/[MITgcm]/MITgcm/pkg/kpp/kpp_calc.F
ViewVC logotype

Annotation of /MITgcm/pkg/kpp/kpp_calc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.11 - (hide annotations) (download)
Sat Jul 13 03:12:30 2002 UTC (21 years, 11 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint46g_pre, checkpoint46f_post, checkpoint46b_post, checkpoint46d_pre, checkpoint46a_post, checkpoint46e_pre, checkpoint46b_pre, checkpoint46c_pre, checkpoint46, checkpoint46h_pre, checkpoint46a_pre, checkpoint46g_post, checkpoint46c_post, checkpoint46e_post, checkpoint46d_post
Changes since 1.10: +38 -10 lines
Merging from release1_p5
o Adjoint-related bug fixes in kpp:
  - kpp_calc: sore of kpphbl avoids recomputation/call to S/R kppmix
  - kpp_routines: store of Rib avoids partial recomputation bug of TAF.

1 heimbach 1.11 C $Header: /u/gcmpack/MITgcm/pkg/kpp/kpp_calc.F,v 1.9.4.2 2002/07/11 14:16:04 heimbach Exp $
2 adcroft 1.9 C $Name: $
3 adcroft 1.1
4     #include "KPP_OPTIONS.h"
5    
6     subroutine KPP_CALC(
7     I bi, bj, myTime, myThid )
8     C /==========================================================\
9     C | SUBROUTINE KPP_CALC |
10     C | o Compute all KPP fields defined in KPP.h |
11     C |==========================================================|
12     C | This subroutine serves as an interface between MITGCMUV |
13     C | code and NCOM 1-D routines in kpp_routines.F |
14     C \==========================================================/
15     IMPLICIT NONE
16    
17     c=======================================================================
18     c
19     c written by : jan morzel, august 11, 1994
20     c modified by : jan morzel, january 25, 1995 : "dVsq" and 1d code
21     c detlef stammer, august, 1997 : for MIT GCM Classic
22     c d. menemenlis, july, 1998 : for MIT GCM UV
23     c
24     c compute vertical mixing coefficients based on the k-profile
25     c and oceanic planetary boundary layer scheme by large & mcwilliams.
26     c
27     c summary:
28     c - compute interior mixing everywhere:
29     c interior mixing gets computed at all interfaces due to constant
30     c internal wave background activity ("fkpm" and "fkph"), which
31     c is enhanced in places of static instability (local richardson
32     c number < 0).
33     c Additionally, mixing can be enhanced by adding contribution due
34     c to shear instability which is a function of the local richardson
35     c number
36     c - double diffusivity:
37     c interior mixing can be enhanced by double diffusion due to salt
38     c fingering and diffusive convection (ifdef "kmixdd").
39     c - kpp scheme in the boundary layer:
40     c
41     c a.boundary layer depth:
42     c at every gridpoint the depth of the oceanic boundary layer
43     c ("hbl") gets computed by evaluating bulk richardson numbers.
44     c b.boundary layer mixing:
45     c within the boundary layer, above hbl, vertical mixing is
46     c determined by turbulent surface fluxes, and interior mixing at
47     c the lower boundary, i.e. at hbl.
48     c
49     c this subroutine provides the interface between the MIT GCM UV and the
50     c subroutine "kppmix", where boundary layer depth, vertical
51     c viscosity, vertical diffusivity, and counter gradient term (ghat)
52     c are computed slabwise.
53     c note: subroutine "kppmix" uses m-k-s units.
54     c
55     c time level:
56     c input tracer and velocity profiles are evaluated at time level
57     c tau, surface fluxes come from tau or tau-1.
58     c
59     c grid option:
60     c in this "1-grid" implementation, diffusivity and viscosity
61     c profiles are computed on the "t-grid" (by using velocity shear
62     c profiles averaged from the "u,v-grid" onto the "t-grid"; note, that
63     c the averaging includes zero values on coastal and seafloor grid
64     c points). viscosity on the "u,v-grid" is computed by averaging the
65     c "t-grid" viscosity values onto the "u,v-grid".
