/[MITgcm]/MITgcm/pkg/mom_common/mom_calc_visc.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_common/mom_calc_visc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.30 - (hide annotations) (download)
Wed Nov 14 15:55:26 2007 UTC (16 years, 7 months ago) by mlosch
Branch: MAIN
Changes since 1.29: +19 -12 lines
fix bug in seaice_ocean_stress (call of seaice_calc_strainrates),
requires change of parameter list of seaice_calc_strainrates

1 mlosch 1.30 C $Header: /u/gcmpack/MITgcm/pkg/mom_common/mom_calc_visc.F,v 1.29 2007/10/22 13:24:50 jmc Exp $
2 jmc 1.14 C $Name: $
3 baylor 1.1
4     #include "MOM_COMMON_OPTIONS.h"
5    
6 baylor 1.5
7 baylor 1.1 SUBROUTINE MOM_CALC_VISC(
8     I bi,bj,k,
9     O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
10     O harmonic,biharmonic,useVariableViscosity,
11 jmc 1.12 I hDiv,vort3,tension,strain,KE,hFacZ,
12 baylor 1.1 I myThid)
13    
14     IMPLICIT NONE
15 baylor 1.5 C
16     C Calculate horizontal viscosities (L is typical grid width)
17     C harmonic viscosity=
18     C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
19     C +0.25*L**2*viscAhGrid/deltaT
20 baylor 1.17 C +sqrt((viscC2leith/pi)**6*grad(Vort3)**2
21     C +(viscC2leithD/pi)**6*grad(hDiv)**2)*L**3
22 baylor 1.5 C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
23     C
24     C biharmonic viscosity=
25     C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
26     C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
27 baylor 1.17 C +0.125*L**5*sqrt((viscC4leith/pi)**6*grad(Vort3)**2
28     C +(viscC4leithD/pi)**6*grad(hDiv)**2)
29 baylor 1.5 C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
30     C
31     C Note that often 0.125*L**2 is the scale between harmonic and
32     C biharmonic (see Griffies and Hallberg (2000))
33     C This allows the same value of the coefficient to be used
34     C for roughly similar results with biharmonic and harmonic
35     C
36     C LIMITERS -- limit min and max values of viscosities
37     C viscAhRemax is min value for grid point harmonic Reynolds num
38 baylor 1.9 C harmonic viscosity>sqrt(2*KE)*L/viscAhRemax
39 baylor 1.5 C
40     C viscA4Remax is min value for grid point biharmonic Reynolds num
41 baylor 1.9 C biharmonic viscosity>sqrt(2*KE)*L**3/8/viscA4Remax
42 baylor 1.5 C
43     C viscAhgridmax is CFL stability limiter for harmonic viscosity
44     C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
45     C
46     C viscA4gridmax is CFL stability limiter for biharmonic viscosity
47     C biharmonic viscosity<viscA4gridmax*L**4/32/deltaT (approx)
48     C
49     C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
50 cnh 1.25 C harmonic viscosity>0.25*viscAhgridmin*L**2/deltaT
51     C biharmonic viscosity>viscA4gridmin*L**4/32/deltaT (approx)
52    
53    
54 baylor 1.5 C
55     C RECOMMENDED VALUES
56 baylor 1.18 C viscC2Leith=1-3
57     C viscC2LeithD=1-3
58     C viscC4Leith=1-3
59     C viscC4LeithD=1.5-3
60 baylor 1.5 C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
61     C 0.2-0.9 (Smagorinsky,1993)
62     C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
63 baylor 1.9 C viscAhRemax>=1, (<2 suppresses a computational mode)
64     C viscA4Remax>=1, (<2 suppresses a computational mode)
65 baylor 1.5 C viscAhgridmax=1
66     C viscA4gridmax=1
67     C viscAhgrid<1
68     C viscA4grid<1
69     C viscAhgridmin<<1
70     C viscA4gridmin<<1
71 baylor 1.1
72     C == Global variables ==
73     #include "SIZE.h"
74     #include "GRID.h"
75     #include "EEPARAMS.h"
76     #include "PARAMS.h"
77 baylor 1.23 #ifdef ALLOW_NONHYDROSTATIC
78     #include "NH_VARS.h"
79     #endif
80 baylor 1.1
81     C == Routine arguments ==
82     INTEGER bi,bj,k
