/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (hide annotations) (download)
Wed Sep 21 15:11:22 2005 UTC (18 years, 9 months ago) by baylor
Branch: MAIN
Changes since 1.7: +32 -30 lines
Clean up a bit.

1 baylor 1.7 C $Header: /u/gcmpack/MITgcm/pkg/mom_common/mom_calc_visc.F,v 1.6 2005/09/20 21:01:30 baylor Exp $
2 baylor 1.1 C $Name: $
3    
4     #include "MOM_COMMON_OPTIONS.h"
5    
6 baylor 1.5
7 baylor 1.1 SUBROUTINE MOM_CALC_VISC(
8     I bi,bj,k,
9     O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10     O harmonic,biharmonic,useVariableViscosity,
11 baylor 1.5 I hDiv,vort3,tension,strain,KE,hfacZ,
12 baylor 1.1 I myThid)
13    
14     IMPLICIT NONE
15 baylor 1.5 C
16     C Calculate horizontal viscosities (L is typical grid width)
17     C harmonic viscosity=
18     C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19     C +0.25*L**2*viscAhGrid/deltaT
20     C +sqrt(viscC2leith**2*grad(Vort3)**2
21     C +viscC2leithD**2*grad(hDiv)**2)*L**3
22     C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23     C
24     C biharmonic viscosity=
25     C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26     C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27     C +0.125*L**5*sqrt(viscC4leith**2*grad(Vort3)**2
28     C +viscC4leithD**2*grad(hDiv)**2)
29     C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30     C
31     C Note that often 0.125*L**2 is the scale between harmonic and
32     C biharmonic (see Griffies and Hallberg (2000))
33     C This allows the same value of the coefficient to be used
34     C for roughly similar results with biharmonic and harmonic
35     C
36     C LIMITERS -- limit min and max values of viscosities
37     C viscAhRemax is min value for grid point harmonic Reynolds num
38     C harmonic viscosity>sqrt(2*KE)*L/2/viscAhRemax
39     C
40     C viscA4Remax is min value for grid point biharmonic Reynolds num
41     C biharmonic viscosity>sqrt(2*KE)*L**3/16/viscA4Remax
42     C
43     C viscAhgridmax is CFL stability limiter for harmonic viscosity
44     C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45     C
46     C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47     C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48     C
49     C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50     C harmonic viscosity>0.25*viscAhgridmax*L**2/deltaT
51     C biharmonic viscosity>viscA4gridmax*L**4/32/deltaT (approx)
52     C
53     C RECOMMENDED VALUES
54     C viscC2Leith=?
55     C viscC2LeithD=?
56     C viscC4Leith=?
57     C viscC4LeithD=?
58     C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
59     C 0.2-0.9 (Smagorinsky,1993)
60     C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
61     C viscAhRemax>=1
62     C viscA4Remax>=1
63     C viscAhgridmax=1
64     C viscA4gridmax=1
65     C viscAhgrid<1
66     C viscA4grid<1
67     C viscAhgridmin<<1
68     C viscA4gridmin<<1
69 baylor 1.1
70     C == Global variables ==
71     #include "SIZE.h"
72     #include "GRID.h"
73     #include "EEPARAMS.h"
74     #include "PARAMS.h"
75    
76     C == Routine arguments ==
77     INTEGER bi,bj,k
78     _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79     _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80     _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81     _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84     _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85     _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86     _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87     _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88     INTEGER myThid
89     LOGICAL harmonic,biharmonic,useVariableViscosity
90    
91     C == Local variables ==
92     INTEGER I,J
93 baylor 1.5 _RL smag2fac, smag4fac
94 baylor 1.6 _RL viscAhRe_max, viscA4Re_max
95 baylor 1.5 _RL Alin,Alinmin,grdVrt,grdDiv
96 baylor 1.1 _RL recip_dt,L2,L3,L4,L5,L2rdt,L4rdt
97 baylor 1.5 _RL Uscl,U4scl
98     _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99     _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100     _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101     _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102     _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103     _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104     _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105     _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106     _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107     _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108     _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109     _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110     _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111     _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112     _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113     _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114     _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115     _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116     _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117     _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118     LOGICAL calcLeith,calcSmag
119 baylor 1.1
120     useVariableViscosity=
121     & (viscAhGrid.NE.0.)
