/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download)
Tue Sep 20 20:41:43 2005 UTC (18 years, 9 months ago) by baylor
Branch: MAIN
Changes since 1.4: +282 -199 lines
Cleaner version of mom_calc_visc.F and added diagnostics for different viscosities.

1 baylor 1.5 C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vi_hdissip.F,v 1.25 2005/04/11 14:47:24 dimitri Exp $
2 baylor 1.1 C $Name: $
3    
4     #include "MOM_COMMON_OPTIONS.h"
5    
6 baylor 1.5
7 baylor 1.1 SUBROUTINE MOM_CALC_VISC(
8     I bi,bj,k,
9     O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10     O harmonic,biharmonic,useVariableViscosity,
11 baylor 1.5 I hDiv,vort3,tension,strain,KE,hfacZ,
12 baylor 1.1 I myThid)
13    
14     IMPLICIT NONE
15 baylor 1.5 C
16     C Calculate horizontal viscosities (L is typical grid width)
17     C harmonic viscosity=
18     C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19     C +0.25*L**2*viscAhGrid/deltaT
20     C +sqrt(viscC2leith**2*grad(Vort3)**2
21     C +viscC2leithD**2*grad(hDiv)**2)*L**3
22     C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23     C
24     C biharmonic viscosity=
25     C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26     C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27     C +0.125*L**5*sqrt(viscC4leith**2*grad(Vort3)**2
28     C +viscC4leithD**2*grad(hDiv)**2)
29     C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30     C
31     C Note that often 0.125*L**2 is the scale between harmonic and
32     C biharmonic (see Griffies and Hallberg (2000))
33     C This allows the same value of the coefficient to be used
34     C for roughly similar results with biharmonic and harmonic
35     C
36     C LIMITERS -- limit min and max values of viscosities
37     C viscAhRemax is min value for grid point harmonic Reynolds num
38     C harmonic viscosity>sqrt(2*KE)*L/2/viscAhRemax
39     C
40     C viscA4Remax is min value for grid point biharmonic Reynolds num
41     C biharmonic viscosity>sqrt(2*KE)*L**3/16/viscA4Remax
42     C
43     C viscAhgridmax is CFL stability limiter for harmonic viscosity
44     C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45     C
46     C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47     C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48     C
49     C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50     C harmonic viscosity>0.25*viscAhgridmax*L**2/deltaT
51     C biharmonic viscosity>viscA4gridmax*L**4/32/deltaT (approx)
52     C
53     C RECOMMENDED VALUES
54     C viscC2Leith=?
55     C viscC2LeithD=?
56     C viscC4Leith=?
57     C viscC4LeithD=?
58     C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
59     C 0.2-0.9 (Smagorinsky,1993)
60     C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
61     C viscAhRemax>=1
62     C viscA4Remax>=1
63     C viscAhgridmax=1
64     C viscA4gridmax=1
65     C viscAhgrid<1
66     C viscA4grid<1
67     C viscAhgridmin<<1
68     C viscA4gridmin<<1
69 baylor 1.1
70     C == Global variables ==
71     #include "SIZE.h"
72     #include "GRID.h"
73     #include "EEPARAMS.h"
74     #include "PARAMS.h"
75    
76     C == Routine arguments ==
77     INTEGER bi,bj,k
78     _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79     _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80     _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81     _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84     _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85     _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86     _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87     _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88     INTEGER myThid
89     LOGICAL harmonic,biharmonic,useVariableViscosity
90    
91     C == Local variables ==
92     INTEGER I,J
93 baylor 1.5 _RL smag2fac, smag4fac
94     _RL viscAhRemax, viscA4Remax
95     _RL Alin,Alinmin,grdVrt,grdDiv
96 baylor 1.1 _RL recip_dt,L2,L3,L4,L5,L2rdt,L4rdt
97 baylor 1.5 _RL Uscl,U4scl
98     _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99     _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100     _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101     _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102     _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103     _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104     _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105     _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106     _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107     _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108     _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109     _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110     _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111     _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112     _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113     _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114     _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115     _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116     _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117     _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118     LOGICAL calcLeith,calcSmag
119 baylor 1.1
120     useVariableViscosity=
121     & (viscAhGrid.NE.0.)