83     _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84     _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85     _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86     _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89     _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90     _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91     _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92     _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93     INTEGER myThid
94     LOGICAL harmonic,biharmonic,useVariableViscosity
95    
96     C == Local variables ==
97     INTEGER I,J
98 jmc 1.29 #ifdef ALLOW_NONHYDROSTATIC
99 baylor 1.23 INTEGER kp1
100 jmc 1.29 #endif
101 baylor 1.5 _RL smag2fac, smag4fac
102 baylor 1.17 _RL leith2fac, leith4fac
103     _RL leithD2fac, leithD4fac
104 baylor 1.6 _RL viscAhRe_max, viscA4Re_max
105 jmc 1.15 _RL Alin,grdVrt,grdDiv, keZpt
106 baylor 1.1 _RL recip_dt,L2,L3,L4,L5,L2rdt,L4rdt
107 baylor 1.5 _RL Uscl,U4scl
108 jmc 1.16 _RL divDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109     _RL divDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 jmc 1.20 _RL vrtDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111     _RL vrtDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 baylor 1.5 _RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113     _RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114     _RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115     _RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
116     _RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
117     _RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118     _RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119     _RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120     _RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121     _RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122     _RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123     _RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124     _RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125     _RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126     _RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
127     _RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128     _RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129     _RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130     _RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131     _RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132     LOGICAL calcLeith,calcSmag
133 baylor 1.1
134     useVariableViscosity=
135     & (viscAhGrid.NE.0.)
136     & .OR.(viscA4Grid.NE.0.)
137     & .OR.(viscC2leith.NE.0.)
138     & .OR.(viscC2leithD.NE.0.)
139     & .OR.(viscC4leith.NE.0.)
140     & .OR.(viscC4leithD.NE.0.)
141     & .OR.(viscC2smag.NE.0.)
142     & .OR.(viscC4smag.NE.0.)
143    
144     harmonic=
145     & (viscAh.NE.0.)
146     & .OR.(viscAhD.NE.0.)
147     & .OR.(viscAhZ.NE.0.)
148     & .OR.(viscAhGrid.NE.0.)
149     & .OR.(viscC2leith.NE.0.)
150     & .OR.(viscC2leithD.NE.0.)
151     & .OR.(viscC2smag.NE.0.)
152    
153 baylor 1.9 IF ((harmonic).and.(viscAhremax.ne.0.)) THEN
154 jmc 1.10 viscAhre_max=sqrt(2. _d 0)/viscAhRemax
155 baylor 1.9 ELSE
156 jmc 1.10 viscAhre_max=0. _d 0
157 baylor 1.9 ENDIF
158 baylor 1.5
159 baylor 1.1 biharmonic=
160     & (viscA4.NE.0.)
161     & .OR.(viscA4D.NE.0.)
162     & .OR.(viscA4Z.NE.0.)
163     & .OR.(viscA4Grid.NE.0.)
164     & .OR.(viscC4leith.NE.0.)
165     & .OR.(viscC4leithD.NE.0.)
166     & .OR.(viscC4smag.NE.0.)
167    
168 baylor 1.9 IF ((biharmonic).and.(viscA4remax.ne.0.)) THEN
169 jmc 1.10 viscA4re_max=0.125 _d 0*sqrt(2. _d 0)/viscA4Remax
170 baylor 1.9 ELSE
171 jmc 1.10 viscA4re_max=0. _d 0
172 baylor 1.9 ENDIF
173 baylor 1.5
174     calcleith=
175     & (viscC2leith.NE.0.)
176     & .OR.(viscC2leithD.NE.0.)
177     & .OR.(viscC4leith.NE.0.)
178     & .OR.(viscC4leithD.NE.0.)
179    
180     calcsmag=
181     & (viscC2smag.NE.0.)
182     & .OR.(viscC4smag.NE.0.)