122     & .OR.(viscA4Grid.NE.0.)
123     & .OR.(viscC2leith.NE.0.)
124     & .OR.(viscC2leithD.NE.0.)
125     & .OR.(viscC4leith.NE.0.)
126     & .OR.(viscC4leithD.NE.0.)
127     & .OR.(viscC2smag.NE.0.)
128     & .OR.(viscC4smag.NE.0.)
129    
130     harmonic=
131     & (viscAh.NE.0.)
132     & .OR.(viscAhD.NE.0.)
133     & .OR.(viscAhZ.NE.0.)
134     & .OR.(viscAhGrid.NE.0.)
135     & .OR.(viscC2leith.NE.0.)
136     & .OR.(viscC2leithD.NE.0.)
137     & .OR.(viscC2smag.NE.0.)
138    
139 baylor 1.6 IF (harmonic) viscAhre_max=viscAhremax
140 baylor 1.5
141 baylor 1.1 biharmonic=
142     & (viscA4.NE.0.)
143     & .OR.(viscA4D.NE.0.)
144     & .OR.(viscA4Z.NE.0.)
145     & .OR.(viscA4Grid.NE.0.)
146     & .OR.(viscC4leith.NE.0.)
147     & .OR.(viscC4leithD.NE.0.)
148     & .OR.(viscC4smag.NE.0.)
149    
150 baylor 1.6 IF (biharmonic) viscA4re_max=viscA4remax
151 baylor 1.5
152     calcleith=
153     & (viscC2leith.NE.0.)
154     & .OR.(viscC2leithD.NE.0.)
155     & .OR.(viscC4leith.NE.0.)
156     & .OR.(viscC4leithD.NE.0.)
157    
158     calcsmag=
159     & (viscC2smag.NE.0.)
160     & .OR.(viscC4smag.NE.0.)
161    
162 baylor 1.1 IF (deltaTmom.NE.0.) THEN
163 baylor 1.8 recip_dt=1d0/deltaTmom
164 baylor 1.1 ELSE
165 baylor 1.8 recip_dt=0d0
166 baylor 1.1 ENDIF
167    
168 baylor 1.5 IF (calcsmag) THEN
169     smag2fac=(viscC2smag/pi)**2
170 baylor 1.8 smag4fac=0.125d0*(viscC4smag/pi)**2
171 baylor 1.5 ENDIF
172 baylor 1.1
173     C - Viscosity
174     IF (useVariableViscosity) THEN
175     DO j=2-Oly,sNy+Oly-1
176     DO i=2-Olx,sNx+Olx-1
177     CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
178 baylor 1.5
179 baylor 1.1 C These are (powers of) length scales
180 baylor 1.8 L2=2d0/((recip_DXF(I,J,bi,bj)**2+recip_DYF(I,J,bi,bj)**2))
181 baylor 1.1 L3=(L2**1.5)
182     L4=(L2**2)
183 baylor 1.5 L5=(L2**2.5)
184    
185 baylor 1.8 L2rdt=0.25d0*recip_dt*L2
186 baylor 1.5
187 baylor 1.8 L4rdt=recip_dt/( 6d0*(recip_DXF(I,J,bi,bj)**4
188 baylor 1.1 & +recip_DYF(I,J,bi,bj)**4)
189 baylor 1.8 & +8d0*((recip_DXF(I,J,bi,bj)
190 baylor 1.1 & *recip_DYF(I,J,bi,bj))**2) )
191    
192 baylor 1.5 C Velocity Reynolds Scale
193 baylor 1.8 Uscl=sqrt(KE(i,j)*L2*0.5d0)/viscAhRe_max
194     U4scl=0.125d0*L2*Uscl/viscA4Re_max
195 baylor 1.5
196     IF (useFullLeith.and.calcleith) THEN
197 baylor 1.1 C This is the vector magnitude of the vorticity gradient squared
198 baylor 1.8 grdVrt=0.25d0*(
199 baylor 1.1 & ((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))**2
200     & +((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj))**2
201 baylor 1.8 & +((vort3(i+1,j+1)-vort3(i,j+1))
202     & *recip_DXG(i,j+1,bi,bj))**2
203     & +((vort3(i+1,j+1)-vort3(i+1,j))
204     & *recip_DYG(i+1,j,bi,bj))**2)
