<1
66 C viscA4grid<1
67 C viscAhgridmin<<1
68 C viscA4gridmin<<1
69
70 C == Global variables ==
71 #include "SIZE.h"
72 #include "GRID.h"
73 #include "EEPARAMS.h"
74 #include "PARAMS.h"
75
76 C == Routine arguments ==
77 INTEGER bi,bj,k
78 _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 INTEGER myThid
89 LOGICAL harmonic,biharmonic,useVariableViscosity
90
91 C == Local variables ==
92 INTEGER I,J
93 _RL smag2fac, smag4fac
94 _RL leith2fac, leith4fac
95 _RL leithD2fac, leithD4fac
96 _RL viscAhRe_max, viscA4Re_max
97 _RL Alin,grdVrt,grdDiv, keZpt
98 _RL recip_dt,L2,L3,L4,L5,L2rdt,L4rdt
99 _RL Uscl,U4scl
100 _RL divDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL divDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105 _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106 _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107 _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108 _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109 _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111 _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113 _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116 _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117 _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 LOGICAL calcLeith,calcSmag
123
124 useVariableViscosity=
125 & (viscAhGrid.NE.0.)
126 & .OR.(viscA4Grid.NE.0.)
127 & .OR.(viscC2leith.NE.0.)
128 & .OR.(viscC2leithD.NE.0.)
129 & .OR.(viscC4leith.NE.0.)
130 & .OR.(viscC4leithD.NE.0.)
131 & .OR.(viscC2smag.NE.0.)
132 & .OR.(viscC4smag.NE.0.)
133
134 harmonic=
135 & (viscAh.NE.0.)
136 & .OR.(viscAhD.NE.0.)
137 & .OR.(viscAhZ.NE.0.)
138 & .OR.(viscAhGrid.NE.0.)
139 & .OR.(viscC2leith.NE.0.)
140 & .OR.(viscC2leithD.NE.0.)
141 & .OR.(viscC2smag.NE.0.)
142
143 IF ((harmonic).and.(viscAhremax.ne.0.)) THEN
144 viscAhre_max=sqrt(2. _d 0)/viscAhRemax
145 ELSE
146 viscAhre_max=0. _d 0
147 ENDIF
148
149 biharmonic=
150 & (viscA4.NE.0.)
151 & .OR.(viscA4D.NE.0.)
152 & .OR.(viscA4Z.NE.0.)
153 & .OR.(viscA4Grid.NE.0.)
154 & .OR.(viscC4leith.NE.0.)
155 & .OR.(viscC4leithD.NE.0.)
156 & .OR.(viscC4smag.NE.0.)
157
158 IF ((biharmonic).and.(viscA4remax.ne.0.)) THEN
159 viscA4re_max=0.125 _d 0*sqrt(2. _d 0)/viscA4Remax
160 ELSE
161 viscA4re_max=0. _d 0
162 ENDIF
163
164 calcleith=
165 & (viscC2leith.NE.0.)
166 & .OR.(viscC2leithD.NE.0.)
167 & .OR.(viscC4leith.NE.0.)
168 & .OR.(viscC4leithD.NE.0.)
169
170 calcsmag=
171 & (viscC2smag.NE.0.)
172 & .OR.(viscC4smag.NE.0.)
173
174 IF (deltaTmom.NE.0.) THEN
175 recip_dt=1. _d 0/deltaTmom
176 ELSE
177 recip_dt=0. _d 0
178 ENDIF
179
180 IF (calcsmag) THEN
181 smag2fac=(viscC2smag/pi)**2
182 smag4fac=0.125 _d 0*(viscC4smag/pi)**2
183 ELSE
184 smag2fac=0. _d 0
185 smag4fac=0. _d 0
186 ENDIF
187
188 IF (calcleith) THEN
189 IF (useFullLeith) THEN
190 leith2fac=(viscC2leith/pi)**6
191 leith4fac=0.015625 _d 0*(viscC4leith/pi)**6
192 leithD2fac=(viscC2leithD/pi)**6
193 leithD4fac=0.015625 _d 0*(viscC4leithD/pi)**6
194 ELSE
195 leith2fac=(viscC2leith/pi)**3
196 leithD2fac=(viscC2leithD/pi)**3
197 leith4fac=0.0125 _d 0*(viscC4leith/pi)**3
198 leithD4fac=0.0125 _d 0*(viscC4leithD/pi)**3
199 ENDIF
200 ELSE
201 leith2fac=0. _d 0
202 leith4fac=0. _d 0
203 leithD2fac=0. _d 0
204 leithD4fac=0. _d 0
205 ENDIF
206
207 C - Viscosity
208 IF (useVariableViscosity) THEN
209
210 C horizontal gradient of horizontal divergence:
211 DO j=1-Oly,sNy+Oly
212 DO i=1-Olx,sNx+Olx
213 divDx(i,j) = 0.
