/[MITgcm]/MITgcm/pkg/land/land_stepfwd.F
ViewVC logotype

Annotation of /MITgcm/pkg/land/land_stepfwd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (hide annotations) (download)
Sat May 15 20:43:27 2004 UTC (20 years ago) by jmc
Branch: MAIN
Changes since 1.3: +9 -6 lines
to use calc_snow without calc_grdW

1 jmc 1.4 C $Header: /u/gcmpack/MITgcm/pkg/land/land_stepfwd.F,v 1.3 2004/05/14 16:14:48 jmc Exp $
2 jmc 1.1 C $Name: $
3    
4     #include "LAND_OPTIONS.h"
5    
6     CBOP
7     C !ROUTINE: LAND_STEPFWD
8     C !INTERFACE:
9     SUBROUTINE LAND_STEPFWD(
10     I land_frc, bi, bj, myTime, myIter, myThid)
11    
12     C !DESCRIPTION: \bv
13     C *==========================================================*
14     C | S/R LAND_STEPFWD
15     C | o Land model main S/R: step forward land variables
16     C *==========================================================*
17     C \ev
18    
19     C !USES:
20     IMPLICIT NONE
21    
22     C == Global variables ===
23     C-- size for MITgcm & Land package :
24     #include "LAND_SIZE.h"
25    
26     #include "EEPARAMS.h"
27     #include "LAND_PARAMS.h"
28     #include "LAND_VARS.h"
29    
30     C !INPUT/OUTPUT PARAMETERS:
31     C == Routine arguments ==
32     C land_frc :: land fraction [0-1]
33     C bi,bj :: Tile index
34     C myTime :: Current time of simulation ( s )
35     C myIter :: Current iteration number in simulation
36     C myThid :: Number of this instance of the routine
37     _RS land_frc(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
38     INTEGER bi, bj, myIter, myThid
39     _RL myTime
40     CEOP
41    
42     #ifdef ALLOW_LAND
43     C == Local variables ==
44     C i,j,k :: loop counters
45     C kp1 :: k+1
46 jmc 1.2 C grd_HeatCp :: Heat capacity of the ground [J/m3/K]
47 jmc 1.3 C enthalpGrdW :: enthalpy of ground water [J/m3]
48 jmc 1.1 C fieldCapac :: field capacity (of water) [m]
49 jmc 1.2 C mWater :: water content of the ground [kg/m3]
50 jmc 1.3 C groundWnp1 :: hold temporary future soil moisture []
51     C grdWexcess :: ground water in excess [m/s]
52 jmc 1.1 C fractRunOff :: fraction of water in excess which leaves as runoff
53 jmc 1.2 C flxkup :: downward flux of water, upper interface (k-1,k)
54     C flxdwn :: downward flux of water, lower interface (k,k+1)
55 jmc 1.3 C flxEngU :: downward energy flux associated with water flux (W/m2)
56     C upper interface (k-1,k)
57     C flxEngL :: downward energy flux associated with water flux (W/m2)
58     C lower interface (k,k+1)
59 jmc 1.2 C temp_af :: ground temperature if above freezing
60     C temp_bf :: ground temperature if below freezing
61     C mPmE :: hold temporary (liquid) Precip minus Evap [kg/m2/s]