205 baylor 1.1
206     C This is the vector magnitude of grad (div.v) squared
207     C Using it in Leith serves to damp instabilities in w.
208 baylor 1.8 grdDiv=0.25d0*(
209 baylor 1.5 & ((hDiv(i+1,j)-hDiv(i,j))*recip_DXC(i+1,j,bi,bj))**2
210     & +((hDiv(i,j+1)-hDiv(i,j))*recip_DYC(i,j+1,bi,bj))**2
211     & +((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj))**2
212     & +((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj))**2)
213    
214     viscAh_DLth(i,j)=
215     & sqrt(viscC2leith**2*grdVrt+viscC2leithD**2*grdDiv)*L3
216     viscA4_DLth(i,j)=
217     & sqrt(viscC4leith**2*grdVrt+viscC4leithD**2*grdDiv)*L5
218     viscAh_DLthd(i,j)=
219     & sqrt(viscC2leithD**2*grdDiv)*L3
220     viscA4_DLthd(i,j)=
221     & sqrt(viscC4leithD**2*grdDiv)*L5
222     ELSEIF (calcleith) THEN
223 baylor 1.1 C but this approximation will work on cube
224     c (and differs by as much as 4X)
225 baylor 1.5 grdVrt=abs((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))
226     grdVrt=max(grdVrt,
227     & abs((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj)))
228     grdVrt=max(grdVrt,
229     & abs((vort3(i+1,j+1)-vort3(i,j+1))*recip_DXG(i,j+1,bi,bj)))
230     grdVrt=max(grdVrt,
231     & abs((vort3(i+1,j+1)-vort3(i+1,j))*recip_DYG(i+1,j,bi,bj)))
232    
233     grdDiv=abs((hDiv(i+1,j)-hDiv(i,j))*recip_DXC(i+1,j,bi,bj))
234     grdDiv=max(grdDiv,
235     & abs((hDiv(i,j+1)-hDiv(i,j))*recip_DYC(i,j+1,bi,bj)))
236     grdDiv=max(grdDiv,
237     & abs((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)))
238     grdDiv=max(grdDiv,
239     & abs((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)))
240 baylor 1.1
241     c This approximation is good to the same order as above...
242 baylor 1.5 viscAh_Dlth(i,j)=
243     & (viscC2leith*grdVrt+(viscC2leithD*grdDiv))*L3
244 baylor 1.8 viscA4_Dlth(i,j)=0.125d0*
245 baylor 1.5 & (viscC4leith*grdVrt+(viscC4leithD*grdDiv))*L5
246     viscAh_DlthD(i,j)=
247     & ((viscC2leithD*grdDiv))*L3
248 baylor 1.8 viscA4_DlthD(i,j)=0.125d0*
249 baylor 1.5 & ((viscC4leithD*grdDiv))*L5
250 baylor 1.1 ELSE
251 baylor 1.5 viscAh_Dlth(i,j)=0d0
252     viscA4_Dlth(i,j)=0d0
253     viscAh_DlthD(i,j)=0d0
254     viscA4_DlthD(i,j)=0d0
255 baylor 1.1 ENDIF
256    
257 baylor 1.5 IF (calcsmag) THEN
258     viscAh_DSmg(i,j)=L2
259     & *sqrt(tension(i,j)**2
260 baylor 1.8 & +0.25d0*(strain(i+1, j )**2+strain( i ,j+1)**2
261 baylor 1.5 & +strain(i , j )**2+strain(i+1,j+1)**2))
262     viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
263     viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
264 baylor 1.1 ELSE
265 baylor 1.5 viscAh_DSmg(i,j)=0d0
266     viscA4_DSmg(i,j)=0d0
267 baylor 1.1 ENDIF
268    
269     C Harmonic on Div.u points
270 baylor 1.5 Alin=viscAhD+viscAhGrid*L2rdt
271     & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
272     viscAh_DMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
273     viscAh_D(i,j)=max(viscAh_DMin(i,j),Alin)
274     viscAh_DMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
275     viscAh_D(i,j)=min(viscAh_DMax(i,j),viscAh_D(i,j))
276 baylor 1.1
277     C BiHarmonic on Div.u points
278 baylor 1.5 Alin=viscA4D+viscA4Grid*L4rdt
279     & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
280     viscA4_DMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
281     viscA4_D(i,j)=max(viscA4_DMin(i,j),Alin)
