/[MITgcm]/MITgcm/pkg/kpp/kpp_calc.F
ViewVC logotype

Contents of /MITgcm/pkg/kpp/kpp_calc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.11 - (show annotations) (download)
Sat Jul 13 03:12:30 2002 UTC (22 years, 11 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint46g_pre, checkpoint46f_post, checkpoint46b_post, checkpoint46d_pre, checkpoint46a_post, checkpoint46e_pre, checkpoint46b_pre, checkpoint46c_pre, checkpoint46, checkpoint46h_pre, checkpoint46a_pre, checkpoint46g_post, checkpoint46c_post, checkpoint46e_post, checkpoint46d_post
Changes since 1.10: +38 -10 lines
Merging from release1_p5
o Adjoint-related bug fixes in kpp:
  - kpp_calc: sore of kpphbl avoids recomputation/call to S/R kppmix
  - kpp_routines: store of Rib avoids partial recomputation bug of TAF.

1 C $Header: /u/gcmpack/MITgcm/pkg/kpp/kpp_calc.F,v 1.9.4.2 2002/07/11 14:16:04 heimbach Exp $
2 C $Name: $
3
4 #include "KPP_OPTIONS.h"
5
6 subroutine KPP_CALC(
7 I bi, bj, myTime, myThid )
8 C /==========================================================\
9 C | SUBROUTINE KPP_CALC |
10 C | o Compute all KPP fields defined in KPP.h |
11 C |==========================================================|
12 C | This subroutine serves as an interface between MITGCMUV |
13 C | code and NCOM 1-D routines in kpp_routines.F |
14 C \==========================================================/
15 IMPLICIT NONE
16
17 c=======================================================================
18 c
19 c written by : jan morzel, august 11, 1994
20 c modified by : jan morzel, january 25, 1995 : "dVsq" and 1d code
21 c detlef stammer, august, 1997 : for MIT GCM Classic
22 c d. menemenlis, july, 1998 : for MIT GCM UV
23 c
24 c compute vertical mixing coefficients based on the k-profile
25 c and oceanic planetary boundary layer scheme by large & mcwilliams.
26 c
27 c summary:
28 c - compute interior mixing everywhere:
29 c interior mixing gets computed at all interfaces due to constant
30 c internal wave background activity ("fkpm" and "fkph"), which
31 c is enhanced in places of static instability (local richardson
32 c number < 0).
33 c Additionally, mixing can be enhanced by adding contribution due
34 c to shear instability which is a function of the local richardson
35 c number
36 c - double diffusivity:
37 c interior mixing can be enhanced by double diffusion due to salt
38 c fingering and diffusive convection (ifdef "kmixdd").
39 c - kpp scheme in the boundary layer:
40 c
41 c a.boundary layer depth:
42 c at every gridpoint the depth of the oceanic boundary layer
43 c ("hbl") gets computed by evaluating bulk richardson numbers.
44 c b.boundary layer mixing:
45 c within the boundary layer, above hbl, vertical mixing is
46 c determined by turbulent surface fluxes, and interior mixing at
47 c the lower boundary, i.e. at hbl.
48 c
49 c this subroutine provides the interface between the MIT GCM UV and the
50 c subroutine "kppmix", where boundary layer depth, vertical
51 c viscosity, vertical diffusivity, and counter gradient term (ghat)
52 c are computed slabwise.
53 c note: subroutine "kppmix" uses m-k-s units.
54 c
55 c time level:
56 c input tracer and velocity profiles are evaluated at time level
57 c tau, surface fluxes come from tau or tau-1.
58 c
59 c grid option:
60 c in this "1-grid" implementation, diffusivity and viscosity
61 c profiles are computed on the "t-grid" (by using velocity shear
62 c profiles averaged from the "u,v-grid" onto the "t-grid"; note, that
63 c the averaging includes zero values on coastal and seafloor grid
64 c points). viscosity on the "u,v-grid" is computed by averaging the
65 c "t-grid" viscosity values onto the "u,v-grid".
66 c
67 c vertical grid:
68 c mixing coefficients get evaluated at the bottom of the lowest
69 c layer, i.e., at depth zw(Nr). these values are only useful when
70 c the model ocean domain does not include the entire ocean down to
71 c the seafloor ("upperocean" setup) and allows flux through the
72 c bottom of the domain. for full-depth runs, these mixing
73 c coefficients are being zeroed out before leaving this subroutine.