122     & .OR.(viscA4Grid.NE.0.)
123     & .OR.(viscC2leith.NE.0.)
124     & .OR.(viscC2leithD.NE.0.)
125     & .OR.(viscC4leith.NE.0.)
126     & .OR.(viscC4leithD.NE.0.)
127     & .OR.(viscC2smag.NE.0.)
128     & .OR.(viscC4smag.NE.0.)
129    
130     harmonic=
131     & (viscAh.NE.0.)
132     & .OR.(viscAhD.NE.0.)
133     & .OR.(viscAhZ.NE.0.)
134     & .OR.(viscAhGrid.NE.0.)
135     & .OR.(viscC2leith.NE.0.)
136     & .OR.(viscC2leithD.NE.0.)
137     & .OR.(viscC2smag.NE.0.)
138    
139 baylor 1.5 IF (harmonic) viscAhremax=50
140    
141 baylor 1.1 biharmonic=
142     & (viscA4.NE.0.)
143     & .OR.(viscA4D.NE.0.)
144     & .OR.(viscA4Z.NE.0.)
145     & .OR.(viscA4Grid.NE.0.)
146     & .OR.(viscC4leith.NE.0.)
147     & .OR.(viscC4leithD.NE.0.)
148     & .OR.(viscC4smag.NE.0.)
149    
150 baylor 1.5 IF (biharmonic) viscA4remax=50
151    
152     calcleith=
153     & (viscC2leith.NE.0.)
154     & .OR.(viscC2leithD.NE.0.)
155     & .OR.(viscC4leith.NE.0.)
156     & .OR.(viscC4leithD.NE.0.)
157    
158     calcsmag=
159     & (viscC2smag.NE.0.)
160     & .OR.(viscC4smag.NE.0.)
161    
162 baylor 1.1 IF (deltaTmom.NE.0.) THEN
163     recip_dt=1./deltaTmom
164     ELSE
165     recip_dt=0.
166     ENDIF
167    
168 baylor 1.5 IF (calcsmag) THEN
169     smag2fac=(viscC2smag/pi)**2
170     smag4fac=0.125*(viscC4smag/pi)**2
171     ENDIF
172 baylor 1.1
173     C - Viscosity
174     IF (useVariableViscosity) THEN
175     DO j=2-Oly,sNy+Oly-1
176     DO i=2-Olx,sNx+Olx-1
177     CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
178 baylor 1.5
179 baylor 1.1 C These are (powers of) length scales
180 baylor 1.5 L2=2./((recip_DXF(I,J,bi,bj)**2+recip_DYF(I,J,bi,bj)**2))
181 baylor 1.1 L3=(L2**1.5)
182     L4=(L2**2)
183 baylor 1.5 L5=(L2**2.5)
184    
185     L2rdt=0.25*recip_dt*L2
186    
187     L4rdt=recip_dt/( 6.*(recip_DXF(I,J,bi,bj)**4
188 baylor 1.1 & +recip_DYF(I,J,bi,bj)**4)
189     & +8.*((recip_DXF(I,J,bi,bj)
190     & *recip_DYF(I,J,bi,bj))**2) )
191    
192 baylor 1.5 C Velocity Reynolds Scale
193     Uscl=sqrt(KE(i,j)*L2*0.5)/viscAhRemax
194     U4scl=0.125*L2*Uscl/viscA4Remax
195    
196     IF (useFullLeith.and.calcleith) THEN
197 baylor 1.1 C This is the vector magnitude of the vorticity gradient squared
198     grdVrt=0.25*(
199     & ((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))**2
200     & +((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj))**2
201     & +((vort3(i+1,j+1)-vort3(i,j+1))*recip_DXG(i,j+1,bi,bj))**2
202     & +((vort3(i+1,j+1)-vort3(i+1,j))*recip_DYG(i+1,j,bi,bj))**2)