282     viscA4_DMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
283     viscA4_D(i,j)=min(viscA4_DMax(i,j),viscA4_D(i,j))
284 baylor 1.1
285     CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
286     C These are (powers of) length scales
287 baylor 1.8 L2=2d0/((recip_DXV(I,J,bi,bj)**2+recip_DYU(I,J,bi,bj)**2))
288 baylor 1.1 L3=(L2**1.5)
289     L4=(L2**2)
290 baylor 1.5 L5=(L2**2.5)
291    
292 baylor 1.8 L2rdt=0.25d0*recip_dt*L2
293 baylor 1.5 L4rdt=recip_dt/
294 baylor 1.8 & ( 6d0*(recip_DXF(I,J,bi,bj)**4+recip_DYF(I,J,bi,bj)**4)
295     & +8d0*((recip_DXF(I,J,bi,bj)*recip_DYF(I,J,bi,bj))**2))
296 baylor 1.5
297     C Velocity Reynolds Scale
298 baylor 1.8 Uscl=sqrt((KE(i,j)+KE(i,j+1)+KE(i+1,j)+KE(i+1,j+1))
299     & *L2*0.125d0)/viscAhRe_max
300     U4scl=0.125d0*L2*Uscl/viscA4Re_max
301 baylor 1.1
302     C This is the vector magnitude of the vorticity gradient squared
303 baylor 1.5 IF (useFullLeith.and.calcleith) THEN
304 baylor 1.8 grdVrt=0.25d0*(
305 baylor 1.5 & ((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))**2
306     & +((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj))**2
307     & +((vort3(i-1,j)-vort3(i,j))*recip_DXG(i-1,j,bi,bj))**2
308     & +((vort3(i,j-1)-vort3(i,j))*recip_DYG(i,j-1,bi,bj))**2)
309 baylor 1.1
310     C This is the vector magnitude of grad(div.v) squared
311 baylor 1.8 grdDiv=0.25d0*(
312 baylor 1.5 & ((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj))**2
313     & +((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj))**2
314     & +((hDiv(i,j-1)-hDiv(i-1,j-1))*recip_DXC(i,j-1,bi,bj))**2
315     & +((hDiv(i-1,j)-hDiv(i-1,j-1))*recip_DYC(i-1,j,bi,bj))**2)
316    
317     viscAh_ZLth(i,j)=
318     & sqrt(viscC2leith**2*grdVrt+viscC2leithD**2*grdDiv)*L3
319     viscA4_ZLth(i,j)=
320     & sqrt(viscC4leith**2*grdVrt+viscC4leithD**2*grdDiv)*L5
321     viscAh_ZLthD(i,j)=
322     & sqrt(viscC2leithD**2*grdDiv)*L3
323     viscA4_ZLthD(i,j)=
324     & sqrt(viscC4leithD**2*grdDiv)*L5
325    
326     ELSEIF (calcleith) THEN
327 baylor 1.1 C but this approximation will work on cube (and differs by 4X)
328 baylor 1.5 grdVrt=abs((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))
329     grdVrt=max(grdVrt,
330     & abs((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj)))
331     grdVrt=max(grdVrt,
332     & abs((vort3(i-1,j)-vort3(i,j))*recip_DXG(i-1,j,bi,bj)))
333     grdVrt=max(grdVrt,
334     & abs((vort3(i,j-1)-vort3(i,j))*recip_DYG(i,j-1,bi,bj)))
335    
336     grdDiv=abs((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj))
337     grdDiv=max(grdDiv,
338     & abs((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)))
339     grdDiv=max(grdDiv,
340     & abs((hDiv(i,j-1)-hDiv(i-1,j-1))*recip_DXG(i,j-1,bi,bj)))
341     grdDiv=max(grdDiv,
342     & abs((hDiv(i-1,j)-hDiv(i-1,j-1))*recip_DYG(i-1,j,bi,bj)))
343    
344     viscAh_ZLth(i,j)=(viscC2leith*grdVrt
345     & +(viscC2leithD*grdDiv))*L3
346     viscA4_ZLth(i,j)=(viscC4leith*grdVrt
347     & +(viscC4leithD*grdDiv))*L5
348     viscAh_ZLthD(i,j)=((viscC2leithD*grdDiv))*L3
349     viscA4_ZLthD(i,j)=((viscC4leithD*grdDiv))*L5
350 baylor 1.1 ELSE
351 baylor 1.5 viscAh_ZLth(i,j)=0d0
352     viscA4_ZLth(i,j)=0d0
353     viscAh_ZLthD(i,j)=0d0
354     viscA4_ZLthD(i,j)=0d0
355 baylor 1.1 ENDIF
356    
357 baylor 1.5 IF (calcsmag) THEN
