/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.31 - (hide annotations) (download)
Wed Nov 14 16:00:33 2007 UTC (16 years, 7 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint59m, checkpoint59l, checkpoint59o, checkpoint59n, checkpoint59k
Changes since 1.30: +12 -19 lines
revert to version 1.29 after an accidental check-in (these
nice interfaces make me sloppy ...)

1 mlosch 1.31 C $Header: $
2 jmc 1.14 C $Name: $
3 baylor 1.1
4     #include "MOM_COMMON_OPTIONS.h"
5    
6 baylor 1.5
7 baylor 1.1 SUBROUTINE MOM_CALC_VISC(
8     I bi,bj,k,
9     O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10     O harmonic,biharmonic,useVariableViscosity,
11 jmc 1.12 I hDiv,vort3,tension,strain,KE,hFacZ,
12 baylor 1.1 I myThid)
13    
14     IMPLICIT NONE
15 baylor 1.5 C
16     C Calculate horizontal viscosities (L is typical grid width)
17     C harmonic viscosity=
18     C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19     C +0.25*L**2*viscAhGrid/deltaT
20 baylor 1.17 C +sqrt((viscC2leith/pi)**6*grad(Vort3)**2
21     C +(viscC2leithD/pi)**6*grad(hDiv)**2)*L**3
22 baylor 1.5 C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23     C
24     C biharmonic viscosity=
25     C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26     C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27 baylor 1.17 C +0.125*L**5*sqrt((viscC4leith/pi)**6*grad(Vort3)**2
28     C +(viscC4leithD/pi)**6*grad(hDiv)**2)
29 baylor 1.5 C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30     C
31     C Note that often 0.125*L**2 is the scale between harmonic and
32     C biharmonic (see Griffies and Hallberg (2000))
33     C This allows the same value of the coefficient to be used
34     C for roughly similar results with biharmonic and harmonic
35     C
36     C LIMITERS -- limit min and max values of viscosities
37     C viscAhRemax is min value for grid point harmonic Reynolds num
38 baylor 1.9 C harmonic viscosity>sqrt(2*KE)*L/viscAhRemax
39 baylor 1.5 C
40     C viscA4Remax is min value for grid point biharmonic Reynolds num
41 baylor 1.9 C biharmonic viscosity>sqrt(2*KE)*L**3/8/viscA4Remax
42 baylor 1.5 C
43     C viscAhgridmax is CFL stability limiter for harmonic viscosity
44     C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45     C
46     C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47     C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48     C
49     C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50 cnh 1.25 C harmonic viscosity>0.25*viscAhgridmin*L**2/deltaT
51     C biharmonic viscosity>viscA4gridmin*L**4/32/deltaT (approx)
52    
53    
54 baylor 1.5 C
55     C RECOMMENDED VALUES
56 baylor 1.18 C viscC2Leith=1-3
57     C viscC2LeithD=1-3
58     C viscC4Leith=1-3
59     C viscC4LeithD=1.5-3
60 baylor 1.5 C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
61     C 0.2-0.9 (Smagorinsky,1993)
62     C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
63 baylor 1.9 C viscAhRemax>=1, (<2 suppresses a computational mode)
64     C viscA4Remax>=1, (<2 suppresses a computational mode)
65 baylor 1.5 C viscAhgridmax=1
66     C viscA4gridmax=1
67     C viscAhgrid<1
68     C viscA4grid<1
69     C viscAhgridmin<<1
70     C viscA4gridmin<<1
71 baylor 1.1
72     C == Global variables ==
73     #include "SIZE.h"
74     #include "GRID.h"
75     #include "EEPARAMS.h"
76     #include "PARAMS.h"
77 baylor 1.23 #ifdef ALLOW_NONHYDROSTATIC
78     #include "NH_VARS.h"
79     #endif
80 baylor 1.1
81     C == Routine arguments ==
82     INTEGER bi,bj,k
83     _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84     _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85     _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86     _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89     _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90     _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91     _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92     _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93     INTEGER myThid
94     LOGICAL harmonic,biharmonic,useVariableViscosity
95    
96     C == Local variables ==
97     INTEGER I,J
98 jmc 1.29 #ifdef ALLOW_NONHYDROSTATIC
99 baylor 1.23 INTEGER kp1
100 jmc 1.29 #endif
101 baylor 1.5 _RL smag2fac, smag4fac
102 baylor 1.17 _RL leith2fac, leith4fac
103     _RL leithD2fac, leithD4fac
104 baylor 1.6 _RL viscAhRe_max, viscA4Re_max
105 jmc 1.15 _RL Alin,grdVrt,grdDiv, keZpt
106 baylor 1.1 _RL recip_dt,L2,L3,L4,L5,L2rdt,L4rdt
107 baylor 1.5 _RL Uscl,U4scl
108 jmc 1.16 _RL divDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109     _RL divDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 jmc 1.20 _RL vrtDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111     _RL vrtDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 baylor 1.5 _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113     _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114     _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115     _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116     _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117     _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118     _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119     _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120     _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121     _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122     _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123     _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124     _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125     _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126     _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127     _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128     _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129     _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130     _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131     _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132     LOGICAL calcLeith,calcSmag
133 baylor 1.1
134     useVariableViscosity=
135     & (viscAhGrid.NE.0.)