203    
204     C This is the vector magnitude of grad (div.v) squared
205     C Using it in Leith serves to damp instabilities in w.
206 baylor 1.5 grdDiv=0.25*(
207     & ((hDiv(i+1,j)-hDiv(i,j))*recip_DXC(i+1,j,bi,bj))**2
208     & +((hDiv(i,j+1)-hDiv(i,j))*recip_DYC(i,j+1,bi,bj))**2
209     & +((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj))**2
210     & +((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj))**2)
211    
212     viscAh_DLth(i,j)=
213     & sqrt(viscC2leith**2*grdVrt+viscC2leithD**2*grdDiv)*L3
214     viscA4_DLth(i,j)=
215     & sqrt(viscC4leith**2*grdVrt+viscC4leithD**2*grdDiv)*L5
216     viscAh_DLthd(i,j)=
217     & sqrt(viscC2leithD**2*grdDiv)*L3
218     viscA4_DLthd(i,j)=
219     & sqrt(viscC4leithD**2*grdDiv)*L5
220     ELSEIF (calcleith) THEN
221 baylor 1.1 C but this approximation will work on cube
222     c (and differs by as much as 4X)
223 baylor 1.5 grdVrt=abs((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))
224     grdVrt=max(grdVrt,
225     & abs((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj)))
226     grdVrt=max(grdVrt,
227     & abs((vort3(i+1,j+1)-vort3(i,j+1))*recip_DXG(i,j+1,bi,bj)))
228     grdVrt=max(grdVrt,
229     & abs((vort3(i+1,j+1)-vort3(i+1,j))*recip_DYG(i+1,j,bi,bj)))
230    
231     grdDiv=abs((hDiv(i+1,j)-hDiv(i,j))*recip_DXC(i+1,j,bi,bj))
232     grdDiv=max(grdDiv,
233     & abs((hDiv(i,j+1)-hDiv(i,j))*recip_DYC(i,j+1,bi,bj)))
234     grdDiv=max(grdDiv,
235     & abs((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)))
236     grdDiv=max(grdDiv,
237     & abs((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)))
238 baylor 1.1
239     c This approximation is good to the same order as above...
240 baylor 1.5 viscAh_Dlth(i,j)=
241     & (viscC2leith*grdVrt+(viscC2leithD*grdDiv))*L3
242     viscA4_Dlth(i,j)=0.125*
243     & (viscC4leith*grdVrt+(viscC4leithD*grdDiv))*L5
244     viscAh_DlthD(i,j)=
245     & ((viscC2leithD*grdDiv))*L3
246     viscA4_DlthD(i,j)=0.125*
247     & ((viscC4leithD*grdDiv))*L5
248 baylor 1.1 ELSE
249 baylor 1.5 viscAh_Dlth(i,j)=0d0
250     viscA4_Dlth(i,j)=0d0
251     viscAh_DlthD(i,j)=0d0
252     viscA4_DlthD(i,j)=0d0
253 baylor 1.1 ENDIF
254    
255 baylor 1.5 IF (calcsmag) THEN
256     viscAh_DSmg(i,j)=L2
257     & *sqrt(tension(i,j)**2
258     & +0.25*(strain(i+1, j )**2+strain( i ,j+1)**2
259     & +strain(i , j )**2+strain(i+1,j+1)**2))
260     viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
261     viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
262 baylor 1.1 ELSE
263 baylor 1.5 viscAh_DSmg(i,j)=0d0
264     viscA4_DSmg(i,j)=0d0
265 baylor 1.1 ENDIF
266    
267     C Harmonic on Div.u points
268 baylor 1.5 Alin=viscAhD+viscAhGrid*L2rdt
269     & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
270     viscAh_DMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
271     viscAh_D(i,j)=max(viscAh_DMin(i,j),Alin)
272     viscAh_DMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
273     viscAh_D(i,j)=min(viscAh_DMax(i,j),viscAh_D(i,j))
274 baylor 1.1
275     C BiHarmonic on Div.u points
276 baylor 1.5 Alin=viscA4D+viscA4Grid*L4rdt
277     & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
278     viscA4_DMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