183    
184 baylor 1.1 IF (deltaTmom.NE.0.) THEN
185 jmc 1.10 recip_dt=1. _d 0/deltaTmom
186 baylor 1.1 ELSE
187 jmc 1.10 recip_dt=0. _d 0
188 baylor 1.1 ENDIF
189    
190 baylor 1.5 IF (calcsmag) THEN
191     smag2fac=(viscC2smag/pi)**2
192 jmc 1.10 smag4fac=0.125 _d 0*(viscC4smag/pi)**2
193 baylor 1.9 ELSE
194 jmc 1.10 smag2fac=0. _d 0
195     smag4fac=0. _d 0
196 baylor 1.5 ENDIF
197 baylor 1.1
198 baylor 1.17 IF (calcleith) THEN
199     IF (useFullLeith) THEN
200 baylor 1.19 leith2fac =(viscC2leith /pi)**6
201 baylor 1.17 leithD2fac=(viscC2leithD/pi)**6
202 baylor 1.19 leith4fac =0.015625 _d 0*(viscC4leith /pi)**6
203 baylor 1.17 leithD4fac=0.015625 _d 0*(viscC4leithD/pi)**6
204     ELSE
205 baylor 1.19 leith2fac =(viscC2leith /pi)**3
206 baylor 1.17 leithD2fac=(viscC2leithD/pi)**3
207 baylor 1.19 leith4fac =0.125 _d 0*(viscC4leith /pi)**3
208     leithD4fac=0.125 _d 0*(viscC4leithD/pi)**3
209 baylor 1.17 ENDIF
210     ELSE
211     leith2fac=0. _d 0
212     leith4fac=0. _d 0
213     leithD2fac=0. _d 0
214     leithD4fac=0. _d 0
215     ENDIF
216    
217 heimbach 1.21 #ifdef ALLOW_AUTODIFF_TAMC
218 heimbach 1.22 IF ( calcLeith .OR. calcSmag ) THEN
219     STOP 'calcLeith or calcSmag not implemented for ADJOINT'
220     ENDIF
221 mlosch 1.24 #endif
222 heimbach 1.22 DO j=1-Oly,sNy+Oly
223 heimbach 1.21 DO i=1-Olx,sNx+Olx
224     viscAh_D(i,j)=viscAhD
225     viscAh_Z(i,j)=viscAhZ
226     viscA4_D(i,j)=viscA4D
227     viscA4_Z(i,j)=viscA4Z
228     c
229     visca4_zsmg(i,j) = 0. _d 0
230     viscah_zsmg(i,j) = 0. _d 0
231     c
232     viscAh_Dlth(i,j) = 0. _d 0
233     viscA4_Dlth(i,j) = 0. _d 0
234     viscAh_DlthD(i,j)= 0. _d 0
235     viscA4_DlthD(i,j)= 0. _d 0
236     c
237     viscAh_DSmg(i,j) = 0. _d 0
238     viscA4_DSmg(i,j) = 0. _d 0
239     c
240     viscAh_ZLth(i,j) = 0. _d 0
241     viscA4_ZLth(i,j) = 0. _d 0
242     viscAh_ZLthD(i,j)= 0. _d 0
243     viscA4_ZLthD(i,j)= 0. _d 0
244     ENDDO
245 heimbach 1.22 ENDDO
246 heimbach 1.21
247 baylor 1.1 C - Viscosity
248     IF (useVariableViscosity) THEN
249 jmc 1.16
250 jmc 1.20 C- Initialise to zero gradient of vorticity & divergence:
251 jmc 1.16 DO j=1-Oly,sNy+Oly
252     DO i=1-Olx,sNx+Olx
253     divDx(i,j) = 0.
254     divDy(i,j) = 0.
255 jmc 1.20 vrtDx(i,j) = 0.
256     vrtDy(i,j) = 0.