136     & .OR.(viscA4Grid.NE.0.)
137     & .OR.(viscC2leith.NE.0.)
138     & .OR.(viscC2leithD.NE.0.)
139     & .OR.(viscC4leith.NE.0.)
140     & .OR.(viscC4leithD.NE.0.)
141     & .OR.(viscC2smag.NE.0.)
142     & .OR.(viscC4smag.NE.0.)
143    
144     harmonic=
145     & (viscAh.NE.0.)
146     & .OR.(viscAhD.NE.0.)
147     & .OR.(viscAhZ.NE.0.)
148     & .OR.(viscAhGrid.NE.0.)
149     & .OR.(viscC2leith.NE.0.)
150     & .OR.(viscC2leithD.NE.0.)
151     & .OR.(viscC2smag.NE.0.)
152    
153 baylor 1.9 IF ((harmonic).and.(viscAhremax.ne.0.)) THEN
154 jmc 1.10 viscAhre_max=sqrt(2. _d 0)/viscAhRemax
155 baylor 1.9 ELSE
156 jmc 1.10 viscAhre_max=0. _d 0
157 baylor 1.9 ENDIF
158 baylor 1.5
159 baylor 1.1 biharmonic=
160     & (viscA4.NE.0.)
161     & .OR.(viscA4D.NE.0.)
162     & .OR.(viscA4Z.NE.0.)
163     & .OR.(viscA4Grid.NE.0.)
164     & .OR.(viscC4leith.NE.0.)
165     & .OR.(viscC4leithD.NE.0.)
166     & .OR.(viscC4smag.NE.0.)
167    
168 baylor 1.9 IF ((biharmonic).and.(viscA4remax.ne.0.)) THEN
169 jmc 1.10 viscA4re_max=0.125 _d 0*sqrt(2. _d 0)/viscA4Remax
170 baylor 1.9 ELSE
171 jmc 1.10 viscA4re_max=0. _d 0
172 baylor 1.9 ENDIF
173 baylor 1.5
174     calcleith=
175     & (viscC2leith.NE.0.)
176     & .OR.(viscC2leithD.NE.0.)
177     & .OR.(viscC4leith.NE.0.)
178     & .OR.(viscC4leithD.NE.0.)
179    
180     calcsmag=
181     & (viscC2smag.NE.0.)
182     & .OR.(viscC4smag.NE.0.)