62     C enWfx :: hold temporary energy flux of Precip [W/m2]
63     C enGr1 :: ground enthalpy of level 1 [J/m2]
64     C mSnow :: mass of snow [kg/m2]
65     C dMsn :: mass of melting snow [kg/m2]
66     C snowPrec :: snow precipitation [kg/m2/s]
67     C hNewSnow :: fresh snow accumulation [m]
68 jmc 1.3 C dhSnowMx :: potential snow increase [m]
69     C dhSnow :: effective snow increase [m]
70     C mIceDt :: ground-ice growth rate (<- excess of snow) [kg/m2/s]
71 jmc 1.2 C ageFac :: snow aging factor [1]
72 jmc 1.3 _RL grd_HeatCp, enthalpGrdW
73     _RL fieldCapac, mWater
74     _RL groundWnp1, grdWexcess, fractRunOff
75 jmc 1.1 _RL flxkup(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76     _RL flxkdw(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 jmc 1.3 _RL flxEngU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78     _RL flxEngL, temp_af, temp_bf, mPmE, enWfx, enGr1
79     _RL mSnow, dMsn, snowPrec
80     _RL hNewSnow, dhSnowMx, dhSnow, mIceDt, ageFac
81 jmc 1.1 INTEGER i,j,k,kp1
82    
83 jmc 1.2 IF (land_calc_grT .AND. .NOT.land_impl_grT ) THEN
84 jmc 1.1 C-- Step forward ground temperature:
85    
86     DO k=1,land_nLev
87     kp1 = MIN(k+1,land_nLev)
88    
89     IF (k.EQ.1) THEN
90     DO j=1,sNy
91     DO i=1,sNx
92     flxkup(i,j) = land_HeatFlx(i,j,bi,bj)
93     ENDDO
94     ENDDO
95     ELSE
96     DO j=1,sNy
97     DO i=1,sNx
98     flxkup(i,j) = flxkdw(i,j)
99     ENDDO
100     ENDDO
101     ENDIF
102    
103     DO j=1,sNy
104     DO i=1,sNx
105     IF ( land_frc(i,j,bi,bj).GT.0. ) THEN
106     C- Thermal conductivity flux, lower interface (k,k+1):
107     flxkdw(i,j) = land_grdLambda*
108     & ( land_groundT(i,j,k,bi,bj)
109     & -land_groundT(i,j,kp1,bi,bj) )
110     & *land_rec_dzC(kp1)
111    
112 jmc 1.2 C- Step forward ground enthalpy, level k :
113     land_enthalp(i,j,k,bi,bj) = land_enthalp(i,j,k,bi,bj)
114     & + land_deltaT * (flxkup(i,j)-flxkdw(i,j))/land_dzF(k)
115 jmc 1.1
116     ENDIF
117     ENDDO
118     ENDDO
119    
120     ENDDO
121     C-- step forward ground temperature: end
122     ENDIF
123    
124 jmc 1.2 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
125    
126 jmc 1.4 IF ( land_calc_grW .OR. land_calc_snow ) THEN
127 jmc 1.3 C-- Initialize run-off arrays.
128     DO j=1,sNy
129     DO i=1,sNx
130     land_runOff(i,j,bi,bj) = 0. _d 0
131     land_enRnOf(i,j,bi,bj) = 0. _d 0
132     ENDDO
133     ENDDO
134 jmc 1.4 ENDIF
135    
136     #ifdef LAND_OLD_VERSION
137     IF ( .TRUE. ) THEN
138     #else
139     IF ( land_calc_grW ) THEN
140     #endif
141 jmc 1.2 C-- need (later on) ground temp. to be consistent with updated enthalpy:
142     DO k=1,land_nLev
143     DO j=1,sNy