74 c
75 c-------------------------------------------------------------------------
76
77 c global parameters updated by kpp_calc
78 c KPPviscAz - KPP eddy viscosity coefficient (m^2/s)
79 c KPPdiffKzT - KPP diffusion coefficient for temperature (m^2/s)
80 c KPPdiffKzS - KPP diffusion coefficient for salt and tracers (m^2/s)
81 c KPPghat - Nonlocal transport coefficient (s/m^2)
82 c KPPhbl - Boundary layer depth on "t-grid" (m)
83 c KPPfrac - Fraction of short-wave flux penetrating mixing layer
84
85 c-- KPP_CALC computes vertical viscosity and diffusivity for region
86 c (-2:sNx+3,-2:sNy+3) as required by CALC_DIFFUSIVITY and requires
87 c values of uVel, vVel, SurfaceTendencyU, SurfaceTendencyV in the
88 c region (-2:sNx+4,-2:sNy+4).
89 c Hence overlap region needs to be set OLx=4, OLy=4.
90 c When option FRUGAL_KPP is used, computation in overlap regions
91 c is replaced with exchange calls hence reducing overlap requirements
92 c to OLx=1, OLy=1.
93
94 #include "SIZE.h"
95 #include "EEPARAMS.h"
96 #include "PARAMS.h"
97 #include "DYNVARS.h"
98 #include "KPP.h"
99 #include "KPP_PARAMS.h"
100 #include "FFIELDS.h"
101 #include "GRID.h"
102
103 #ifdef ALLOW_AUTODIFF_TAMC
104 #include "tamc.h"
105 #include "tamc_keys.h"
106 #else /* ALLOW_AUTODIFF_TAMC */
107 integer ikey
108 #endif /* ALLOW_AUTODIFF_TAMC */
109
110 EXTERNAL DIFFERENT_MULTIPLE
111 LOGICAL DIFFERENT_MULTIPLE
112
113 c Routine arguments
114 c bi, bj - array indices on which to apply calculations
115 c myTime - Current time in simulation
116
117 INTEGER bi, bj
118 INTEGER myThid
119 _RL myTime
120
121 #ifdef ALLOW_KPP
122
123 c Local constants
124 c minusone, p0, p5, p25, p125, p0625
125 c imin, imax, jmin, jmax - array computation indices
126
127 _RL minusone
128 parameter( minusone=-1.0)
129 _KPP_RL p0 , p5 , p25 , p125 , p0625
130 parameter( p0=0.0, p5=0.5, p25=0.25, p125=0.125, p0625=0.0625 )
131 integer imin , imax , jmin , jmax
132 #ifdef FRUGAL_KPP
133 parameter( imin=1 , imax=sNx , jmin=1 , jmax=sNy )
134 #else
135 parameter( imin=-2 , imax=sNx+3 , jmin=-2 , jmax=sNy+3 )
136 #endif
137
138 c Local arrays and variables
139 c work? (nx,ny) - horizontal working arrays
140 c ustar (nx,ny) - surface friction velocity (m/s)
141 c bo (nx,ny) - surface turbulent buoyancy forcing (m^2/s^3)
142 c bosol (nx,ny) - surface radiative buoyancy forcing (m^2/s^3)
143 c shsq (nx,ny,Nr) - local velocity shear squared
144 c at interfaces for ri_iwmix (m^2/s^2)
145 c dVsq (nx,ny,Nr) - velocity shear re surface squared
146 c at grid levels for bldepth (m^2/s^2)
147 c dbloc (nx,ny,Nr) - local delta buoyancy at interfaces
148 c for ri_iwmix and bldepth (m/s^2)
149 c Ritop (nx,ny,Nr) - numerator of bulk richardson number
150 c at grid levels for bldepth
151 c vddiff (nx,ny,Nrp2,1)- vertical viscosity on "t-grid" (m^2/s)
152 c vddiff (nx,ny,Nrp2,2)- vert. diff. on next row for temperature (m^2/s)
153 c vddiff (nx,ny,Nrp2,3)- vert. diff. on next row for salt&tracers (m^2/s)
154 c ghat (nx,ny,Nr) - nonlocal transport coefficient (s/m^2)
155 c hbl (nx,ny) - mixing layer depth (m)
156 c kmtj (nx,ny) - maximum number of wet levels in each column
157 c z0 (nx,ny) - Roughness length (m)
158 c zRef (nx,ny) - Reference depth: Hmix * epsilon (m)
159 c uRef (nx,ny) - Reference zonal velocity (m/s)
160 c vRef (nx,ny) - Reference meridional velocity (m/s)
161