214 divDy(i,j) = 0.
215 ENDDO
216 ENDDO
217 IF (calcleith) THEN
218 C- gradient in x direction:
219 #ifndef ALLOW_AUTODIFF_TAMC
220 IF (useCubedSphereExchange) THEN
221 C to compute d/dx(hDiv), fill corners with appropriate values:
222 CALL FILL_CS_CORNER_TR_RL( .TRUE., hDiv, bi,bj, myThid )
223 ENDIF
224 #endif
225 DO j=2-Oly,sNy+Oly-1
226 DO i=2-Olx,sNx+Olx-1
227 divDx(i,j) = (hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)
228 ENDDO
229 ENDDO
230
231 C- gradient in y direction:
232 #ifndef ALLOW_AUTODIFF_TAMC
233 IF (useCubedSphereExchange) THEN
234 C to compute d/dy(hDiv), fill corners with appropriate values:
235 CALL FILL_CS_CORNER_TR_RL(.FALSE., hDiv, bi,bj, myThid )
236 ENDIF
237 #endif
238 DO j=2-Oly,sNy+Oly-1
239 DO i=2-Olx,sNx+Olx-1
240 divDy(i,j) = (hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)
241 ENDDO
242 ENDDO
243 ENDIF
244
245 DO j=2-Oly,sNy+Oly-1
246 DO i=2-Olx,sNx+Olx-1
247 CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
248
249 C These are (powers of) length scales
250 IF (useAreaViscLength) THEN
251 L2=rA(i,j,bi,bj)
252 ELSE
253 L2=2. _d 0/((recip_DXF(I,J,bi,bj)**2+recip_DYF(I,J,bi,bj)**2))
254 ENDIF
255 L3=(L2**1.5)
256 L4=(L2**2)
257 L5=(L2**2.5)
258
259 L2rdt=0.25 _d 0*recip_dt*L2
260
261 IF (useAreaViscLength) THEN
262 L4rdt=0.125 _d 0*recip_dt*rA(i,j,bi,bj)**2
263 ELSE
264 L4rdt=recip_dt/( 6. _d 0*(recip_DXF(I,J,bi,bj)**4
265 & +recip_DYF(I,J,bi,bj)**4)
266 & +8. _d 0*((recip_DXF(I,J,bi,bj)
267 & *recip_DYF(I,J,bi,bj))**2) )
268 ENDIF
269
270 C Velocity Reynolds Scale
271 IF ( viscAhRe_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
272 Uscl=sqrt(KE(i,j)*L2)*viscAhRe_max
273 ELSE
274 Uscl=0.
275 ENDIF
276 IF ( viscA4Re_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
277 U4scl=sqrt(KE(i,j))*L3*viscA4Re_max
278 ELSE
279 U4scl=0.
280 ENDIF
281
282 IF (useFullLeith.and.calcleith) THEN
283 C This is the vector magnitude of the vorticity gradient squared
284 grdVrt=0.25 _d 0*(
285 & ((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))**2
286 & +((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj))**2
287 & +((vort3(i+1,j+1)-vort3(i,j+1))
288 & *recip_DXG(i,j+1,bi,bj))**2
289 & +((vort3(i+1,j+1)-vort3(i+1,j))
290 & *recip_DYG(i+1,j,bi,bj))**2)
291
292 C This is the vector magnitude of grad (div.v) squared
293 C Using it in Leith serves to damp instabilities in w.
294 grdDiv=0.25 _d 0*( (divDx(i+1,j)*divDx(i+1,j)
295 & + divDx(i,j)*divDx(i,j) )
296 & + (divDy(i,j+1)*divDy(i,j+1)
297 & + divDy(i,j)*divDy(i,j) ) )
298
299 viscAh_DLth(i,j)=
300 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
301 viscA4_DLth(i,j)=
302 & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
303 viscAh_DLthd(i,j)=
304 & sqrt(leithD2fac*grdDiv)*L3
305 viscA4_DLthd(i,j)=
306 & sqrt(leithD4fac*grdDiv)*L5
307 ELSEIF (calcleith) THEN
308 C but this approximation will work on cube
309 c (and differs by as much as 4X)
310 grdVrt=abs((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))
311 grdVrt=max(grdVrt,
312 & abs((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj)))
313 grdVrt=max(grdVrt,
314 & abs((vort3(i+1,j+1)-vort3(i,j+1))*recip_DXG(i,j+1,bi,bj)))
315 grdVrt=max(grdVrt,
316 & abs((vort3(i+1,j+1)-vort3(i+1,j))*recip_DYG(i+1,j,bi,bj)))
317
318 grdDiv=max( abs(divDx(i+1,j)), abs(divDx(i,j)) )
319 grdDiv=max( grdDiv, abs(divDy(i,j+1)) )
320 grdDiv=max( grdDiv, abs(divDy(i,j)) )
321
322 c This approximation is good to the same order as above...