257 jmc 1.16 ENDDO
258     ENDDO
259 jmc 1.20
260 jmc 1.16 IF (calcleith) THEN
261 jmc 1.20 C horizontal gradient of horizontal divergence:
262    
263 jmc 1.16 C- gradient in x direction:
264 heimbach 1.26 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
265 jmc 1.16 IF (useCubedSphereExchange) THEN
266     C to compute d/dx(hDiv), fill corners with appropriate values:
267 jmc 1.27 CALL FILL_CS_CORNER_TR_RL( .TRUE., .FALSE.,
268     & hDiv, bi,bj, myThid )
269 jmc 1.16 ENDIF
270 heimbach 1.26 cph-exch2#endif
271 jmc 1.16 DO j=2-Oly,sNy+Oly-1
272     DO i=2-Olx,sNx+Olx-1
273     divDx(i,j) = (hDiv(i,j)-hDiv(i-1,j))*recip_DXC(i,j,bi,bj)
274     ENDDO
275     ENDDO
276    
277     C- gradient in y direction:
278 heimbach 1.26 cph-exch2#ifndef ALLOW_AUTODIFF_TAMC
279 jmc 1.16 IF (useCubedSphereExchange) THEN
280     C to compute d/dy(hDiv), fill corners with appropriate values:
281 jmc 1.27 CALL FILL_CS_CORNER_TR_RL(.FALSE., .FALSE.,
282     & hDiv, bi,bj, myThid )
283 jmc 1.16 ENDIF
284 heimbach 1.26 cph-exch2#endif
285 jmc 1.16 DO j=2-Oly,sNy+Oly-1
286     DO i=2-Olx,sNx+Olx-1
287     divDy(i,j) = (hDiv(i,j)-hDiv(i,j-1))*recip_DYC(i,j,bi,bj)
288     ENDDO
289     ENDDO
290 jmc 1.20
291     C horizontal gradient of vertical vorticity:
292     C- gradient in x direction:
293     DO j=2-Oly,sNy+Oly
294     DO i=2-Olx,sNx+Olx-1
295     vrtDx(i,j) = (vort3(i+1,j)-vort3(i,j))
296     & *recip_DXG(i,j,bi,bj)
297     & *maskS(i,j,k,bi,bj)
298     ENDDO
299     ENDDO
300     C- gradient in y direction:
301     DO j=2-Oly,sNy+Oly-1
302     DO i=2-Olx,sNx+Olx
303     vrtDy(i,j) = (vort3(i,j+1)-vort3(i,j))
304     & *recip_DYG(i,j,bi,bj)
305     & *maskW(i,j,k,bi,bj)
306     ENDDO
307     ENDDO
308    
309 jmc 1.16 ENDIF
310    
311 baylor 1.1 DO j=2-Oly,sNy+Oly-1
312     DO i=2-Olx,sNx+Olx-1
313     CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
314 baylor 1.5
315 baylor 1.1 C These are (powers of) length scales
316 baylor 1.11 IF (useAreaViscLength) THEN
317 jmc 1.12 L2=rA(i,j,bi,bj)
318 baylor 1.11 ELSE
319     L2=2. _d 0/((recip_DXF(I,J,bi,bj)**2+recip_DYF(I,J,bi,bj)**2))
320     ENDIF
321 baylor 1.1 L3=(L2**1.5)
322     L4=(L2**2)
323 mlosch 1.30 L5=(L2**2.5)
324 baylor 1.5
325 jmc 1.10 L2rdt=0.25 _d 0*recip_dt*L2
326 baylor 1.5
327 mlosch 1.30 IF (useAreaViscLength) THEN
328     L4rdt=0.03125 _d 0*recip_dt*L2**2
329     ELSE
330     L4rdt=recip_dt/( 6. _d 0*(recip_DXF(I,J,bi,bj)**4
331     & +recip_DYF(I,J,bi,bj)**4)
332     & +8. _d 0*((recip_DXF(I,J,bi,bj)
333     & *recip_DYF(I,J,bi,bj))**2) )
334     ENDIF
335    
336 baylor 1.5 C Velocity Reynolds Scale
337 jmc 1.15 IF ( viscAhRe_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
338     Uscl=sqrt(KE(i,j)*L2)*viscAhRe_max
339     ELSE
340     Uscl=0.
341     ENDIF
342     IF ( viscA4Re_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
343     U4scl=sqrt(KE(i,j))*L3*viscA4Re_max
344     ELSE
345     U4scl=0.
346     ENDIF
347 baylor 1.5
348 heimbach 1.22 #ifndef ALLOW_AUTODIFF_TAMC
349 baylor 1.5 IF (useFullLeith.and.calcleith) THEN
350 baylor 1.1 C This is the vector magnitude of the vorticity gradient squared
351 jmc 1.20 grdVrt=0.25 _d 0*( (vrtDx(i,j+1)*vrtDx(i,j+1)
352     & + vrtDx(i,j)*vrtDx(i,j) )
353     & + (vrtDy(i+1,j)*vrtDy(i+1,j)
354     & + vrtDy(i,j)*vrtDy(i,j) ) )