162 _RL worka ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
163 integer work1 ( ibot:itop , jbot:jtop )
164 _KPP_RL work2 ( ibot:itop , jbot:jtop )
165 _KPP_RL work3 ( ibot:itop , jbot:jtop )
166 _KPP_RL ustar ( ibot:itop , jbot:jtop )
167 _KPP_RL bo ( ibot:itop , jbot:jtop )
168 _KPP_RL bosol ( ibot:itop , jbot:jtop )
169 _KPP_RL shsq ( ibot:itop , jbot:jtop , Nr )
170 _KPP_RL dVsq ( ibot:itop , jbot:jtop , Nr )
171 _KPP_RL dbloc ( ibot:itop , jbot:jtop , Nr )
172 _KPP_RL Ritop ( ibot:itop , jbot:jtop , Nr )
173 _KPP_RL vddiff( ibot:itop , jbot:jtop , 0:Nrp1, mdiff )
174 _KPP_RL ghat ( ibot:itop , jbot:jtop , Nr )
175 _KPP_RL hbl ( ibot:itop , jbot:jtop )
176 #ifdef KPP_ESTIMATE_UREF
177 _KPP_RL z0 ( ibot:itop , jbot:jtop )
178 _KPP_RL zRef ( ibot:itop , jbot:jtop )
179 _KPP_RL uRef ( ibot:itop , jbot:jtop )
180 _KPP_RL vRef ( ibot:itop , jbot:jtop )
181 #endif /* KPP_ESTIMATE_UREF */
182
183 _KPP_RL tempvar1, tempvar2
184 integer i, j, k, kp1, im1, ip1, jm1, jp1
185
186 #ifdef KPP_ESTIMATE_UREF
187 _KPP_RL dBdz1, dBdz2, ustarX, ustarY
188 #endif
189
190 c Check to see if new vertical mixing coefficient should be computed now?
191 IF ( DIFFERENT_MULTIPLE(kpp_freq,myTime,myTime-deltaTClock) .OR.
192 1 myTime .EQ. startTime ) THEN
193
194 c-----------------------------------------------------------------------
195 c prepare input arrays for subroutine "kppmix" to compute
196 c viscosity and diffusivity and ghat.
197 c All input arrays need to be in m-k-s units.
198 c
199 c note: for the computation of the bulk richardson number in the
200 c "bldepth" subroutine, gradients of velocity and buoyancy are
201 c required at every depth. in the case of very fine vertical grids
202 c (thickness of top layer < 2m), the surface reference depth must
203 c be set to zref=epsilon/2*zgrid(k), and the reference value
204 c of velocity and buoyancy must be computed as vertical average
205 c between the surface and 2*zref. in the case of coarse vertical
206 c grids zref is zgrid(1)/2., and the surface reference value is
207 c simply the surface value at zgrid(1).
208 c-----------------------------------------------------------------------
209
210 c------------------------------------------------------------------------
211 c density related quantities
212 c --------------------------
213 c
214 c work2 - density of surface layer (kg/m^3)
215 c dbloc - local buoyancy gradient at Nr interfaces
216 c g/rho{k+1,k+1} * [ drho{k,k+1}-drho{k+1,k+1} ] (m/s^2)
217 c dbsfc (stored in Ritop to conserve stack memory)
218 c - buoyancy difference with respect to the surface
219 c g * [ drho{1,k}/rho{1,k} - drho{k,k}/rho{k,k} ] (m/s^2)
220 c ttalpha (stored in vddiff(:,:,:,1) to conserve stack memory)
221 c - thermal expansion coefficient without 1/rho factor
222 c d(rho{k,k})/d(T(k)) (kg/m^3/C)
223 c ssbeta (stored in vddiff(:,:,:,2) to conserve stack memory)
224 c - salt expansion coefficient without 1/rho factor
225 c d(rho{k,k})/d(S(k)) (kg/m^3/PSU)
226 c------------------------------------------------------------------------
227
228 CALL TIMER_START('STATEKPP [KPP_CALC]', myThid)
229 CALL STATEKPP(
230 I bi, bj, myThid
231 O , work2, dbloc, Ritop
232 O , vddiff(ibot,jbot,1,1), vddiff(ibot,jbot,1,2)
233 & )
234 CALL TIMER_STOP ('STATEKPP [KPP_CALC]', myThid)
235
236 DO k = 1, Nr
237 DO j = jbot, jtop
238 DO i = ibot, itop
239 ghat(i,j,k) = dbloc(i,j,k)
240 ENDDO
241 ENDDO