323 viscAh_Dlth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
324 viscA4_Dlth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
325 viscAh_DlthD(i,j)=((leithD2fac*grdDiv))*L3
326 viscA4_DlthD(i,j)=((leithD4fac*grdDiv))*L5
327 ELSE
328 viscAh_Dlth(i,j)=0. _d 0
329 viscA4_Dlth(i,j)=0. _d 0
330 viscAh_DlthD(i,j)=0. _d 0
331 viscA4_DlthD(i,j)=0. _d 0
332 ENDIF
333
334 IF (calcsmag) THEN
335 viscAh_DSmg(i,j)=L2
336 & *sqrt(tension(i,j)**2
337 & +0.25 _d 0*(strain(i+1, j )**2+strain( i ,j+1)**2
338 & +strain(i , j )**2+strain(i+1,j+1)**2))
339 viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
340 viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
341 ELSE
342 viscAh_DSmg(i,j)=0. _d 0
343 viscA4_DSmg(i,j)=0. _d 0
344 ENDIF
345
346 C Harmonic on Div.u points
347 Alin=viscAhD+viscAhGrid*L2rdt
348 & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
349 viscAh_DMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
350 viscAh_D(i,j)=max(viscAh_DMin(i,j),Alin)
351 viscAh_DMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
352 viscAh_D(i,j)=min(viscAh_DMax(i,j),viscAh_D(i,j))
353
354 C BiHarmonic on Div.u points
355 Alin=viscA4D+viscA4Grid*L4rdt
356 & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
357 viscA4_DMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
358 viscA4_D(i,j)=max(viscA4_DMin(i,j),Alin)
359 viscA4_DMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
360 viscA4_D(i,j)=min(viscA4_DMax(i,j),viscA4_D(i,j))
361
362 CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
363 C These are (powers of) length scales
364 IF (useAreaViscLength) THEN
365 L2=rAz(i,j,bi,bj)
366 ELSE
367 L2=2. _d 0/((recip_DXV(I,J,bi,bj)**2+recip_DYU(I,J,bi,bj)**2))
368 ENDIF
369
370 L3=(L2**1.5)
371 L4=(L2**2)
372 L5=(L2**2.5)
373
374 L2rdt=0.25 _d 0*recip_dt*L2
375 IF (useAreaViscLength) THEN
376 L4rdt=0.125 _d 0*recip_dt*rAz(i,j,bi,bj)**2
377 ELSE
378 L4rdt=recip_dt/
379 & ( 6. _d 0*(recip_DXV(I,J,bi,bj)**4+recip_DYU(I,J,bi,bj)**4)
380 & +8. _d 0*((recip_DXV(I,J,bi,bj)*recip_DYU(I,J,bi,bj))**2))
381 ENDIF
382
383 C Velocity Reynolds Scale (Pb here at CS-grid corners !)
384 IF ( viscAhRe_max.GT.0. .OR. viscA4Re_max.GT.0. ) THEN
385 keZpt=0.25 _d 0*( (KE(i,j)+KE(i-1,j-1))
386 & +(KE(i-1,j)+KE(i,j-1)) )