183    
184 baylor 1.1 IF (deltaTmom.NE.0.) THEN
185 jmc 1.10 recip_dt=1. _d 0/deltaTmom
186 baylor 1.1 ELSE
187 jmc 1.10 recip_dt=0. _d 0
188 baylor 1.1 ENDIF
189    
190 baylor 1.5 IF (calcsmag) THEN
191     smag2fac=(viscC2smag/pi)**2
192 jmc 1.10 smag4fac=0.125 _d 0*(viscC4smag/pi)**2
193 baylor 1.9 ELSE
194 jmc 1.10 smag2fac=0. _d 0
195     smag4fac=0. _d 0
196 baylor 1.5 ENDIF
197 baylor 1.1
198 baylor 1.17 IF (calcleith) THEN
199     IF (useFullLeith) THEN
200 baylor 1.19 leith2fac =(viscC2leith /pi)**6
201 baylor 1.17 leithD2fac=(viscC2leithD/pi)**6
202 baylor 1.19 leith4fac =0.015625 _d 0*(viscC4leith /pi)**6
203 baylor 1.17 leithD4fac=0.015625 _d 0*(viscC4leithD/pi)**6
204     ELSE
205 baylor 1.19 leith2fac =(viscC2leith /pi)**3
206 baylor 1.17 leithD2fac=(viscC2leithD/pi)**3
207 baylor 1.19 leith4fac =0.125 _d 0*(viscC4leith /pi)**3
208     leithD4fac=0.125 _d 0*(viscC4leithD/pi)**3
209 baylor 1.17 ENDIF
210     ELSE
211     leith2fac=0. _d 0
212     leith4fac=0. _d 0
213     leithD2fac=0. _d 0
214     leithD4fac=0. _d 0
215     ENDIF
216    
217 heimbach 1.21 #ifdef ALLOW_AUTODIFF_TAMC
218 heimbach 1.22 IF ( calcLeith .OR. calcSmag ) THEN
219     STOP 'calcLeith or calcSmag not implemented for ADJOINT'
220     ENDIF
221 mlosch 1.24 #endif
222 heimbach 1.22 DO j=1-Oly,sNy+Oly
223 heimbach 1.21 DO i=1-Olx,sNx+Olx
224     viscAh_D(i,j)=viscAhD
225     viscAh_Z(i,j)=viscAhZ
226     viscA4_D(i,j)=viscA4D
227     viscA4_Z(i,j)=viscA4Z
228     c
229     visca4_zsmg(i,j) = 0. _d 0
230     viscah_zsmg(i,j) = 0. _d 0
231     c
232     viscAh_Dlth(i,j) = 0. _d 0
233     viscA4_Dlth(i,j) = 0. _d 0
234     viscAh_DlthD(i,j)= 0. _d 0
235     viscA4_DlthD(i,j)= 0. _d 0
236     c
237     viscAh_DSmg(i,j) = 0. _d 0
238     viscA4_DSmg(i,j) = 0. _d 0
239     c
240     viscAh_ZLth(i,j) = 0. _d 0
241     viscA4_ZLth(i,j) = 0. _d 0
242     viscAh_ZLthD(i,j)= 0. _d 0
243     viscA4_ZLthD(i,j)= 0. _d 0
244     ENDDO
245 heimbach 1.22 ENDDO
246 heimbach 1.21
247 baylor 1.1 C - Viscosity
248     IF (useVariableViscosity) THEN
249 jmc 1.16
250 jmc 1.20 C- Initialise to zero gradient of vorticity & divergence:
251 jmc 1.16 DO j=1-Oly,sNy+Oly
252     DO i=1-Olx,sNx+Olx
253     divDx(i,j) = 0.
254     divDy(i,j) = 0.
255 jmc 1.20 vrtDx(i,j) = 0.
256     vrtDy(i,j) = 0.