242 ENDDO
243
244 #ifdef KPP_SMOOTH_DBLOC
245 c horizontally smooth dbloc with a 121 filter
246 c smooth dbloc stored in ghat to save space
247 c dbloc(k) is buoyancy gradientnote between k and k+1
248 c levels therefore k+1 mask must be used
249
250 DO k = 1, Nr-1
251 CALL KPP_SMOOTH_HORIZ (
252 I k+1, bi, bj,
253 U ghat (ibot,jbot,k) )
254 ENDDO
255
256 #endif /* KPP_SMOOTH_DBLOC */
257
258 #ifdef KPP_SMOOTH_DENS
259 c horizontally smooth density related quantities with 121 filters
260 CALL KPP_SMOOTH_HORIZ (
261 I 1, bi, bj,
262 U work2 )
263 DO k = 1, Nr
264 CALL KPP_SMOOTH_HORIZ (
265 I k+1, bi, bj,
266 U dbloc (ibot,jbot,k) )
267 CALL KPP_SMOOTH_HORIZ (
268 I k, bi, bj,
269 U Ritop (ibot,jbot,k) )
270 CALL KPP_SMOOTH_HORIZ (
271 I k, bi, bj,
272 U vddiff(ibot,jbot,k,1) )
273 CALL KPP_SMOOTH_HORIZ (
274 I k, bi, bj,
275 U vddiff(ibot,jbot,k,2) )
276 ENDDO
277 #endif /* KPP_SMOOTH_DENS */
278
279 DO k = 1, Nr
280 DO j = jbot, jtop
281 DO i = ibot, itop
282
283 c zero out dbloc over land points (so that the convective
284 c part of the interior mixing can be diagnosed)
285 dbloc(i,j,k) = dbloc(i,j,k) * pMask(i,j,k,bi,bj)
286 ghat(i,j,k) = ghat(i,j,k) * pMask(i,j,k,bi,bj)
287 Ritop(i,j,k) = Ritop(i,j,k) * pMask(i,j,k,bi,bj)
288 if(k.eq.nzmax(i,j,bi,bj)) then
289 dbloc(i,j,k) = p0
290 ghat(i,j,k) = p0
291 Ritop(i,j,k) = p0
292 endif
293
294 c numerator of bulk richardson number on grid levels
295 c note: land and ocean bottom values need to be set to zero
296 c so that the subroutine "bldepth" works correctly
297 Ritop(i,j,k) = (zgrid(1)-zgrid(k)) * Ritop(i,j,k)
298
299 END DO
300 END DO
301 END DO
302
303 cph(
304 cph this avoids a single or double recomp./call of statekpp
305 CADJ store work2 = comlev1_kpp, key = ikey
306 #ifdef ALLOW_AUTODIFF_KPP_EXTENSIVE_STORE
307 CADJ store dbloc, Ritop, ghat = comlev1_kpp, key = ikey
308 CADJ store vddiff = comlev1_kpp, key = ikey
309 #endif
310 cph)
311
312 c------------------------------------------------------------------------
313 c friction velocity, turbulent and radiative surface buoyancy forcing
314 c -------------------------------------------------------------------
315 c taux / rho = SurfaceTendencyU * drF(1) (N/m^2)
316 c tauy / rho = SurfaceTendencyV * drF(1) (N/m^2)
317 c ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho ) (m/s)
318 c bo = - g * ( alpha*SurfaceTendencyT +
319 c beta *SurfaceTendencyS ) * drF(1) / rho (m^2/s^3)
320 c bosol = - g * alpha * Qsw * drF(1) / rho (m^2/s^3)
321 c------------------------------------------------------------------------
322
323 c initialize arrays to zero
324 DO j = jbot, jtop
325 DO i = ibot, itop
326 ustar(i,j) = p0
327 bo (I,J) = p0
328 bosol(I,J) = p0
329 END DO
330 END DO
331
332 DO j = jmin, jmax
333 jp1 = j + 1
334 DO i = imin, imax
335 ip1 = i+1
336 work3(i,j) =
337 & (SurfaceTendencyU(i,j,bi,bj) + SurfaceTendencyU(ip1,j,bi,bj)) *
338 & (SurfaceTendencyU(i,j,bi,bj) + SurfaceTendencyU(ip1,j,bi,bj)) +
339 & (SurfaceTendencyV(i,j,bi,bj) + SurfaceTendencyV(i,jp1,bi,bj)) *
340 & (SurfaceTendencyV(i,j,bi,bj) + SurfaceTendencyV(i,jp1,bi,bj))
341 END DO
342 END DO
343 cph(
344 CADJ store work3 = comlev1_kpp, key = ikey
345 cph)
346 DO j = jmin, jmax
347 jp1 = j + 1
348 DO i = imin, imax
349 ip1 = i+1
350 if ( work3(i,j) .lt. (phepsi*phepsi) ) then
351 ustar(i,j) = SQRT( phepsi * p5 * drF(1) )
352 else