66     c
67     c vertical grid:
68     c mixing coefficients get evaluated at the bottom of the lowest
69     c layer, i.e., at depth zw(Nr). these values are only useful when
70     c the model ocean domain does not include the entire ocean down to
71     c the seafloor ("upperocean" setup) and allows flux through the
72     c bottom of the domain. for full-depth runs, these mixing
73     c coefficients are being zeroed out before leaving this subroutine.
74     c
75     c-------------------------------------------------------------------------
76    
77     c global parameters updated by kpp_calc
78     c KPPviscAz - KPP eddy viscosity coefficient (m^2/s)
79     c KPPdiffKzT - KPP diffusion coefficient for temperature (m^2/s)
80     c KPPdiffKzS - KPP diffusion coefficient for salt and tracers (m^2/s)
81     c KPPghat - Nonlocal transport coefficient (s/m^2)
82     c KPPhbl - Boundary layer depth on "t-grid" (m)
83     c KPPfrac - Fraction of short-wave flux penetrating mixing layer
84    
85     c-- KPP_CALC computes vertical viscosity and diffusivity for region
86     c (-2:sNx+3,-2:sNy+3) as required by CALC_DIFFUSIVITY and requires
87 heimbach 1.2 c values of uVel, vVel, SurfaceTendencyU, SurfaceTendencyV in the
88     c region (-2:sNx+4,-2:sNy+4).
89 adcroft 1.1 c Hence overlap region needs to be set OLx=4, OLy=4.
90     c When option FRUGAL_KPP is used, computation in overlap regions
91     c is replaced with exchange calls hence reducing overlap requirements
92     c to OLx=1, OLy=1.
93    
94     #include "SIZE.h"
95     #include "EEPARAMS.h"
96     #include "PARAMS.h"
97     #include "DYNVARS.h"
98     #include "KPP.h"
99     #include "KPP_PARAMS.h"
100     #include "FFIELDS.h"
101     #include "GRID.h"
102    
103     #ifdef ALLOW_AUTODIFF_TAMC
104     #include "tamc.h"
105     #include "tamc_keys.h"
106     #else /* ALLOW_AUTODIFF_TAMC */
107     integer ikey
108     #endif /* ALLOW_AUTODIFF_TAMC */
109    
110     EXTERNAL DIFFERENT_MULTIPLE
111     LOGICAL DIFFERENT_MULTIPLE
112    
113     c Routine arguments
114     c bi, bj - array indices on which to apply calculations
115     c myTime - Current time in simulation
116    
117     INTEGER bi, bj
118     INTEGER myThid
119     _RL myTime
120    
121     #ifdef ALLOW_KPP
122    
123 heimbach 1.4 c Local constants
124     c minusone, p0, p5, p25, p125, p0625
125     c imin, imax, jmin, jmax - array computation indices
126    
127     _RL minusone
128     parameter( minusone=-1.0)
129     _KPP_RL p0 , p5 , p25 , p125 , p0625
130     parameter( p0=0.0, p5=0.5, p25=0.25, p125=0.125, p0625=0.0625 )
131     integer imin , imax , jmin , jmax
132     #ifdef FRUGAL_KPP
133     parameter( imin=1 , imax=sNx , jmin=1 , jmax=sNy )
134     #else
135     parameter( imin=-2 , imax=sNx+3 , jmin=-2 , jmax=sNy+3 )
136     #endif
137    
138 adcroft 1.1 c Local arrays and variables
139     c work? (nx,ny) - horizontal working arrays
140     c ustar (nx,ny) - surface friction velocity (m/s)
141     c bo (nx,ny) - surface turbulent buoyancy forcing (m^2/s^3)
142     c bosol (nx,ny) - surface radiative buoyancy forcing (m^2/s^3)
143     c shsq (nx,ny,Nr) - local velocity shear squared
144     c at interfaces for ri_iwmix (m^2/s^2)
145     c dVsq (nx,ny,Nr) - velocity shear re surface squared