387 IF ( keZpt.GT.0. ) THEN
388 Uscl = sqrt(keZpt*L2)*viscAhRe_max
389 U4scl= sqrt(keZpt)*L3*viscA4Re_max
390 ELSE
391 Uscl =0.
392 U4scl=0.
393 ENDIF
394 ELSE
395 Uscl =0.
396 U4scl=0.
397 ENDIF
398
399 C This is the vector magnitude of the vorticity gradient squared
400 IF (useFullLeith.and.calcleith) THEN
401 grdVrt=0.25 _d 0*(
402 & ((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))**2
403 & +((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj))**2
404 & +((vort3(i-1,j)-vort3(i,j))*recip_DXG(i-1,j,bi,bj))**2
405 & +((vort3(i,j-1)-vort3(i,j))*recip_DYG(i,j-1,bi,bj))**2)
406
407 C This is the vector magnitude of grad(div.v) squared
408 grdDiv=0.25 _d 0*( (divDx(i,j-1)*divDx(i,j-1)
409 & + divDx(i,j)*divDx(i,j) )
410 & + (divDy(i-1,j)*divDy(i-1,j)
411 & + divDy(i,j)*divDy(i,j) ) )
412
413 viscAh_ZLth(i,j)=
414 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
415 viscA4_ZLth(i,j)=
416 & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
417 viscAh_ZLthD(i,j)=
418 & sqrt(leithD2fac*grdDiv)*L3
419 viscA4_ZLthD(i,j)=
420 & sqrt(leithD4fac*grdDiv)*L5
421
422 ELSEIF (calcleith) THEN
423 C but this approximation will work on cube (and differs by 4X)
424 grdVrt=abs((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))
425 grdVrt=max(grdVrt,
426 & abs((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj)))
427 grdVrt=max(grdVrt,
428 & abs((vort3(i-1,j)-vort3(i,j))*recip_DXG(i-1,j,bi,bj)))
429 grdVrt=max(grdVrt,
430 & abs((vort3(i,j-1)-vort3(i,j))*recip_DYG(i,j-1,bi,bj)))
431
432 grdDiv=max( abs(divDx(i,j)), abs(divDx(i,j-1)) )
433 grdDiv=max( grdDiv, abs(divDy(i,j)) )
434 grdDiv=max( grdDiv, abs(divDy(i-1,j)) )
435
436 viscAh_ZLth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
437 viscA4_ZLth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
438 viscAh_ZLthD(i,j)=(leithD2fac*grdDiv)*L3
439 viscA4_ZLthD(i,j)=(leithD4fac*grdDiv)*L5
440 ELSE
441 viscAh_ZLth(i,j)=0. _d 0
442 viscA4_ZLth(i,j)=0. _d 0
443 viscAh_ZLthD(i,j)=0. _d 0
444 viscA4_ZLthD(i,j)=0. _d 0
445 ENDIF
446
447 IF (calcsmag) THEN
448 viscAh_ZSmg(i,j)=L2
449 & *sqrt(strain(i,j)**2
450 & +0.25 _d 0*(tension( i , j )**2+tension( i ,j-1)**2
451 & +tension(i-1, j )**2+tension(i-1,j-1)**2))
452 viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
453 viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
454 ENDIF
455
456 C Harmonic on Zeta points
457 Alin=viscAhZ+viscAhGrid*L2rdt
458 & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
459 viscAh_ZMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
460 viscAh_Z(i,j)=max(viscAh_ZMin(i,j),Alin)
461 viscAh_ZMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
462 viscAh_Z(i,j)=min(viscAh_ZMax(i,j),viscAh_Z(i,j))
463
464 C BiHarmonic on Zeta points
465 Alin=viscA4Z+viscA4Grid*L4rdt
466 & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
467 viscA4_ZMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
468 viscA4_Z(i,j)=max(viscA4_ZMin(i,j),Alin)
469 viscA4_ZMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
470 viscA4_Z(i,j)=min(viscA4_ZMax(i,j),viscA4_Z(i,j))
471 ENDDO
472 ENDDO
473 ELSE
474 DO j=1-Oly,sNy+Oly
475 DO i=1-Olx,sNx+Olx
476 viscAh_D(i,j)=viscAhD
477 viscAh_Z(i,j)=viscAhZ
478 viscA4_D(i,j)=viscA4D
479 viscA4_Z(i,j)=viscA4Z
480 ENDDO
481 ENDDO
482 ENDIF
483
484 #ifdef ALLOW_DIAGNOSTICS
485 IF (useDiagnostics) THEN
486 CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
487 CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
488 CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
489 CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
490
491 CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
492 CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
493 CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
494 CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
495
496 CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
497 CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
498 CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
499 CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
500
501 CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
502 CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
503 CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
504 CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
505
506 CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD'
507 & ,k,1,2,bi,bj,myThid)
508 CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD'
509 & ,k,1,2,bi,bj,myThid)
510 CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD'
511 & ,k,1,2,bi,bj,myThid)
512 CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD'
513 & ,k,1,2,bi,bj,myThid)
514
515 CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
516 CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
517 CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
518 CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
519 ENDIF
520 #endif
521
522 RETURN
523 END
524

  ViewVC Help
Powered by ViewVC 1.1.22