353 tempVar2 = SQRT( work3(i,j) ) * p5 * drF(1)
354 ustar(i,j) = SQRT( tempVar2 )
355 endif
356 bo(I,J) = - gravity *
357 & ( vddiff(I,J,1,1) * SurfaceTendencyT(i,j,bi,bj) +
358 & vddiff(I,J,1,2) * SurfaceTendencyS(i,j,bi,bj)
359 & ) *
360 & drF(1) / work2(I,J)
361 bosol(I,J) = gravity * vddiff(I,J,1,1) * Qsw(i,j,bi,bj) *
362 & recip_Cp*recip_rhoNil*recip_dRf(1) *
363 & drF(1) / work2(I,J)
364 END DO
365 END DO
366
367 cph(
368 CADJ store ustar = comlev1_kpp, key = ikey
369 cph)
370
371 c------------------------------------------------------------------------
372 c velocity shear
373 c --------------
374 c Get velocity shear squared, averaged from "u,v-grid"
375 c onto "t-grid" (in (m/s)**2):
376 c dVsq(k)=(Uref-U(k))**2+(Vref-V(k))**2 at grid levels
377 c shsq(k)=(U(k)-U(k+1))**2+(V(k)-V(k+1))**2 at interfaces
378 c------------------------------------------------------------------------
379
380 c initialize arrays to zero
381 DO k = 1, Nr
382 DO j = jbot, jtop
383 DO i = ibot, itop
384 shsq(i,j,k) = p0
385 dVsq(i,j,k) = p0
386 END DO
387 END DO
388 END DO
389
390 c dVsq computation
391
392 #ifdef KPP_ESTIMATE_UREF
393
394 c Get rid of vertical resolution dependence of dVsq term by
395 c estimating a surface velocity that is independent of first level
396 c thickness in the model. First determine mixed layer depth hMix.
397 c Second zRef = espilon * hMix. Third determine roughness length
398 c scale z0. Third estimate reference velocity.
399
400 DO j = jmin, jmax
401 jp1 = j + 1
402 DO i = imin, imax
403 ip1 = i + 1
404
405 c Determine mixed layer depth hMix as the shallowest depth at which
406 c dB/dz exceeds 5.2e-5 s^-2.
407 work1(i,j) = nzmax(i,j,bi,bj)
408 DO k = 1, Nr
409 IF ( k .LT. nzmax(i,j,bi,bj) .AND.
410 & dbloc(i,j,k) / drC(k+1) .GT. dB_dz )
411 & work1(i,j) = k
412 END DO
413
414 c Linearly interpolate to find hMix.
415 k = work1(i,j)
416 IF ( k .EQ. 0 .OR. nzmax(i,j,bi,bj) .EQ. 1 ) THEN
417 zRef(i,j) = p0
418 ELSEIF ( k .EQ. 1) THEN
419 dBdz2 = dbloc(i,j,1) / drC(2)
420 zRef(i,j) = drF(1) * dB_dz / dBdz2
421 ELSEIF ( k .LT. nzmax(i,j,bi,bj) ) THEN
422 dBdz1 = dbloc(i,j,k-1) / drC(k )
423 dBdz2 = dbloc(i,j,k ) / drC(k+1)
424 zRef(i,j) = rF(k) + drF(k) * (dB_dz - dBdz1) /
425 & MAX ( phepsi, dBdz2 - dBdz1 )
426 ELSE
427 zRef(i,j) = rF(k+1)
428 ENDIF
429
430 c Compute roughness length scale z0 subject to 0 < z0
431 tempVar1 = p5 * (
432 & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) *
433 & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) +
434 & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) *
435 & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) +
436 & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) *
437 & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) +
438 & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) *
439 & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) )
440 if ( tempVar1 .lt. (epsln*epsln) ) then
441 tempVar2 = epsln
442 else
443 tempVar2 = SQRT ( tempVar1 )
444 endif
445 z0(i,j) = rF(2) *
446 & ( rF(3) * LOG ( rF(3) / rF(2) ) /
447 & ( rF(3) - rF(2) ) -
448 & tempVar2 * vonK /
449 & MAX ( ustar(i,j), phepsi ) )
450 z0(i,j) = MAX ( z0(i,j), phepsi )
451
452 c zRef is set to 0.1 * hMix subject to z0 <= zRef <= drF(1)
453 zRef(i,j) = MAX ( epsilon * zRef(i,j), z0(i,j) )
454 zRef(i,j) = MIN ( zRef(i,j), drF(1) )
455
456 c Estimate reference velocity uRef and vRef.
