/[MITgcm]/MITgcm/pkg/kpp/kpp_forcing_surf.F
ViewVC logotype

Contents of /MITgcm/pkg/kpp/kpp_forcing_surf.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.10 - (show annotations) (download)
Thu Sep 11 19:23:23 2014 UTC (9 years, 7 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint66g, checkpoint66f, checkpoint66e, checkpoint66d, checkpoint66c, checkpoint66b, checkpoint66a, checkpoint66o, checkpoint66n, checkpoint66m, checkpoint66l, checkpoint66k, checkpoint66j, checkpoint66i, checkpoint66h, checkpoint65z, checkpoint65x, checkpoint65y, checkpoint65r, checkpoint65s, checkpoint65p, checkpoint65q, checkpoint65v, checkpoint65w, checkpoint65t, checkpoint65u, checkpoint65j, checkpoint65k, checkpoint65h, checkpoint65i, checkpoint65n, checkpoint65o, checkpoint65l, checkpoint65m, checkpoint65f, checkpoint65g, checkpoint65d, checkpoint65e, HEAD
Changes since 1.9: +8 -5 lines
Include explicitly AUTODIFF_OPTIONS.h (in case we don't use ECCO_CPPOPTIONS.h)
and put storage dir within #ifdef ALLOW_AUTODIFF_TAMC

1 C $Header: /u/gcmpack/MITgcm/pkg/kpp/kpp_forcing_surf.F,v 1.9 2014/05/23 20:02:43 jmc Exp $
2 C $Name: $
3
4 #include "KPP_OPTIONS.h"
5 #ifdef ALLOW_AUTODIFF
6 # include "AUTODIFF_OPTIONS.h"
7 #endif
8 #ifdef ALLOW_SALT_PLUME
9 #include "SALT_PLUME_OPTIONS.h"
10 #endif
11
12 CBOP
13 C !ROUTINE: KPP_FORCING_SURF
14
15 C !INTERFACE: ==========================================================
16 SUBROUTINE KPP_FORCING_SURF(
17 I rhoSurf, surfForcU, surfForcV,
18 I surfForcT, surfForcS, surfForcTice,
19 I Qsw,
20 #ifdef ALLOW_SALT_PLUME
21 I SPforcS,SPforcT,
22 #endif /* ALLOW_SALT_PLUME */
23 I ttalpha, ssbeta,
24 O ustar, bo, bosol,
25 #ifdef ALLOW_SALT_PLUME
26 O boplume,
27 #endif /* ALLOW_SALT_PLUME */
28 O dVsq,
29 I ikppkey, iMin, iMax, jMin, jMax, bi, bj, myTime, myThid )
30
31 C !DESCRIPTION: \bv
32 C *==========================================================*
33 C | SUBROUTINE KPP_FORCING_SURF |
34 C | o Compute all surface related KPP fields: |
35 C | - friction velocity ustar |
36 C | - turbulent and radiative surface buoyancy forcing, |
37 C | bo and bosol, and surface haline buoyancy forcing |
38 C | boplume |
39 C | - velocity shear relative to surface squared (this is |
40 C | not really a surface affected quantity unless it is |
41 C | computed with respect to some resolution independent |
42 C | reference level, that is KPP_ESTIMATE_UREF defined ) |
43 C *==========================================================*
44 IMPLICIT NONE
45
46 C \ev
47
48 C !USES: ===============================================================
49 #include "SIZE.h"
50 #include "EEPARAMS.h"
51 #include "PARAMS.h"
52 #include "GRID.h"
53 #include "DYNVARS.h"
54 #include "KPP_PARAMS.h"