146     c at grid levels for bldepth (m^2/s^2)
147     c dbloc (nx,ny,Nr) - local delta buoyancy at interfaces
148     c for ri_iwmix and bldepth (m/s^2)
149     c Ritop (nx,ny,Nr) - numerator of bulk richardson number
150     c at grid levels for bldepth
151     c vddiff (nx,ny,Nrp2,1)- vertical viscosity on "t-grid" (m^2/s)
152     c vddiff (nx,ny,Nrp2,2)- vert. diff. on next row for temperature (m^2/s)
153     c vddiff (nx,ny,Nrp2,3)- vert. diff. on next row for salt&tracers (m^2/s)
154     c ghat (nx,ny,Nr) - nonlocal transport coefficient (s/m^2)
155     c hbl (nx,ny) - mixing layer depth (m)
156     c kmtj (nx,ny) - maximum number of wet levels in each column
157     c z0 (nx,ny) - Roughness length (m)
158     c zRef (nx,ny) - Reference depth: Hmix * epsilon (m)
159     c uRef (nx,ny) - Reference zonal velocity (m/s)
160     c vRef (nx,ny) - Reference meridional velocity (m/s)
161    
162 heimbach 1.4 _RL worka ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
163     integer work1 ( ibot:itop , jbot:jtop )
164     _KPP_RL work2 ( ibot:itop , jbot:jtop )
165 heimbach 1.11 _KPP_RL work3 ( ibot:itop , jbot:jtop )
166 heimbach 1.4 _KPP_RL ustar ( ibot:itop , jbot:jtop )
167     _KPP_RL bo ( ibot:itop , jbot:jtop )
168     _KPP_RL bosol ( ibot:itop , jbot:jtop )
169     _KPP_RL shsq ( ibot:itop , jbot:jtop , Nr )
170     _KPP_RL dVsq ( ibot:itop , jbot:jtop , Nr )
171     _KPP_RL dbloc ( ibot:itop , jbot:jtop , Nr )
172     _KPP_RL Ritop ( ibot:itop , jbot:jtop , Nr )
173     _KPP_RL vddiff( ibot:itop , jbot:jtop , 0:Nrp1, mdiff )
174     _KPP_RL ghat ( ibot:itop , jbot:jtop , Nr )
175     _KPP_RL hbl ( ibot:itop , jbot:jtop )
176 adcroft 1.1 #ifdef KPP_ESTIMATE_UREF
177 heimbach 1.4 _KPP_RL z0 ( ibot:itop , jbot:jtop )
178     _KPP_RL zRef ( ibot:itop , jbot:jtop )
179     _KPP_RL uRef ( ibot:itop , jbot:jtop )
180     _KPP_RL vRef ( ibot:itop , jbot:jtop )
181 adcroft 1.1 #endif /* KPP_ESTIMATE_UREF */
182    
183 heimbach 1.4 _KPP_RL tempvar1, tempvar2
184 adcroft 1.1 integer i, j, k, kp1, im1, ip1, jm1, jp1
185    
186     #ifdef KPP_ESTIMATE_UREF
187 heimbach 1.4 _KPP_RL dBdz1, dBdz2, ustarX, ustarY
188 adcroft 1.1 #endif
189    
190     c Check to see if new vertical mixing coefficient should be computed now?
191     IF ( DIFFERENT_MULTIPLE(kpp_freq,myTime,myTime-deltaTClock) .OR.
192     1 myTime .EQ. startTime ) THEN
193    
194     c-----------------------------------------------------------------------
195     c prepare input arrays for subroutine "kppmix" to compute
196     c viscosity and diffusivity and ghat.
197     c All input arrays need to be in m-k-s units.
198     c
199     c note: for the computation of the bulk richardson number in the
200     c "bldepth" subroutine, gradients of velocity and buoyancy are
201     c required at every depth. in the case of very fine vertical grids
202     c (thickness of top layer < 2m), the surface reference depth must
203     c be set to zref=epsilon/2*zgrid(k), and the reference value
204     c of velocity and buoyancy must be computed as vertical average
205     c between the surface and 2*zref. in the case of coarse vertical
206     c grids zref is zgrid(1)/2., and the surface reference value is
207     c simply the surface value at zgrid(1).