279     viscA4_D(i,j)=max(viscA4_DMin(i,j),Alin)
280     viscA4_DMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
281     viscA4_D(i,j)=min(viscA4_DMax(i,j),viscA4_D(i,j))
282 baylor 1.1
283     CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
284     C These are (powers of) length scales
285 baylor 1.5 L2=2./((recip_DXV(I,J,bi,bj)**2+recip_DYU(I,J,bi,bj)**2))
286 baylor 1.1 L3=(L2**1.5)
287     L4=(L2**2)
288 baylor 1.5 L5=(L2**2.5)
289    
290     L2rdt=0.25*recip_dt*L2
291     L4rdt=recip_dt/
292     & ( 6.*(recip_DXF(I,J,bi,bj)**4+recip_DYF(I,J,bi,bj)**4)
293     & +8.*((recip_DXF(I,J,bi,bj)*recip_DYF(I,J,bi,bj))**2))
294    
295     C Velocity Reynolds Scale
296     Uscl=sqrt((KE(i,j)+KE(i,j+1)+KE(i+1,j)+KE(i+1,j+1))*L2*0.125)/
297     & viscAhRemax
298     U4scl=0.125*L2*Uscl/viscA4Remax
299 baylor 1.1
300     C This is the vector magnitude of the vorticity gradient squared
301 baylor 1.5 IF (useFullLeith.and.calcleith) THEN
302     grdVrt=0.25*(
303     & ((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))**2
304     & +((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj))**2
305     & +((vort3(i-1,j)-vort3(i,j))*recip_DXG(i-1,j,bi,bj))**2
306     & +((vort3(i,j-1)-vort3(i,j))*recip_DYG(i,j-1,bi,bj))**2)
307 baylor 1.1
308     C This is the vector magnitude of grad(div.v) squared
309 baylor 1.5 grdDiv=0.25*(
310     & ((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj))**2
311     & +((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj))**2
312     & +((hDiv(i,j-1)-hDiv(i-1,j-1))*recip_DXC(i,j-1,bi,bj))**2
313     & +((hDiv(i-1,j)-hDiv(i-1,j-1))*recip_DYC(i-1,j,bi,bj))**2)
314    
315     viscAh_ZLth(i,j)=
316     & sqrt(viscC2leith**2*grdVrt+viscC2leithD**2*grdDiv)*L3
317     viscA4_ZLth(i,j)=
318     & sqrt(viscC4leith**2*grdVrt+viscC4leithD**2*grdDiv)*L5
319     viscAh_ZLthD(i,j)=
320     & sqrt(viscC2leithD**2*grdDiv)*L3
321     viscA4_ZLthD(i,j)=
322     & sqrt(viscC4leithD**2*grdDiv)*L5
323    
324     ELSEIF (calcleith) THEN
325 baylor 1.1 C but this approximation will work on cube (and differs by 4X)
326 baylor 1.5 grdVrt=abs((vort3(i+1,j)-vort3(i,j))*recip_DXG(i,j,bi,bj))
327     grdVrt=max(grdVrt,
328     & abs((vort3(i,j+1)-vort3(i,j))*recip_DYG(i,j,bi,bj)))
329     grdVrt=max(grdVrt,
330     & abs((vort3(i-1,j)-vort3(i,j))*recip_DXG(i-1,j,bi,bj)))
331     grdVrt=max(grdVrt,
332     & abs((vort3(i,j-1)-vort3(i,j))*recip_DYG(i,j-1,bi,bj)))
333    
334     grdDiv=abs((hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj))
335     grdDiv=max(grdDiv,
336     & abs((hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)))
337     grdDiv=max(grdDiv,
338     & abs((hDiv(i,j-1)-hDiv(i-1,j-1))*recip_DXG(i,j-1,bi,bj)))
339     grdDiv=max(grdDiv,
340     & abs((hDiv(i-1,j)-hDiv(i-1,j-1))*recip_DYG(i-1,j,bi,bj)))
341    
342     viscAh_ZLth(i,j)=(viscC2leith*grdVrt
343     & +(viscC2leithD*grdDiv))*L3
344     viscA4_ZLth(i,j)=(viscC4leith*grdVrt
345     & +(viscC4leithD*grdDiv))*L5
346     viscAh_ZLthD(i,j)=((viscC2leithD*grdDiv))*L3
347     viscA4_ZLthD(i,j)=((viscC4leithD*grdDiv))*L5
348 baylor 1.1 ELSE
349 baylor 1.5 viscAh_ZLth(i,j)=0d0
350     viscA4_ZLth(i,j)=0d0
351     viscAh_ZLthD(i,j)=0d0
352     viscA4_ZLthD(i,j)=0d0
353 baylor 1.1 ENDIF
354    