355 baylor 1.1
356     C This is the vector magnitude of grad (div.v) squared
357     C Using it in Leith serves to damp instabilities in w.
358 jmc 1.16 grdDiv=0.25 _d 0*( (divDx(i+1,j)*divDx(i+1,j)
359     & + divDx(i,j)*divDx(i,j) )
360     & + (divDy(i,j+1)*divDy(i,j+1)
361     & + divDy(i,j)*divDy(i,j) ) )
362 baylor 1.5
363     viscAh_DLth(i,j)=
364 baylor 1.17 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
365     viscA4_DLth(i,j)=
366     & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
367 baylor 1.5 viscAh_DLthd(i,j)=
368 baylor 1.17 & sqrt(leithD2fac*grdDiv)*L3
369     viscA4_DLthd(i,j)=
370     & sqrt(leithD4fac*grdDiv)*L5
371 baylor 1.5 ELSEIF (calcleith) THEN
372 baylor 1.1 C but this approximation will work on cube
373     c (and differs by as much as 4X)
374 jmc 1.20 grdVrt=max( abs(vrtDx(i,j+1)), abs(vrtDx(i,j)) )
375     grdVrt=max( grdVrt, abs(vrtDy(i+1,j)) )
376     grdVrt=max( grdVrt, abs(vrtDy(i,j)) )
377 baylor 1.5
378 jmc 1.20 c This approximation is good to the same order as above...
379 jmc 1.16 grdDiv=max( abs(divDx(i+1,j)), abs(divDx(i,j)) )
380     grdDiv=max( grdDiv, abs(divDy(i,j+1)) )
381     grdDiv=max( grdDiv, abs(divDy(i,j)) )
382 baylor 1.1
383 baylor 1.17 viscAh_Dlth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
384     viscA4_Dlth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
385     viscAh_DlthD(i,j)=((leithD2fac*grdDiv))*L3
386     viscA4_DlthD(i,j)=((leithD4fac*grdDiv))*L5
387 baylor 1.1 ELSE
388 jmc 1.10 viscAh_Dlth(i,j)=0. _d 0
389     viscA4_Dlth(i,j)=0. _d 0
390     viscAh_DlthD(i,j)=0. _d 0
391     viscA4_DlthD(i,j)=0. _d 0
392 baylor 1.1 ENDIF
393    
394 baylor 1.5 IF (calcsmag) THEN
395     viscAh_DSmg(i,j)=L2
396     & *sqrt(tension(i,j)**2
397 jmc 1.10 & +0.25 _d 0*(strain(i+1, j )**2+strain( i ,j+1)**2
398     & +strain(i , j )**2+strain(i+1,j+1)**2))
399 baylor 1.5 viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
400     viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
401 baylor 1.1 ELSE
402 jmc 1.10 viscAh_DSmg(i,j)=0. _d 0
403     viscA4_DSmg(i,j)=0. _d 0
404 baylor 1.1 ENDIF
405 heimbach 1.22 #endif /* ALLOW_AUTODIFF_TAMC */
406 baylor 1.1
407     C Harmonic on Div.u points
408 baylor 1.5 Alin=viscAhD+viscAhGrid*L2rdt
409     & +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
410     viscAh_DMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
411     viscAh_D(i,j)=max(viscAh_DMin(i,j),Alin)
412     viscAh_DMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
413     viscAh_D(i,j)=min(viscAh_DMax(i,j),viscAh_D(i,j))
414 baylor 1.1
415     C BiHarmonic on Div.u points
416 baylor 1.5 Alin=viscA4D+viscA4Grid*L4rdt
417     & +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
418     viscA4_DMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
419     viscA4_D(i,j)=max(viscA4_DMin(i,j),Alin)
420     viscA4_DMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
421     viscA4_D(i,j)=min(viscA4_DMax(i,j),viscA4_D(i,j))
422 baylor 1.1
423 jmc 1.27 #ifdef ALLOW_NONHYDROSTATIC
424 baylor 1.23 C /* Pass Viscosities to calc_gw, if constant, not necessary */
425    
426     kp1 = MIN(k+1,Nr)
427    
428     if (k .eq. 1) then
429     viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
430     viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
431    
432 jmc 1.27 C /* These values dont get used */
433     viscAh_W(i,j,k,bi,bj)=viscAh_D(i,j)
434 baylor 1.23 viscA4_W(i,j,k,bi,bj)=viscA4_D(i,j)