257 jmc 1.16 ENDDO
258     ENDDO
259 jmc 1.20
260 jmc 1.16 IF (calcleith) THEN
261 jmc 1.20 C horizontal gradient of horizontal divergence:
262    
263 jmc 1.16 C- gradient in x direction:
264 heimbach 1.26 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
265 jmc 1.16 IF (useCubedSphereExchange) THEN
266     C to compute d/dx(hDiv), fill corners with appropriate values:
267 jmc 1.27 CALL FILL_CS_CORNER_TR_RL( .TRUE., .FALSE.,
268     & hDiv, bi,bj, myThid )
269 jmc 1.16 ENDIF
270 heimbach 1.26 cph-exch2#endif
271 jmc 1.16 DO j=2-Oly,sNy+Oly-1
272     DO i=2-Olx,sNx+Olx-1
273     divDx(i,j) = (hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)
274     ENDDO
275     ENDDO
276    
277     C- gradient in y direction:
278 heimbach 1.26 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
279 jmc 1.16 IF (useCubedSphereExchange) THEN
280     C to compute d/dy(hDiv), fill corners with appropriate values:
281 jmc 1.27 CALL FILL_CS_CORNER_TR_RL(.FALSE., .FALSE.,
282     & hDiv, bi,bj, myThid )
283 jmc 1.16 ENDIF
284 heimbach 1.26 cph-exch2#endif
285 jmc 1.16 DO j=2-Oly,sNy+Oly-1
286     DO i=2-Olx,sNx+Olx-1
287     divDy(i,j) = (hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)
288     ENDDO
289     ENDDO
290 jmc 1.20
291     C horizontal gradient of vertical vorticity:
292     C- gradient in x direction:
293     DO j=2-Oly,sNy+Oly
294     DO i=2-Olx,sNx+Olx-1
295     vrtDx(i,j) = (vort3(i+1,j)-vort3(i,j))
296     & *recip_DXG(i,j,bi,bj)
297     & *maskS(i,j,k,bi,bj)
298     ENDDO
299     ENDDO
300     C- gradient in y direction:
301     DO j=2-Oly,sNy+Oly-1
302     DO i=2-Olx,sNx+Olx
303     vrtDy(i,j) = (vort3(i,j+1)-vort3(i,j))
304     & *recip_DYG(i,j,bi,bj)
305     & *maskW(i,j,k,bi,bj)
306     ENDDO
307     ENDDO
308    
309 jmc 1.16 ENDIF
310    
311 baylor 1.1 DO j=2-Oly,sNy+Oly-1
312     DO i=2-Olx,sNx+Olx-1
313     CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
314 baylor 1.5
315 baylor 1.1 C These are (powers of) length scales
316 baylor 1.11 IF (useAreaViscLength) THEN
317 jmc 1.12 L2=rA(i,j,bi,bj)
318 mlosch 1.31 L4rdt=0.03125 _d 0*recip_dt*L2**2
319 baylor 1.11 ELSE
320     L2=2. _d 0/((recip_DXF(I,J,bi,bj)**2+recip_DYF(I,J,bi,bj)**2))
321 mlosch 1.31 L4rdt=recip_dt/( 6. _d 0*(recip_DXF(I,J,bi,bj)**4
322     & +recip_DYF(I,J,bi,bj)**4)
323     & +8. _d 0*((recip_DXF(I,J,bi,bj)
324     & *recip_DYF(I,J,bi,bj))**2) )
325 baylor 1.11 ENDIF
326 baylor 1.1 L3=(L2**1.5)
327     L4=(L2**2)
328 mlosch 1.31 L5=(L2*L3)
329 baylor 1.5
330 jmc 1.10 L2rdt=0.25 _d 0*recip_dt*L2
331 baylor 1.5
332     C Velocity Reynolds Scale
333 jmc 1.15 IF ( viscAhRe_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
334     Uscl=sqrt(KE(i,j)*L2)*viscAhRe_max
335     ELSE
336     Uscl=0.
337     ENDIF
338     IF ( viscA4Re_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
339     U4scl=sqrt(KE(i,j))*L3*viscA4Re_max
340     ELSE
341     U4scl=0.
342     ENDIF
343 baylor 1.5
344 heimbach 1.22 #ifndef ALLOW_AUTODIFF_TAMC
345 baylor 1.5 IF (useFullLeith.and.calcleith) THEN
346 baylor 1.1 C This is the vector magnitude of the vorticity gradient squared
347 jmc 1.20 grdVrt=0.25 _d 0*( (vrtDx(i,j+1)*vrtDx(i,j+1)
348     & + vrtDx(i,j)*vrtDx(i,j) )
349     & + (vrtDy(i+1,j)*vrtDy(i+1,j)
350     & + vrtDy(i,j)*vrtDy(i,j) ) )