457 uRef(i,j) = p5 *
458 & ( uVel(i,j,1,bi,bj) + uVel(ip1,j,1,bi,bj) )
459 vRef(i,j) = p5 *
460 & ( vVel(i,j,1,bi,bj) + vVel(i,jp1,1,bi,bj) )
461 IF ( zRef(i,j) .LT. drF(1) ) THEN
462 ustarX = ( SurfaceTendencyU(i, j,bi,bj) +
463 & SurfaceTendencyU(ip1,j,bi,bj) ) * p5
464 ustarY = ( SurfaceTendencyV(i,j, bi,bj) +
465 & SurfaceTendencyU(i,jp1,bi,bj) ) * p5
466 tempVar1 = ustarX * ustarX + ustarY * ustarY
467 if ( tempVar1 .lt. (epsln*epsln) ) then
468 tempVar2 = epsln
469 else
470 tempVar2 = SQRT ( tempVar1 )
471 endif
472 tempVar2 = ustar(i,j) *
473 & ( LOG ( zRef(i,j) / rF(2) ) +
474 & z0(i,j) / zRef(i,j) - z0(i,j) / rF(2) ) /
475 & vonK / tempVar2
476 uRef(i,j) = uRef(i,j) + ustarX * tempVar2
477 vRef(i,j) = vRef(i,j) + ustarY * tempVar2
478 ENDIF
479
480 END DO
481 END DO
482
483 DO k = 1, Nr
484 DO j = jmin, jmax
485 jm1 = j - 1
486 jp1 = j + 1
487 DO i = imin, imax
488 im1 = i - 1
489 ip1 = i + 1
490 dVsq(i,j,k) = p5 * (
491 $ (uRef(i,j) - uVel(i, j, k,bi,bj)) *
492 $ (uRef(i,j) - uVel(i, j, k,bi,bj)) +
493 $ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) *
494 $ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) +
495 $ (vRef(i,j) - vVel(i, j, k,bi,bj)) *
496 $ (vRef(i,j) - vVel(i, j, k,bi,bj)) +
497 $ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) *
498 $ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) )
499 #ifdef KPP_SMOOTH_DVSQ
500 dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * (
501 $ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) *
502 $ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) +
503 $ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) *
504 $ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) +
505 $ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) *
506 $ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) +
507 $ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) *
508 $ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) +
509 $ (vRef(i,j) - vVel(im1,j, k,bi,bj)) *
510 $ (vRef(i,j) - vVel(im1,j, k,bi,bj)) +
511 $ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) *
512 $ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) +
513 $ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) *
514 $ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) +
515 $ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) *
516 $ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) )
517 #endif /* KPP_SMOOTH_DVSQ */
518 END DO
519 END DO
520 END DO
521
522 #else /* KPP_ESTIMATE_UREF */
523
524 DO k = 1, Nr
525 DO j = jmin, jmax
526 jm1 = j - 1
527 jp1 = j + 1
528 DO i = imin, imax
529 im1 = i - 1
530 ip1 = i + 1
531 dVsq(i,j,k) = p5 * (
532 $ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) *
533 $ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) +
534 $ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) *
535 $ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) +
536 $ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) *
537 $ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) +
538 $ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) *
539 $ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) )
540 #ifdef KPP_SMOOTH_DVSQ
541 dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * (
542 $ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) *
543 $ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) +