358     viscAh_ZSmg(i,j)=L2
359     & *sqrt(strain(i,j)**2
360 baylor 1.8 & +0.25d0*(tension( i , j )**2+tension( i ,j-1)**2
361 baylor 1.5 & +tension(i-1, j )**2+tension(i-1,j-1)**2))
362     viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
363     viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
364 baylor 1.1 ENDIF
365    
366     C Harmonic on Zeta points
367 baylor 1.5 Alin=viscAhZ+viscAhGrid*L2rdt
368     & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
369     viscAh_ZMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
370     viscAh_Z(i,j)=max(viscAh_ZMin(i,j),Alin)
371     viscAh_ZMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
372     viscAh_Z(i,j)=min(viscAh_ZMax(i,j),viscAh_Z(i,j))
373    
374     C BiHarmonic on Zeta points
375     Alin=viscA4Z+viscA4Grid*L4rdt
376     & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
377     viscA4_ZMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
378     viscA4_Z(i,j)=max(viscA4_ZMin(i,j),Alin)
379     viscA4_ZMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
380     viscA4_Z(i,j)=min(viscA4_ZMax(i,j),viscA4_Z(i,j))
381 baylor 1.1 ENDDO
382     ENDDO
383     ELSE
384     DO j=1-Oly,sNy+Oly
385     DO i=1-Olx,sNx+Olx
386     viscAh_D(i,j)=viscAhD
387     viscAh_Z(i,j)=viscAhZ
388     viscA4_D(i,j)=viscA4D
389     viscA4_Z(i,j)=viscA4Z
390     ENDDO
391     ENDDO
392     ENDIF
393    
394     #ifdef ALLOW_DIAGNOSTICS
395     IF (useDiagnostics) THEN
396     CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
397     CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
398     CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
399     CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
400 baylor 1.5
401     CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
402     CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
403     CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
404     CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
405    
406     CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
407     CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
408     CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
409     CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
410    
411     CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
412     CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
413     CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
414     CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
415    
416 baylor 1.7 CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD'
417 baylor 1.8 & ,k,1,2,bi,bj,myThid)
418 baylor 1.7 CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD'
419 baylor 1.8 & ,k,1,2,bi,bj,myThid)
420 baylor 1.7 CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD'
421 baylor 1.8 & ,k,1,2,bi,bj,myThid)
422 baylor 1.7 CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD'
423 baylor 1.8 & ,k,1,2,bi,bj,myThid)
424 baylor 1.5
425     CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
426     CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
427     CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
428     CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
429 baylor 1.1 ENDIF
430     #endif
431    
432     RETURN
433     END
434 baylor 1.5

  ViewVC Help
Powered by ViewVC 1.1.22