435     else
436     C Note that previous call of this function has already added half.
437     viscAh_W(i,j,kp1,bi,bj)=0.5*viscAh_D(i,j)
438     viscA4_W(i,j,kp1,bi,bj)=0.5*viscA4_D(i,j)
439    
440     viscAh_W(i,j,k,bi,bj)=viscAh_W(i,j,k,bi,bj)+0.5*viscAh_D(i,j)
441     viscA4_W(i,j,k,bi,bj)=viscA4_W(i,j,k,bi,bj)+0.5*viscA4_D(i,j)
442     endif
443     #endif /* ALLOW_NONHYDROSTATIC */
444    
445 baylor 1.1 CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
446     C These are (powers of) length scales
447 baylor 1.11 IF (useAreaViscLength) THEN
448 jmc 1.12 L2=rAz(i,j,bi,bj)
449 baylor 1.11 ELSE
450 jmc 1.12 L2=2. _d 0/((recip_DXV(I,J,bi,bj)**2+recip_DYU(I,J,bi,bj)**2))
451 baylor 1.11 ENDIF
452    
453 baylor 1.1 L3=(L2**1.5)
454     L4=(L2**2)
455 mlosch 1.30 L5=(L2**2.5)
456 baylor 1.5
457 jmc 1.10 L2rdt=0.25 _d 0*recip_dt*L2
458 mlosch 1.30 IF (useAreaViscLength) THEN
459     L4rdt=0.125 _d 0*recip_dt*rAz(i,j,bi,bj)**2
460     ELSE
461     L4rdt=recip_dt/
462     & ( 6. _d 0*(recip_DXV(I,J,bi,bj)**4+recip_DYU(I,J,bi,bj)**4)
463     & +8. _d 0*((recip_DXV(I,J,bi,bj)*recip_DYU(I,J,bi,bj))**2))
464     ENDIF
465 baylor 1.5
466 jmc 1.15 C Velocity Reynolds Scale (Pb here at CS-grid corners !)
467     IF ( viscAhRe_max.GT.0. .OR. viscA4Re_max.GT.0. ) THEN
468     keZpt=0.25 _d 0*( (KE(i,j)+KE(i-1,j-1))
469     & +(KE(i-1,j)+KE(i,j-1)) )
470     IF ( keZpt.GT.0. ) THEN
471     Uscl = sqrt(keZpt*L2)*viscAhRe_max
472     U4scl= sqrt(keZpt)*L3*viscA4Re_max
473     ELSE
474     Uscl =0.
475     U4scl=0.
476     ENDIF
477     ELSE
478     Uscl =0.
479     U4scl=0.
480     ENDIF
481 baylor 1.1
482 heimbach 1.22 #ifndef ALLOW_AUTODIFF_TAMC
483 baylor 1.1 C This is the vector magnitude of the vorticity gradient squared
484 baylor 1.5 IF (useFullLeith.and.calcleith) THEN
485 jmc 1.20 grdVrt=0.25 _d 0*( (vrtDx(i-1,j)*vrtDx(i-1,j)
486     & + vrtDx(i,j)*vrtDx(i,j) )
487     & + (vrtDy(i,j-1)*vrtDy(i,j-1)
488     & + vrtDy(i,j)*vrtDy(i,j) ) )
489 baylor 1.1
490     C This is the vector magnitude of grad(div.v) squared
491 jmc 1.16 grdDiv=0.25 _d 0*( (divDx(i,j-1)*divDx(i,j-1)
492     & + divDx(i,j)*divDx(i,j) )
493     & + (divDy(i-1,j)*divDy(i-1,j)
494     & + divDy(i,j)*divDy(i,j) ) )
495 baylor 1.5
496     viscAh_ZLth(i,j)=
497 baylor 1.17 & sqrt(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
498     viscA4_ZLth(i,j)=
499     & sqrt(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
500 baylor 1.5 viscAh_ZLthD(i,j)=
501 baylor 1.17 & sqrt(leithD2fac*grdDiv)*L3
502     viscA4_ZLthD(i,j)=
503     & sqrt(leithD4fac*grdDiv)*L5
504 baylor 1.5
505     ELSEIF (calcleith) THEN
506 baylor 1.1 C but this approximation will work on cube (and differs by 4X)
507 jmc 1.20 grdVrt=max( abs(vrtDx(i-1,j)), abs(vrtDx(i,j)) )
508     grdVrt=max( grdVrt, abs(vrtDy(i,j-1)) )
509     grdVrt=max( grdVrt, abs(vrtDy(i,j)) )
510 baylor 1.5
511 jmc 1.16 grdDiv=max( abs(divDx(i,j)), abs(divDx(i,j-1)) )
512     grdDiv=max( grdDiv, abs(divDy(i,j)) )
513     grdDiv=max( grdDiv, abs(divDy(i-1,j)) )
514 baylor 1.5
515 baylor 1.17 viscAh_ZLth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
516     viscA4_ZLth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
517     viscAh_ZLthD(i,j)=(leithD2fac*grdDiv)*L3
518     viscA4_ZLthD(i,j)=(leithD4fac*grdDiv)*L5
519 baylor 1.1 ELSE
520 jmc 1.10 viscAh_ZLth(i,j)=0. _d 0
521     viscA4_ZLth(i,j)=0. _d 0
522     viscAh_ZLthD(i,j)=0. _d 0
523     viscA4_ZLthD(i,j)=0. _d 0
524 baylor 1.1 ENDIF
525    
526 baylor 1.5 IF (calcsmag) THEN
527     viscAh_ZSmg(i,j)=L2