544 $ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) *
545 $ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) +
546 $ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) *
547 $ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) +
548 $ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) *
549 $ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) +
550 $ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) *
551 $ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) +
552 $ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) *
553 $ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) +
554 $ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) *
555 $ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) +
556 $ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) *
557 $ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) )
558 #endif /* KPP_SMOOTH_DVSQ */
559 END DO
560 END DO
561 END DO
562
563 #endif /* KPP_ESTIMATE_UREF */
564
565 c shsq computation
566 DO k = 1, Nrm1
567 kp1 = k + 1
568 DO j = jmin, jmax
569 jm1 = j - 1
570 jp1 = j + 1
571 DO i = imin, imax
572 im1 = i - 1
573 ip1 = i + 1
574 shsq(i,j,k) = p5 * (
575 $ (uVel(i, j, k,bi,bj)-uVel(i, j, kp1,bi,bj)) *
576 $ (uVel(i, j, k,bi,bj)-uVel(i, j, kp1,bi,bj)) +
577 $ (uVel(ip1,j, k,bi,bj)-uVel(ip1,j, kp1,bi,bj)) *
578 $ (uVel(ip1,j, k,bi,bj)-uVel(ip1,j, kp1,bi,bj)) +
579 $ (vVel(i, j, k,bi,bj)-vVel(i, j, kp1,bi,bj)) *
580 $ (vVel(i, j, k,bi,bj)-vVel(i, j, kp1,bi,bj)) +
581 $ (vVel(i, jp1,k,bi,bj)-vVel(i, jp1,kp1,bi,bj)) *
582 $ (vVel(i, jp1,k,bi,bj)-vVel(i, jp1,kp1,bi,bj)) )
583 #ifdef KPP_SMOOTH_SHSQ
584 shsq(i,j,k) = p5 * shsq(i,j,k) + p125 * (
585 $ (uVel(i, jm1,k,bi,bj)-uVel(i, jm1,kp1,bi,bj)) *
586 $ (uVel(i, jm1,k,bi,bj)-uVel(i, jm1,kp1,bi,bj)) +
587 $ (uVel(ip1,jm1,k,bi,bj)-uVel(ip1,jm1,kp1,bi,bj)) *
588 $ (uVel(ip1,jm1,k,bi,bj)-uVel(ip1,jm1,kp1,bi,bj)) +
589 $ (uVel(i, jp1,k,bi,bj)-uVel(i, jp1,kp1,bi,bj)) *
590 $ (uVel(i, jp1,k,bi,bj)-uVel(i, jp1,kp1,bi,bj)) +
591 $ (uVel(ip1,jp1,k,bi,bj)-uVel(ip1,jp1,kp1,bi,bj)) *
592 $ (uVel(ip1,jp1,k,bi,bj)-uVel(ip1,jp1,kp1,bi,bj)) +
593 $ (vVel(im1,j, k,bi,bj)-vVel(im1,j, kp1,bi,bj)) *
594 $ (vVel(im1,j, k,bi,bj)-vVel(im1,j, kp1,bi,bj)) +
595 $ (vVel(im1,jp1,k,bi,bj)-vVel(im1,jp1,kp1,bi,bj)) *
596 $ (vVel(im1,jp1,k,bi,bj)-vVel(im1,jp1,kp1,bi,bj)) +
597 $ (vVel(ip1,j, k,bi,bj)-vVel(ip1,j, kp1,bi,bj)) *
598 $ (vVel(ip1,j, k,bi,bj)-vVel(ip1,j, kp1,bi,bj)) +
599 $ (vVel(ip1,jp1,k,bi,bj)-vVel(ip1,jp1,kp1,bi,bj)) *
600 $ (vVel(ip1,jp1,k,bi,bj)-vVel(ip1,jp1,kp1,bi,bj)) )
601 #endif
602 END DO
603 END DO
604 END DO
605
606 cph(
607 #ifdef ALLOW_AUTODIFF_KPP_EXTENSIVE_STORE
608 CADJ store dvsq, shsq = comlev1_kpp, key = ikey
609 #endif
610 cph)
611
612 c-----------------------------------------------------------------------
613 c solve for viscosity, diffusivity, ghat, and hbl on "t-grid"
614 c-----------------------------------------------------------------------
615
616 DO j = jbot, jtop
617 DO i = ibot, itop
618 work1(i,j) = nzmax(i,j,bi,bj)
619 work2(i,j) = Fcori(i,j,bi,bj)
620 END DO
621 END DO
622 CALL TIMER_START('KPPMIX [KPP_CALC]', myThid)
623 CALL KPPMIX (
624 I mytime, mythid
625 I , work1, shsq, dVsq, ustar
626 I , bo, bosol, dbloc, Ritop, work2
627 I , ikey
628 O , vddiff
629 U , ghat
630 O , hbl )
631
632 CALL TIMER_STOP ('KPPMIX [KPP_CALC]', myThid)
633