351 baylor 1.1
352     C This is the vector magnitude of grad (div.v) squared
353     C Using it in Leith serves to damp instabilities in w.
354 jmc 1.16 grdDiv=0.25 _d 0*( (divDx(i+1,j)*divDx(i+1,j)
355     & + divDx(i,j)*divDx(i,j) )
356     & + (divDy(i,j+1)*divDy(i,j+1)
357     & + divDy(i,j)*divDy(i,j) ) )
358 baylor 1.5
359     viscAh_DLth(i,j)=
360 baylor 1.17 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
361     viscA4_DLth(i,j)=
362     & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
363 baylor 1.5 viscAh_DLthd(i,j)=
364 baylor 1.17 & sqrt(leithD2fac*grdDiv)*L3
365     viscA4_DLthd(i,j)=
366     & sqrt(leithD4fac*grdDiv)*L5
367 baylor 1.5 ELSEIF (calcleith) THEN
368 baylor 1.1 C but this approximation will work on cube
369     c (and differs by as much as 4X)
370 jmc 1.20 grdVrt=max( abs(vrtDx(i,j+1)), abs(vrtDx(i,j)) )
371     grdVrt=max( grdVrt, abs(vrtDy(i+1,j)) )
372     grdVrt=max( grdVrt, abs(vrtDy(i,j)) )
373 baylor 1.5
374 jmc 1.20 c This approximation is good to the same order as above...
375 jmc 1.16 grdDiv=max( abs(divDx(i+1,j)), abs(divDx(i,j)) )
376     grdDiv=max( grdDiv, abs(divDy(i,j+1)) )
377     grdDiv=max( grdDiv, abs(divDy(i,j)) )
378 baylor 1.1
379 baylor 1.17 viscAh_Dlth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
380     viscA4_Dlth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
381     viscAh_DlthD(i,j)=((leithD2fac*grdDiv))*L3
382     viscA4_DlthD(i,j)=((leithD4fac*grdDiv))*L5
383 baylor 1.1 ELSE
384 jmc 1.10 viscAh_Dlth(i,j)=0. _d 0
385     viscA4_Dlth(i,j)=0. _d 0
386     viscAh_DlthD(i,j)=0. _d 0
387     viscA4_DlthD(i,j)=0. _d 0
388 baylor 1.1 ENDIF
389    
390 baylor 1.5 IF (calcsmag) THEN
391     viscAh_DSmg(i,j)=L2
392     & *sqrt(tension(i,j)**2
393 jmc 1.10 & +0.25 _d 0*(strain(i+1, j )**2+strain( i ,j+1)**2
394     & +strain(i , j )**2+strain(i+1,j+1)**2))
395 baylor 1.5 viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
396     viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
397 baylor 1.1 ELSE
398 jmc 1.10 viscAh_DSmg(i,j)=0. _d 0
399     viscA4_DSmg(i,j)=0. _d 0
400 baylor 1.1 ENDIF
401 heimbach 1.22 #endif /* ALLOW_AUTODIFF_TAMC */
402 baylor 1.1
403     C Harmonic on Div.u points
404 baylor 1.5 Alin=viscAhD+viscAhGrid*L2rdt
405     & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
406     viscAh_DMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
407     viscAh_D(i,j)=max(viscAh_DMin(i,j),Alin)
408     viscAh_DMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
409     viscAh_D(i,j)=min(viscAh_DMax(i,j),viscAh_D(i,j))
410 baylor 1.1
411     C BiHarmonic on Div.u points
412 baylor 1.5 Alin=viscA4D+viscA4Grid*L4rdt
413     & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
414     viscA4_DMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
415     viscA4_D(i,j)=max(viscA4_DMin(i,j),Alin)
416     viscA4_DMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
417     viscA4_D(i,j)=min(viscA4_DMax(i,j),viscA4_D(i,j))
418 baylor 1.1
419 jmc 1.27 #ifdef ALLOW_NONHYDROSTATIC
420 baylor 1.23 C /* Pass Viscosities to calc_gw, if constant, not necessary */
421    
422     kp1 = MIN(k+1,Nr)
423    
424     if (k .eq. 1) then
425     viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
426     viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
427    
428 jmc 1.27 C /* These values dont get used */
429     viscAh_W(i,j,k,bi,bj)=viscAh_D(i,j)
430 baylor 1.23 viscA4_W(i,j,k,bi,bj)=viscA4_D(i,j)