355 baylor 1.5 IF (calcsmag) THEN
356     viscAh_ZSmg(i,j)=L2
357     & *sqrt(strain(i,j)**2
358     & +0.25*(tension( i , j )**2+tension( i ,j-1)**2
359     & +tension(i-1, j )**2+tension(i-1,j-1)**2))
360     viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
361     viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
362 baylor 1.1 ENDIF
363    
364     C Harmonic on Zeta points
365 baylor 1.5 Alin=viscAhZ+viscAhGrid*L2rdt
366     & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
367     viscAh_ZMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
368     viscAh_Z(i,j)=max(viscAh_ZMin(i,j),Alin)
369     viscAh_ZMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
370     viscAh_Z(i,j)=min(viscAh_ZMax(i,j),viscAh_Z(i,j))
371    
372     C BiHarmonic on Zeta points
373     Alin=viscA4Z+viscA4Grid*L4rdt
374     & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
375     viscA4_ZMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
376     viscA4_Z(i,j)=max(viscA4_ZMin(i,j),Alin)
377     viscA4_ZMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
378     viscA4_Z(i,j)=min(viscA4_ZMax(i,j),viscA4_Z(i,j))
379 baylor 1.1 ENDDO
380     ENDDO
381     ELSE
382     DO j=1-Oly,sNy+Oly
383     DO i=1-Olx,sNx+Olx
384     viscAh_D(i,j)=viscAhD
385     viscAh_Z(i,j)=viscAhZ
386     viscA4_D(i,j)=viscA4D
387     viscA4_Z(i,j)=viscA4Z
388     ENDDO
389     ENDDO
390     ENDIF
391    
392     #ifdef ALLOW_DIAGNOSTICS
393     IF (useDiagnostics) THEN
394     CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
395     CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
396     CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
397     CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
398 baylor 1.5
399     CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
400     CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
401     CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
402     CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
403    
404     CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
405     CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
406     CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
407     CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
408    
409     CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
410     CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
411     CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
412     CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
413    
414     CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD',k,1,2,bi,bj,myThid)
415     CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD',k,1,2,bi,bj,myThid)
416     CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD',k,1,2,bi,bj,myThid)
417     CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD',k,1,2,bi,bj,myThid)
418    
419     CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
420     CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
421     CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
422     CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
423 baylor 1.1 ENDIF
424     #endif
425    
426     RETURN
427     END
428 baylor 1.5

  ViewVC Help
Powered by ViewVC 1.1.22