634 c-----------------------------------------------------------------------
635 c zero out land values and transfer to global variables
636 c-----------------------------------------------------------------------
637
638 DO j = jmin, jmax
639 DO i = imin, imax
640 DO k = 1, Nr
641 KPPviscAz(i,j,k,bi,bj) = vddiff(i,j,k-1,1) * pMask(i,j,k,bi,bj)
642 KPPdiffKzS(i,j,k,bi,bj)= vddiff(i,j,k-1,2) * pMask(i,j,k,bi,bj)
643 KPPdiffKzT(i,j,k,bi,bj)= vddiff(i,j,k-1,3) * pMask(i,j,k,bi,bj)
644 KPPghat(i,j,k,bi,bj) = ghat(i,j,k) * pMask(i,j,k,bi,bj)
645 END DO
646 KPPhbl(i,j,bi,bj) = hbl(i,j) * pMask(i,j,1,bi,bj)
647 END DO
648 END DO
649 #ifdef FRUGAL_KPP
650 _EXCH_XYZ_R8(KPPviscAz , myThid )
651 _EXCH_XYZ_R8(KPPdiffKzS , myThid )
652 _EXCH_XYZ_R8(KPPdiffKzT , myThid )
653 _EXCH_XYZ_R8(KPPghat , myThid )
654 _EXCH_XY_R8 (KPPhbl , myThid )
655 #endif
656
657 #ifdef KPP_SMOOTH_VISC
658 c horizontal smoothing of vertical viscosity
659 DO k = 1, Nr
660 CALL SMOOTH_HORIZ (
661 I k, bi, bj,
662 U KPPviscAz(1-OLx,1-OLy,k,bi,bj) )
663 END DO
664 _EXCH_XYZ_R8(KPPviscAz , myThid )
665 #endif /* KPP_SMOOTH_VISC */
666
667 #ifdef KPP_SMOOTH_DIFF
668 c horizontal smoothing of vertical diffusivity
669 DO k = 1, Nr
670 CALL SMOOTH_HORIZ (
671 I k, bi, bj,
672 U KPPdiffKzS(1-OLx,1-OLy,k,bi,bj) )
673 CALL SMOOTH_HORIZ (
674 I k, bi, bj,
675 U KPPdiffKzT(1-OLx,1-OLy,k,bi,bj) )
676 END DO
677 _EXCH_XYZ_R8(KPPdiffKzS , myThid )
678 _EXCH_XYZ_R8(KPPdiffKzT , myThid )
679 #endif /* KPP_SMOOTH_DIFF */
680
681 cph(
682 cph crucial: this avoids full recomp./call of kppmix
683 CADJ store KPPhbl = comlev1_kpp, key = ikey
684 cph)
685
686 C Compute fraction of solar short-wave flux penetrating to
687 C the bottom of the mixing layer.
688 DO j=1-OLy,sNy+OLy
689 DO i=1-OLx,sNx+OLx
690 worka(i,j) = KPPhbl(i,j,bi,bj)
691 ENDDO
692 ENDDO
693 CALL SWFRAC(
694 I (sNx+2*OLx)*(sNy+2*OLy), minusone,
695 I mytime, mythid,
696 U worka )
697 DO j=1-OLy,sNy+OLy
698 DO i=1-OLx,sNx+OLx
699 KPPfrac(i,j,bi,bj) = worka(i,j)
700 ENDDO
701 ENDDO
702
703 ENDIF
704
705 #endif /* ALLOW_KPP */
706
707 RETURN
708 END
709
710 subroutine KPP_CALC_DUMMY(
711 I bi, bj, myTime, myThid )
712 C /==========================================================\
713 C | SUBROUTINE KPP_CALC_DUMMY |
714 C | o Compute all KPP fields defined in KPP.h |
715 C | o Dummy routine for TAMC
716 C |==========================================================|
717 C | This subroutine serves as an interface between MITGCMUV |
718 C | code and NCOM 1-D routines in kpp_routines.F |
719 C \==========================================================/
720 IMPLICIT NONE
721
722 #include "SIZE.h"
723 #include "EEPARAMS.h"
724 #include "PARAMS.h"
725 #include "KPP.h"
726 #include "KPP_PARAMS.h"
727 #include "GRID.h"
728
729 c Routine arguments
730 c bi, bj - array indices on which to apply calculations
731 c myTime - Current time in simulation
732
733 INTEGER bi, bj
734 INTEGER myThid
735 _RL myTime
736
737 #ifdef ALLOW_KPP
738
739 c Local constants
740 integer i, j, k
741
742 DO j=1-OLy,sNy+OLy
743 DO i=1-OLx,sNx+OLx
744 KPPhbl (i,j,bi,bj) = 1.0
745 KPPfrac(i,j,bi,bj) = 0.0
746 DO k = 1,Nr
747 KPPghat (i,j,k,bi,bj) = 0.0
748 KPPviscAz (i,j,k,bi,bj) = viscAz
749 KPPdiffKzT(i,j,k,bi,bj) = diffKzT
750 KPPdiffKzS(i,j,k,bi,bj) = diffKzS
751 ENDDO
752 ENDDO
753 ENDDO
754
755 #endif
756 RETURN
757 END

  ViewVC Help
Powered by ViewVC 1.1.22