431     else
432     C Note that previous call of this function has already added half.
433     viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
434     viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
435    
436     viscAh_W(i,j,k,bi,bj)=viscAh_W(i,j,k,bi,bj)+0.5*viscAh_D(i,j)
437     viscA4_W(i,j,k,bi,bj)=viscA4_W(i,j,k,bi,bj)+0.5*viscA4_D(i,j)
438     endif
439     #endif /* ALLOW_NONHYDROSTATIC */
440    
441 baylor 1.1 CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
442     C These are (powers of) length scales
443 baylor 1.11 IF (useAreaViscLength) THEN
444 jmc 1.12 L2=rAz(i,j,bi,bj)
445 mlosch 1.31 L4rdt=0.125 _d 0*recip_dt*rAz(i,j,bi,bj)**2
446 baylor 1.11 ELSE
447 jmc 1.12 L2=2. _d 0/((recip_DXV(I,J,bi,bj)**2+recip_DYU(I,J,bi,bj)**2))
448 mlosch 1.31 L4rdt=recip_dt/
449     & ( 6. _d 0*(recip_DXV(I,J,bi,bj)**4+recip_DYU(I,J,bi,bj)**4)
450     & +8. _d 0*((recip_DXV(I,J,bi,bj)*recip_DYU(I,J,bi,bj))**2))
451 baylor 1.11 ENDIF
452    
453 baylor 1.1 L3=(L2**1.5)
454     L4=(L2**2)
455 mlosch 1.31 L5=(L2*L3)
456 baylor 1.5
457 jmc 1.10 L2rdt=0.25 _d 0*recip_dt*L2
458 baylor 1.5
459 jmc 1.15 C Velocity Reynolds Scale (Pb here at CS-grid corners !)
460     IF ( viscAhRe_max.GT.0. .OR. viscA4Re_max.GT.0. ) THEN
461     keZpt=0.25 _d 0*( (KE(i,j)+KE(i-1,j-1))
462     & +(KE(i-1,j)+KE(i,j-1)) )
463     IF ( keZpt.GT.0. ) THEN
464     Uscl = sqrt(keZpt*L2)*viscAhRe_max
465     U4scl= sqrt(keZpt)*L3*viscA4Re_max
466     ELSE
467     Uscl =0.
468     U4scl=0.
469     ENDIF
470     ELSE
471     Uscl =0.
472     U4scl=0.
473     ENDIF
474 baylor 1.1
475 heimbach 1.22 #ifndef ALLOW_AUTODIFF_TAMC
476 baylor 1.1 C This is the vector magnitude of the vorticity gradient squared
477 baylor 1.5 IF (useFullLeith.and.calcleith) THEN
478 jmc 1.20 grdVrt=0.25 _d 0*( (vrtDx(i-1,j)*vrtDx(i-1,j)
479     & + vrtDx(i,j)*vrtDx(i,j) )
480     & + (vrtDy(i,j-1)*vrtDy(i,j-1)
481     & + vrtDy(i,j)*vrtDy(i,j) ) )
482 baylor 1.1
483     C This is the vector magnitude of grad(div.v) squared
484 jmc 1.16 grdDiv=0.25 _d 0*( (divDx(i,j-1)*divDx(i,j-1)
485     & + divDx(i,j)*divDx(i,j) )
486     & + (divDy(i-1,j)*divDy(i-1,j)
487     & + divDy(i,j)*divDy(i,j) ) )
488 baylor 1.5
489     viscAh_ZLth(i,j)=
490 baylor 1.17 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
491     viscA4_ZLth(i,j)=
492     & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
493 baylor 1.5 viscAh_ZLthD(i,j)=
494 baylor 1.17 & sqrt(leithD2fac*grdDiv)*L3
495     viscA4_ZLthD(i,j)=
496     & sqrt(leithD4fac*grdDiv)*L5
497 baylor 1.5
498     ELSEIF (calcleith) THEN
499 baylor 1.1 C but this approximation will work on cube (and differs by 4X)
500 jmc 1.20 grdVrt=max( abs(vrtDx(i-1,j)), abs(vrtDx(i,j)) )
501     grdVrt=max( grdVrt, abs(vrtDy(i,j-1)) )
502     grdVrt=max( grdVrt, abs(vrtDy(i,j)) )
503 baylor 1.5
504 jmc 1.16 grdDiv=max( abs(divDx(i,j)), abs(divDx(i,j-1)) )
505     grdDiv=max( grdDiv, abs(divDy(i,j)) )
506     grdDiv=max( grdDiv, abs(divDy(i-1,j)) )
507 baylor 1.5
508 baylor 1.17 viscAh_ZLth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
509     viscA4_ZLth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
510     viscAh_ZLthD(i,j)=(leithD2fac*grdDiv)*L3
511     viscA4_ZLthD(i,j)=(leithD4fac*grdDiv)*L5
512 baylor 1.1 ELSE
513 jmc 1.10 viscAh_ZLth(i,j)=0. _d 0
514     viscA4_ZLth(i,j)=0. _d 0
515     viscAh_ZLthD(i,j)=0. _d 0
516     viscA4_ZLthD(i,j)=0. _d 0
517 baylor 1.1 ENDIF
518    
519 baylor 1.5 IF (calcsmag) THEN
520     viscAh_ZSmg(i,j)=L2
521     & *sqrt(strain(i,j)**2