144     DO i=1,sNx
145     IF ( land_frc(i,j,bi,bj).GT.0. ) THEN
146     mWater = land_rhoLiqW*land_waterCap
147     & *land_groundW(i,j,k,bi,bj)
148     grd_HeatCp = land_heatCs + land_CpWater*mWater
149     temp_bf = (land_enthalp(i,j,k,bi,bj)+land_Lfreez*mWater)
150     & / grd_HeatCp
151     temp_af = land_enthalp(i,j,k,bi,bj) / grd_HeatCp
152     land_groundT(i,j,k,bi,bj) =
153     & MIN( temp_bf, MAX(temp_af, 0. _d 0) )
154     ENDIF
155     ENDDO
156     ENDDO
157     ENDDO
158     ENDIF
159    
160     IF ( land_calc_snow ) THEN
161     C-- Step forward Snow thickness (also account for rain temperature)
162     ageFac = 1. _d 0 - land_deltaT/timeSnowAge
163     DO j=1,sNy
164     DO i=1,sNx
165     IF ( land_frc(i,j,bi,bj).GT.0. ) THEN
166     mPmE = land_Pr_m_Ev(i,j,bi,bj)
167     enWfx = land_EnWFlux(i,j,bi,bj)
168     enGr1 = land_enthalp(i,j,1,bi,bj)*land_dzF(1)
169     C- snow aging:
170     land_snowAge(i,j,bi,bj) =
171     & ( land_deltaT + land_snowAge(i,j,bi,bj)*ageFac )
172     IF ( enWfx.LT.0. ) THEN
173     C- snow precip in excess (Snow > Evap) :
174     C => start to melt (until ground at freezing point) and then accumulate
175     snowPrec = -enWfx -MAX( enGr1/land_deltaT, 0. _d 0 )
176     snowPrec = MAX( snowPrec*recip_Lfreez , 0. _d 0 )
177     mPmE = mPmE - snowPrec
178 jmc 1.3 flxEngU(i,j) = enWfx + land_Lfreez*snowPrec
179 jmc 1.2 hNewSnow = land_deltaT * snowPrec / land_rhoSnow
180     C- refresh snow age:
181     land_snowAge(i,j,bi,bj) = land_snowAge(i,j,bi,bj)
182     & *EXP( -hNewSnow/hNewSnowAge )
183 jmc 1.3 C- update snow thickness:
184     c land_hSnow(i,j,bi,bj) = land_hSnow(i,j,bi,bj) + hNewSnow
185     C glacier & ice-sheet missing: excess of snow put directly into run-off
186     dhSnowMx = MAX( 0. _d 0,
187     & land_hMaxSnow - land_hSnow(i,j,bi,bj) )
188     dhSnow = MIN( hNewSnow, dhSnowMx )
189     land_hSnow(i,j,bi,bj) = land_hSnow(i,j,bi,bj) + dhSnow
190     mIceDt = land_rhoSnow * (hNewSnow-dhSnow) / land_deltaT
191     land_runOff(i,j,bi,bj) = mIceDt/land_rhoLiqW
192     land_enRnOf(i,j,bi,bj) = -mIceDt*land_Lfreez
193 jmc 1.2 ELSE
194     C- rain precip (whatever Evap is) or Evap exceeds snow precip :
195     C => snow melts or sublimates
196     c snowMelt = MIN( enWfx*recip_Lfreez ,
197     c & land_hSnow(i,j,bi,bj)*land_rhoSnow/land_deltaT )
198     mSnow = land_hSnow(i,j,bi,bj)*land_rhoSnow
199     dMsn = enWfx*recip_Lfreez*land_deltaT
200     IF ( dMsn .GE. mSnow ) THEN
201     dMsn = mSnow
202     land_hSnow(i,j,bi,bj) = 0. _d 0
203 jmc 1.3 flxEngU(i,j) = enWfx - land_Lfreez*mSnow/land_deltaT
204 jmc 1.2 ELSE
205 jmc 1.3 flxEngU(i,j) = 0. _d 0
206 jmc 1.2 land_hSnow(i,j,bi,bj) = land_hSnow(i,j,bi,bj)