55
56 C !INPUT PARAMETERS: ===================================================
57 C Routine arguments
58 C ikppkeyb - key for storing trajectory for adjoint (taf)
59 C imin, imax, jmin, jmax - array computation indices
60 C bi, bj - array indices on which to apply calculations
61 C myTime - Current time in simulation
62 C myThid - Current thread id
63 C rhoSurf- density of surface layer (kg/m^3)
64 C surfForcU units are r_unit.m/s^2 (=m^2/s^2 if r=z)
65 C surfForcV units are r_unit.m/s^2 (=m^2/s^-2 if r=z)
66 C surfForcS units are r_unit.psu/s (=psu.m/s if r=z)
67 C - EmPmR * S_surf plus salinity relaxation*drF(1)
68 C surfForcT units are r_unit.Kelvin/s (=Kelvin.m/s if r=z)
69 C - Qnet (+Qsw) plus temp. relaxation*drF(1)
70 C -> calculate -lambda*(T(model)-T(clim))
71 C Qnet assumed to be net heat flux including ShortWave rad.
72 C surfForcTice
73 C - equivalent Temperature flux in the top level that corresponds
74 C to the melting or freezing of sea-ice.
75 C Note that the surface level temperature is modified
76 C directly by the sea-ice model in order to maintain
77 C water temperature under sea-ice at the freezing
78 C point. But we need to keep track of the
79 C equivalent amount of heat that this surface-level
80 C temperature change implies because it is used by
81 C the KPP package (kpp_calc.F and kpp_transport_t.F).
82 C Units are r_unit.K/s (=Kelvin.m/s if r=z) (>0 for ocean warming).
83 C
84 C Qsw - surface shortwave radiation (upwards positive)
85 C saltPlumeFlux - salt rejected during freezing (downward = positive)
86 C ttalpha - thermal expansion coefficient without 1/rho factor
87 C d(rho{k,k})/d(T(k)) (kg/m^3/C)
88 C ssbeta - salt expansion coefficient without 1/rho factor
89 C d(rho{k,k})/d(S(k)) (kg/m^3/PSU)
90 C !OUTPUT PARAMETERS:
91 C ustar (nx,ny) - surface friction velocity (m/s)
92 C bo (nx,ny) - surface turbulent buoyancy forcing (m^2/s^3)
93 C bosol (nx,ny) - surface radiative buoyancy forcing (m^2/s^3)
94 C boplume(nx,ny,Nr+1) - surface haline buoyancy forcing (m^2/s^3)
95 C dVsq (nx,ny,Nr) - velocity shear re surface squared
96 C at grid levels for bldepth (m^2/s^2)
97
98 INTEGER ikppkey
99 INTEGER iMin, iMax, jMin, jMax
100 INTEGER bi, bj
101 INTEGER myThid
102 _RL myTime
103
104 _RL rhoSurf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105 _RL surfForcU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
106 _RL surfForcV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
107 _RL surfForcT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
108 _RL surfForcS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
109 _RL surfForcTice(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
110 _RS Qsw (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
111 _RL TTALPHA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nrp1)
112 _RL SSBETA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nrp1)
113
114 _RL ustar ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
115 _RL bo ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
116 _RL bosol ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
117 #ifdef ALLOW_SALT_PLUME
118 _RL SPforcS (1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr )
119 _RL SPforcT (1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr )
120 _RL boplume (1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nrp1 )
121 #endif /* ALLOW_SALT_PLUME */
122 _RL dVsq ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr )
123
124 C !LOCAL VARIABLES: ====================================================
125 C Local constants
126 _RL p0 , p5 , p125