522 jmc 1.10 & +0.25 _d 0*(tension( i , j )**2+tension( i ,j-1)**2
523     & +tension(i-1, j )**2+tension(i-1,j-1)**2))
524 baylor 1.5 viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
525     viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
526 baylor 1.1 ENDIF
527 heimbach 1.22 #endif /* ALLOW_AUTODIFF_TAMC */
528 baylor 1.1
529     C Harmonic on Zeta points
530 baylor 1.5 Alin=viscAhZ+viscAhGrid*L2rdt
531     & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
532     viscAh_ZMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
533     viscAh_Z(i,j)=max(viscAh_ZMin(i,j),Alin)
534     viscAh_ZMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
535     viscAh_Z(i,j)=min(viscAh_ZMax(i,j),viscAh_Z(i,j))
536    
537     C BiHarmonic on Zeta points
538     Alin=viscA4Z+viscA4Grid*L4rdt
539     & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
540     viscA4_ZMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
541     viscA4_Z(i,j)=max(viscA4_ZMin(i,j),Alin)
542     viscA4_ZMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
543     viscA4_Z(i,j)=min(viscA4_ZMax(i,j),viscA4_Z(i,j))
544 baylor 1.1 ENDDO
545     ENDDO
546     ELSE
547     DO j=1-Oly,sNy+Oly
548     DO i=1-Olx,sNx+Olx
549     viscAh_D(i,j)=viscAhD
550     viscAh_Z(i,j)=viscAhZ
551     viscA4_D(i,j)=viscA4D
552     viscA4_Z(i,j)=viscA4Z
553     ENDDO
554     ENDDO
555     ENDIF
556    
557     #ifdef ALLOW_DIAGNOSTICS
558     IF (useDiagnostics) THEN
559     CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
560     CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
561     CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
562     CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
563 baylor 1.23 #ifdef ALLOW_NONHYDROSTATIC
564     CALL DIAGNOSTICS_FILL(viscAh_W,'VISCAHW ',k,1,2,bi,bj,myThid)
565     CALL DIAGNOSTICS_FILL(viscA4_W,'VISCA4W ',k,1,2,bi,bj,myThid)
566     #endif
567 baylor 1.5
568     CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
569     CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
570     CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
571     CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
572    
573     CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
574     CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
575     CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
576     CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
577    
578     CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
579     CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
580     CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
581     CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
582    
583 baylor 1.7 CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD'
584 baylor 1.8 & ,k,1,2,bi,bj,myThid)
585 baylor 1.7 CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD'
586 baylor 1.8 & ,k,1,2,bi,bj,myThid)
587 baylor 1.7 CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD'
588 baylor 1.8 & ,k,1,2,bi,bj,myThid)
589 baylor 1.7 CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD'
590 baylor 1.8 & ,k,1,2,bi,bj,myThid)
591 baylor 1.5
592     CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
593     CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
594     CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
595     CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
596 baylor 1.1 ENDIF
597     #endif
598    
599     RETURN
600     END
601 baylor 1.5

  ViewVC Help
Powered by ViewVC 1.1.22