207     & - dMsn / land_rhoSnow
208     ENDIF
209     c IF (mPmE.GT.0.) land_snowAge(i,j,bi,bj) = timeSnowAge
210     mPmE = mPmE + dMsn/land_deltaT
211     ENDIF
212     flxkup(i,j) = mPmE/land_rhoLiqW
213     c land_Pr_m_Ev(i,j,bi,bj) = mPmE
214     IF ( land_hSnow(i,j,bi,bj).LE. 0. _d 0 )
215     & land_snowAge(i,j,bi,bj) = 0. _d 0
216     C- avoid negative (but very small, < 1.e-34) hSnow that occurs because
217     C of truncation error. Might need to rewrite this part.
218     c IF ( land_hSnow(i,j,bi,bj).LE. 0. _d 0 ) THEN
219     c land_hSnow(i,j,bi,bj) = 0. _d 0
220     c land_snowAge(i,j,bi,bj) = 0. _d 0
221     c ENDIF
222     ENDIF
223     ENDDO
224     ENDDO
225     ELSE
226     DO j=1,sNy
227     DO i=1,sNx
228     flxkup(i,j) = land_Pr_m_Ev(i,j,bi,bj)/land_rhoLiqW
229 jmc 1.3 flxEngU(i,j) = 0. _d 0
230 jmc 1.2 ENDDO
231     ENDDO
232     ENDIF
233    
234     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
235    
236 jmc 1.1 IF (land_calc_grW) THEN
237     C-- Step forward ground Water:
238    
239     DO k=1,land_nLev
240     IF (k.EQ.land_nLev) THEN
241     kp1 = k
242     fractRunOff = 1. _d 0
243     ELSE
244     kp1 = k+1
245     fractRunOff = land_fractRunOff
246     ENDIF
247     fieldCapac = land_waterCap*land_dzF(k)
248    
249     DO j=1,sNy
250     DO i=1,sNx
251     IF ( land_frc(i,j,bi,bj).GT.0. ) THEN
252 jmc 1.3
253     #ifdef LAND_OLD_VERSION
254     IF ( .TRUE. ) THEN
255     IF ( k.EQ.land_nLev ) THEN
256     #else
257     IF ( land_groundT(i,j,k,bi,bj).LT.0. _d 0 ) THEN
258     C- Frozen level: only account for upper level fluxes
259     IF ( flxkup(i,j) .LT. 0. _d 0 ) THEN
260     C- Step forward soil moisture (& enthapy), level k :
261     land_groundW(i,j,k,bi,bj) = land_groundW(i,j,k,bi,bj)
262     & + land_deltaT * flxkup(i,j) / fieldCapac
263     IF ( land_calc_snow )
264     & land_enthalp(i,j,k,bi,bj) = land_enthalp(i,j,k,bi,bj)
265     & + land_deltaT * flxEngU(i,j) / land_dzF(k)
266     ELSE
267     C- Frozen level: incoming water flux goes directly into run-off
268     land_runOff(i,j,bi,bj) = land_runOff(i,j,bi,bj)
269     & + flxkup(i,j)
270     land_enRnOf(i,j,bi,bj) = land_enRnOf(i,j,bi,bj)
271     & + flxEngU(i,j)
272     ENDIF
273     C- prepare fluxes for next level:
274     flxkup(i,j) = 0. _d 0
275     flxEngU(i,j) = 0. _d 0
276    
277     ELSE
278    
279     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
280 jmc 1.2 C- Diffusion flux of water, lower interface (k,k+1):
281 jmc 1.3 IF ( k.EQ.land_nLev .OR.
282     & land_groundT(i,j,kp1,bi,bj).LT.0. _d 0 ) THEN
283     #endif /* LAND_OLD_VERSION */
284     C- no Diffusion of water if one level is frozen :
285     flxkdw(i,j) = 0. _d 0
286     flxEngL = 0. _d 0
287     ELSE
288     flxkdw(i,j) = fieldCapac*
289     & ( land_groundW(i,j,k,bi,bj)
290     & -land_groundW(i,j,kp1,bi,bj) )
291     & / land_wTauDiff
292     C- energy flux associated with water flux: take upwind Temp
293     IF ( flxkdw(i,j).GE.0. ) THEN
294     flxEngL = flxkdw(i,j)*land_rhoLiqW*land_CpWater
295     & *land_groundT(i,j,k,bi,bj)
296     ELSE
297     flxEngL = flxkdw(i,j)*land_rhoLiqW*land_CpWater
298     & *land_groundT(i,j,kp1,bi,bj)