127 PARAMETER( p0=0.0, p5=0.5, p125=0.125 )
128 INTEGER i, j, k, im1, ip1, jm1, jp1
129 _RL tempvar2
130 _RL recip_Cp
131
132 _RL work3 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
133
134 #ifdef KPP_ESTIMATE_UREF
135 _RL tempvar1, dBdz1, dBdz2, ustarX, ustarY
136 _RL z0 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
137 _RL zRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
138 _RL uRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
139 _RL vRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
140 #endif
141 #ifdef ALLOW_SALT_PLUME
142 #ifdef SALT_PLUME_VOLUME
143 INTEGER kp1
144 _RL temparray (1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
145 #endif /* SALT_PLUME_VOLUME */
146 #endif /* ALLOW_SALT_PLUME */
147 CEOP
148
149 C------------------------------------------------------------------------
150 C friction velocity, turbulent and radiative surface buoyancy forcing
151 C -------------------------------------------------------------------
152 C taux / rho = surfForcU (N/m^2)
153 C tauy / rho = surfForcV (N/m^2)
154 C ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho ) (m/s)
155 C bo = - g * ( alpha*surfForcT +
156 C beta *surfForcS ) / rho (m^2/s^3)
157 C bosol = - g * alpha * Qsw * drF(1) / rho (m^2/s^3)
158 C boplume =-g * ( beta *saltPlumeFlux/rhoConst )/rho (m^2/s^3)
159 C =-g * ( beta *SPforcS /rhoConst )/rho (m^2/s^3)
160 C -g * (alpha *SPforcT/Cp /rhoConst )/rho (m^2/s^3)
161 C------------------------------------------------------------------------
162
163 recip_Cp = 1. _d 0 / HeatCapacity_Cp
164 C initialize arrays to zero
165 DO j = 1-OLy, sNy+OLy
166 DO i = 1-OLx, sNx+OLx
167 ustar(i,j) = p0
168 bo (I,J) = p0
169 bosol(I,J) = p0
170 #ifdef ALLOW_SALT_PLUME
171 DO k = 1, Nr
172 boplume(I,J,k) = p0
173 ENDDO
174 boplume(I,J,Nrp1) = p0
175 #endif /* ALLOW_SALT_PLUME */
176 ENDDO
177 ENDDO
178
179 DO j = jmin, jmax
180 jp1 = j + 1
181 DO i = imin, imax
182 ip1 = i+1
183 work3(i,j) =
184 & (surfForcU(i,j,bi,bj) + surfForcU(ip1,j,bi,bj)) *
185 & (surfForcU(i,j,bi,bj) + surfForcU(ip1,j,bi,bj)) +
186 & (surfForcV(i,j,bi,bj) + surfForcV(i,jp1,bi,bj)) *
187 & (surfForcV(i,j,bi,bj) + surfForcV(i,jp1,bi,bj))
188 ENDDO
189 ENDDO
190 #ifdef ALLOW_AUTODIFF_TAMC
191 CADJ store work3 = comlev1_kpp, key = ikppkey
192 #endif
193 DO j = jmin, jmax
194 jp1 = j + 1
195 DO i = imin, imax
196 ip1 = i+1
197
198 if ( work3(i,j) .lt. (phepsi*phepsi*drF(1)*drF(1)) ) then
199 ustar(i,j) = SQRT( phepsi * p5 * drF(1) )
200 else
201 tempVar2 = SQRT( work3(i,j) ) * p5
202 ustar(i,j) = SQRT( tempVar2 )
203 endif
204
205 ENDDO
206 ENDDO
207
208 DO j = jmin, jmax
209 jp1 = j + 1
210 DO i = imin, imax
211 ip1 = i+1
212 bo(I,J) = - gravity *
213 & ( TTALPHA(I,J,1) * (surfForcT(i,j,bi,bj)+
214 & surfForcTice(i,j,bi,bj)) +
215 & SSBETA(I,J,1) * surfForcS(i,j,bi,bj) )
216 & / rhoSurf(I,J)
217 bosol(I,J) = gravity * TTALPHA(I,J,1) * Qsw(i,j,bi,bj) *
218 & recip_Cp*recip_rhoConst
219 & / rhoSurf(I,J)
220 ENDDO
221 ENDDO
222
223 #ifdef ALLOW_SALT_PLUME
224 Catn: need check sign of SPforcT
225 Cnote: on input, if notdef salt_plume_volume, SPforc[S,T](k>1)=!0
226 IF ( useSALT_PLUME ) THEN
227 #ifdef SALT_PLUME_VOLUME
228 DO j = jmin, jmax
229 DO i = imin, imax
230 DO k = 1, Nr
231 kp1 = k+1
232 temparray(I,J) = - gravity *
233 & ( SSBETA(I,J,k) * SPforcS(i,j,k) +
234 & TTALPHA(I,J,k)* SPforcT(i,j,k) / HeatCapacity_Cp )
235 & * recip_rhoConst / rhoSurf(I,J)
236 boplume(I,J,kp1) = boplume(I,J,k)+temparray(I,J)
237 ENDDO
238 ENDDO
239 ENDDO
240 #else /* SALT_PLUME_VOLUME */
241 DO j = jmin, jmax