528     & *sqrt(strain(i,j)**2
529 jmc 1.10 & +0.25 _d 0*(tension( i , j )**2+tension( i ,j-1)**2
530     & +tension(i-1, j )**2+tension(i-1,j-1)**2))
531 baylor 1.5 viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
532     viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
533 baylor 1.1 ENDIF
534 heimbach 1.22 #endif /* ALLOW_AUTODIFF_TAMC */
535 baylor 1.1
536     C Harmonic on Zeta points
537 baylor 1.5 Alin=viscAhZ+viscAhGrid*L2rdt
538     & +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
539     viscAh_ZMin(i,j)=max(viscAhGridMin*L2rdt,Uscl)
540     viscAh_Z(i,j)=max(viscAh_ZMin(i,j),Alin)
541     viscAh_ZMax(i,j)=min(viscAhGridMax*L2rdt,viscAhMax)
542     viscAh_Z(i,j)=min(viscAh_ZMax(i,j),viscAh_Z(i,j))
543    
544     C BiHarmonic on Zeta points
545     Alin=viscA4Z+viscA4Grid*L4rdt
546     & +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
547     viscA4_ZMin(i,j)=max(viscA4GridMin*L4rdt,U4scl)
548     viscA4_Z(i,j)=max(viscA4_ZMin(i,j),Alin)
549     viscA4_ZMax(i,j)=min(viscA4GridMax*L4rdt,viscA4Max)
550     viscA4_Z(i,j)=min(viscA4_ZMax(i,j),viscA4_Z(i,j))
551 baylor 1.1 ENDDO
552     ENDDO
553     ELSE
554     DO j=1-Oly,sNy+Oly
555     DO i=1-Olx,sNx+Olx
556     viscAh_D(i,j)=viscAhD
557     viscAh_Z(i,j)=viscAhZ
558     viscA4_D(i,j)=viscA4D
559     viscA4_Z(i,j)=viscA4Z
560     ENDDO
561     ENDDO
562     ENDIF
563    
564     #ifdef ALLOW_DIAGNOSTICS
565     IF (useDiagnostics) THEN
566     CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
567     CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
568     CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
569     CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
570 baylor 1.23 #ifdef ALLOW_NONHYDROSTATIC
571     CALL DIAGNOSTICS_FILL(viscAh_W,'VISCAHW ',k,1,2,bi,bj,myThid)
572     CALL DIAGNOSTICS_FILL(viscA4_W,'VISCA4W ',k,1,2,bi,bj,myThid)
573     #endif
574 baylor 1.5
575     CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
576     CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
577     CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
578     CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
579    
580     CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
581     CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
582     CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
583     CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
584    
585     CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
586     CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
587     CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
588     CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
589    
590 baylor 1.7 CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD'
591 baylor 1.8 & ,k,1,2,bi,bj,myThid)
592 baylor 1.7 CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD'
593 baylor 1.8 & ,k,1,2,bi,bj,myThid)
594 baylor 1.7 CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD'
595 baylor 1.8 & ,k,1,2,bi,bj,myThid)
596 baylor 1.7 CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD'
597 baylor 1.8 & ,k,1,2,bi,bj,myThid)
598 baylor 1.5
599     CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
600     CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
601     CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
602     CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
603 baylor 1.1 ENDIF
604     #endif
605    
606     RETURN
607     END
608 baylor 1.5

  ViewVC Help
Powered by ViewVC 1.1.22