299     ENDIF
300     ENDIF
301 jmc 1.1
302     C- Step forward soil moisture, level k :
303 jmc 1.3 groundWnp1 = land_groundW(i,j,k,bi,bj)
304 jmc 1.2 & + land_deltaT * (flxkup(i,j)-flxkdw(i,j)) / fieldCapac
305 jmc 1.3
306     C- Water in excess will leave as run-off or go to level below
307     land_groundW(i,j,k,bi,bj) = MIN(1. _d 0, groundWnp1)
308     grdWexcess = ( groundWnp1 - MIN(1. _d 0, groundWnp1) )
309     & *fieldCapac/land_deltaT
310 jmc 1.1
311     C- Run off: fraction 1-fractRunOff enters level below
312 jmc 1.3 land_runOff(i,j,bi,bj) = land_runOff(i,j,bi,bj)
313     & + fractRunOff*grdWexcess
314     C- prepare fluxes for next level:
315     flxkup(i,j) = flxkdw(i,j)
316     & + (1. _d 0-fractRunOff)*grdWexcess
317    
318     IF ( land_calc_snow ) THEN
319     enthalpGrdW = land_rhoLiqW*land_CpWater
320     & *land_groundT(i,j,k,bi,bj)
321     C-- Account for water fluxes in energy budget: update ground Enthalpy
322     land_enthalp(i,j,k,bi,bj) = land_enthalp(i,j,k,bi,bj)
323     & + ( flxEngU(i,j) - flxEngL - grdWexcess*enthalpGrdW
324     & )*land_deltaT/land_dzF(k)
325    
326     land_enRnOf(i,j,bi,bj) = land_enRnOf(i,j,bi,bj)
327     & + fractRunOff*grdWexcess*enthalpGrdW
328     C- prepare fluxes for next level:
329     flxEngU(i,j) = flxEngL
330     & + (1. _d 0-fractRunOff)*grdWexcess*enthalpGrdW
331     ENDIF
332 jmc 1.2 ENDIF
333 jmc 1.3 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
334 jmc 1.2
335 jmc 1.1 ENDIF
336     ENDDO
337     ENDDO
338    
339     ENDDO
340     C-- step forward ground Water: end
341 jmc 1.2 ENDIF
342    
343     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
344    
345 jmc 1.3 IF ( land_calc_grT ) THEN
346     C-- Compute ground temperature from enthalpy (if not already done):
347 jmc 1.2
348     DO k=1,land_nLev
349     DO j=1,sNy
350     DO i=1,sNx
351     C- Ground Heat capacity, layer k:
352     mWater = land_rhoLiqW*land_waterCap
353     & *land_groundW(i,j,k,bi,bj)
354     grd_HeatCp = land_heatCs + land_CpWater*mWater
355     C temperature below freezing:
356     temp_bf = (land_enthalp(i,j,k,bi,bj)+land_Lfreez*mWater)
357     & / grd_HeatCp
358     C temperature above freezing:
359     temp_af = land_enthalp(i,j,k,bi,bj) / grd_HeatCp
360     #ifdef LAND_OLD_VERSION
361     land_enthalp(i,j,k,bi,bj) =
362     & grd_HeatCp*land_groundT(i,j,k,bi,bj)
363     #else
364     land_groundT(i,j,k,bi,bj) =
365     & MIN( temp_bf, MAX(temp_af, 0. _d 0) )
366     #endif
367     ENDDO
368     ENDDO
369     ENDDO
370    
371     IF ( land_impl_grT ) THEN
372     DO j=1,sNy
373     DO i=1,sNx
374     IF ( land_hSnow(i,j,bi,bj).GT.0. _d 0 ) THEN
375     land_skinT(i,j,bi,bj) = MIN(land_skinT(i,j,bi,bj), 0. _d 0)
376     ELSE
377     land_skinT(i,j,bi,bj) = land_groundT(i,j,1,bi,bj)
378     ENDIF
379     ENDDO
380     ENDDO
381     ELSE
382     DO j=1,sNy
383     DO i=1,sNx
384     land_skinT(i,j,bi,bj) = land_groundT(i,j,1,bi,bj)
385     ENDDO
386     ENDDO
387     ENDIF
388    
389     C-- Compute ground temperature: end
390 jmc 1.1 ENDIF
391    
392     #endif /* ALLOW_LAND */
393    
394     RETURN
395     END

  ViewVC Help
Powered by ViewVC 1.1.22