242 DO i = imin, imax
243 DO k = 2, Nrp1
244 boplume(I,J,k) = 0. _d 0
245 ENDDO
246 boplume(I,J,1) = - gravity * SSBETA(I,J,1)
247 & * SPforcS(i,j,1)
248 & * recip_rhoConst / rhoSurf(I,J)
249 ENDDO
250 ENDDO
251
252 #endif /* SALT_PLUME_VOLUME */
253 ENDIF
254 #endif /* ALLOW_SALT_PLUME */
255
256 #ifdef ALLOW_AUTODIFF_TAMC
257 CADJ store ustar = comlev1_kpp, key = ikppkey
258 #endif
259
260 #ifdef ALLOW_DIAGNOSTICS
261 IF ( useDiagnostics ) THEN
262 CALL DIAGNOSTICS_FILL(bo ,'KPPbo ',0,1,2,bi,bj,myThid)
263 CALL DIAGNOSTICS_FILL(bosol ,'KPPbosol',0,1,2,bi,bj,myThid)
264 #ifdef ALLOW_SALT_PLUME
265 CALL DIAGNOSTICS_FILL(boplume,'KPPboplm',0,Nr,2,bi,bj,myThid)
266 #endif /* ALLOW_SALT_PLUME */
267 ENDIF
268 #endif /* ALLOW_DIAGNOSTICS */
269
270 C------------------------------------------------------------------------
271 C velocity shear
272 C --------------
273 C Get velocity shear squared, averaged from "u,v-grid"
274 C onto "t-grid" (in (m/s)**2):
275 C dVsq(k)=(Uref-U(k))**2+(Vref-V(k))**2 at grid levels
276 C------------------------------------------------------------------------
277
278 C initialize arrays to zero
279 DO k = 1, Nr
280 DO j = 1-OLy, sNy+OLy
281 DO i = 1-OLx, sNx+OLx
282 dVsq(i,j,k) = p0
283 ENDDO
284 ENDDO
285 ENDDO
286
287 C dVsq computation
288
289 #ifdef KPP_ESTIMATE_UREF
290
291 C Get rid of vertical resolution dependence of dVsq term by
292 C estimating a surface velocity that is independent of first level
293 C thickness in the model. First determine mixed layer depth hMix.
294 C Second zRef = espilon * hMix. Third determine roughness length
295 C scale z0. Third estimate reference velocity.
296
297 DO j = jmin, jmax
298 jp1 = j + 1
299 DO i = imin, imax
300 ip1 = i + 1
301
302 C Determine mixed layer depth hMix as the shallowest depth at which
303 C dB/dz exceeds 5.2e-5 s^-2.
304 work1(i,j) = nzmax(i,j,bi,bj)
305 DO k = 1, Nr
306 IF ( k .LT. nzmax(i,j,bi,bj) .AND.
307 & maskC(I,J,k,bi,bj) .GT. 0. .AND.
308 & dbloc(i,j,k) / drC(k+1) .GT. dB_dz )
309 & work1(i,j) = k
310 ENDDO
311
312 C Linearly interpolate to find hMix.
313 k = work1(i,j)
314 IF ( k .EQ. 0 .OR. nzmax(i,j,bi,bj) .EQ. 1 ) THEN
315 zRef(i,j) = p0
316 ELSEIF ( k .EQ. 1) THEN
317 dBdz2 = dbloc(i,j,1) / drC(2)
318 zRef(i,j) = drF(1) * dB_dz / dBdz2
319 ELSEIF ( k .LT. nzmax(i,j,bi,bj) ) THEN
320 dBdz1 = dbloc(i,j,k-1) / drC(k )
321 dBdz2 = dbloc(i,j,k ) / drC(k+1)
322 zRef(i,j) = rF(k) + drF(k) * (dB_dz - dBdz1) /
323 & MAX ( phepsi, dBdz2 - dBdz1 )
324 ELSE
325 zRef(i,j) = rF(k+1)
326 ENDIF
327
328 C Compute roughness length scale z0 subject to 0 < z0
329 tempVar1 = p5 * (
330 & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) *
331 & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) +
332 & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) *
333 & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) +
334 & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) *
335 & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) +
336 & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) *
337 & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) )
338 IF ( tempVar1 .lt. (epsln*epsln) ) THEN
339 tempVar2 = epsln
340 ELSE
341 tempVar2 = SQRT ( tempVar1 )
342 ENDIF
343 z0(i,j) = rF(2) *
344 & ( rF(3) * LOG ( rF(3) / rF(2) ) /
345 & ( rF(3) - rF(2) ) -
346 & tempVar2 * vonK /
347 & MAX ( ustar(i,j), phepsi ) )
348 z0(i,j) = MAX ( z0(i,j), phepsi )
349
350 C zRef is set to 0.1 * hMix subject to z0 <= zRef <= drF(1)
351 zRef(i,j) = MAX ( epsilon * zRef(i,j), z0(i,j) )
352 zRef(i,j) = MIN ( zRef(i,j), drF(1) )
353
354 C Estimate reference velocity uRef and vRef.
355 uRef(i,j) = p5 * ( uVel(i,j,1,bi,bj) + uVel(ip1,j,1,bi,bj) )
356 vRef(i,j) = p5 * ( vVel(i,j,1,bi,bj) + vVel(i,jp1,1,bi,bj) )
357 IF ( zRef(i,j) .LT. drF(1) ) THEN
358 ustarX = ( surfForcU(i, j,bi,bj) +
359 & surfForcU(ip1,j,bi,bj) ) * p5 *recip_drF(1)
360 ustarY = ( surfForcV(i,j, bi,bj) +
361 & surfForcV(i,jp1,bi,bj) ) * p5 *recip_drF(1)
362 tempVar1 = ustarX * ustarX + ustarY * ustarY
363 if ( tempVar1 .lt. (epsln*epsln) ) then
364 tempVar2 = epsln
365 else
366 tempVar2 = SQRT ( tempVar1 )
367 endif
368 tempVar2 = ustar(i,j) *
369 & ( LOG ( zRef(i,j) / rF(2) ) +
370 & z0(i,j) / zRef(i,j) - z0(i,j) / rF(2) ) /
371 & vonK / tempVar2
372 uRef(i,j) = uRef(i,j) + ustarX * tempVar2
373 vRef(i,j) = vRef(i,j) + ustarY * tempVar2
374 ENDIF
375
376 ENDDO
377 ENDDO
378
379 DO k = 1, Nr
380 DO j = jmin, jmax
381 jm1 = j - 1
382 jp1 = j + 1
383 DO i = imin, imax
384 im1 = i - 1
385 ip1 = i + 1
386 dVsq(i,j,k) = p5 * (
387 & (uRef(i,j) - uVel(i, j, k,bi,bj)) *
388 & (uRef(i,j) - uVel(i, j, k,bi,bj)) +
389 & (uRef(i,j) - uVel(ip1,j, k,bi,bj)) *
390 & (uRef(i,j) - uVel(ip1,j, k,bi,bj)) +
391 & (vRef(i,j) - vVel(i, j, k,bi,bj)) *
392 & (vRef(i,j) - vVel(i, j, k,bi,bj)) +
393 & (vRef(i,j) - vVel(i, jp1,k,bi,bj)) *
394 & (vRef(i,j) - vVel(i, jp1,k,bi,bj)) )
395 #ifdef KPP_SMOOTH_DVSQ
396 dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * (
397 & (uRef(i,j) - uVel(i, jm1,k,bi,bj)) *
398 & (uRef(i,j) - uVel(i, jm1,k,bi,bj)) +
399 & (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) *
400 & (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) +
401 & (uRef(i,j) - uVel(i, jp1,k,bi,bj)) *
402 & (uRef(i,j) - uVel(i, jp1,k,bi,bj)) +
403 & (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) *
404 & (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) +
405 & (vRef(i,j) - vVel(im1,j, k,bi,bj)) *
406 & (vRef(i,j) - vVel(im1,j, k,bi,bj)) +
407 & (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) *
408 & (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) +
409 & (vRef(i,j) - vVel(ip1,j, k,bi,bj)) *
410 & (vRef(i,j) - vVel(ip1,j, k,bi,bj)) +
411 & (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) *
412 & (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) )
413 #endif /* KPP_SMOOTH_DVSQ */
414 ENDDO
415 ENDDO
416 ENDDO
417
418 #else /* KPP_ESTIMATE_UREF */
419
420 DO k = 1, Nr
421 DO j = jmin, jmax
422 jm1 = j - 1
423 jp1 = j + 1
424 DO i = imin, imax
425 im1 = i - 1
426 ip1 = i + 1
427 dVsq(i,j,k) = p5 * (
428 & (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) *
429 & (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) +
430 & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) *
431 & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) +
432 & (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) *
433 & (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) +
434 & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) *
435 & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) )
436 #ifdef KPP_SMOOTH_DVSQ
437 dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * (
438 & (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) *
439 & (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) +
440 & (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) *
441 & (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) +
442 & (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) *
443 & (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) +
444 & (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) *
445 & (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) +
446 & (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) *
447 & (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) +
448 & (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) *
449 & (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) +
450 & (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) *
451 & (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) +
452 & (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) *
453 & (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) )
454 #endif /* KPP_SMOOTH_DVSQ */
455 ENDDO
456 ENDDO
457 ENDDO
458
459 #endif /* KPP_ESTIMATE_UREF */
460
461 RETURN
462 END

  ViewVC Help
Powered by ViewVC 1.1.22