208     c-----------------------------------------------------------------------
209    
210     c------------------------------------------------------------------------
211     c density related quantities
212     c --------------------------
213     c
214     c work2 - density of surface layer (kg/m^3)
215     c dbloc - local buoyancy gradient at Nr interfaces
216     c g/rho{k+1,k+1} * [ drho{k,k+1}-drho{k+1,k+1} ] (m/s^2)
217     c dbsfc (stored in Ritop to conserve stack memory)
218     c - buoyancy difference with respect to the surface
219     c g * [ drho{1,k}/rho{1,k} - drho{k,k}/rho{k,k} ] (m/s^2)
220     c ttalpha (stored in vddiff(:,:,:,1) to conserve stack memory)
221     c - thermal expansion coefficient without 1/rho factor
222     c d(rho{k,k})/d(T(k)) (kg/m^3/C)
223     c ssbeta (stored in vddiff(:,:,:,2) to conserve stack memory)
224     c - salt expansion coefficient without 1/rho factor
225     c d(rho{k,k})/d(S(k)) (kg/m^3/PSU)
226     c------------------------------------------------------------------------
227    
228     CALL TIMER_START('STATEKPP [KPP_CALC]', myThid)
229     CALL STATEKPP(
230     I bi, bj, myThid
231     O , work2, dbloc, Ritop
232 heimbach 1.4 O , vddiff(ibot,jbot,1,1), vddiff(ibot,jbot,1,2)
233 adcroft 1.1 & )
234     CALL TIMER_STOP ('STATEKPP [KPP_CALC]', myThid)
235    
236     DO k = 1, Nr
237 heimbach 1.4 DO j = jbot, jtop
238     DO i = ibot, itop
239 adcroft 1.1 ghat(i,j,k) = dbloc(i,j,k)
240     ENDDO
241     ENDDO
242     ENDDO
243    
244 heimbach 1.4 #ifdef KPP_SMOOTH_DBLOC
245     c horizontally smooth dbloc with a 121 filter
246     c smooth dbloc stored in ghat to save space
247     c dbloc(k) is buoyancy gradientnote between k and k+1
248     c levels therefore k+1 mask must be used
249    
250     DO k = 1, Nr-1
251     CALL KPP_SMOOTH_HORIZ (
252     I k+1, bi, bj,
253     U ghat (ibot,jbot,k) )
254     ENDDO
255    
256 adcroft 1.1 #endif /* KPP_SMOOTH_DBLOC */
257    
258     #ifdef KPP_SMOOTH_DENS
259     c horizontally smooth density related quantities with 121 filters
260 heimbach 1.4 CALL KPP_SMOOTH_HORIZ (
261     I 1, bi, bj,
262     U work2 )
263 adcroft 1.1 DO k = 1, Nr
264 heimbach 1.4 CALL KPP_SMOOTH_HORIZ (
265     I k+1, bi, bj,
266     U dbloc (ibot,jbot,k) )
267     CALL KPP_SMOOTH_HORIZ (
268 adcroft 1.1 I k, bi, bj,
269 heimbach 1.4 U Ritop (ibot,jbot,k) )
270     CALL KPP_SMOOTH_HORIZ (
271 adcroft 1.1 I k, bi, bj,
272 heimbach 1.4 U vddiff(ibot,jbot,k,1) )
273     CALL KPP_SMOOTH_HORIZ (
274 adcroft 1.1 I k, bi, bj,
275 heimbach 1.4 U vddiff(ibot,jbot,k,2) )
276 adcroft 1.1 ENDDO
277     #endif /* KPP_SMOOTH_DENS */
278    
279     DO k = 1, Nr
280 heimbach 1.4 DO j = jbot, jtop
281     DO i = ibot, itop
282 adcroft 1.1
283     c zero out dbloc over land points (so that the convective
284     c part of the interior mixing can be diagnosed)
285     dbloc(i,j,k) = dbloc(i,j,k) * pMask(i,j,k,bi,bj)
286     ghat(i,j,k) = ghat(i,j,k) * pMask(i,j,k,bi,bj)
287     Ritop(i,j,k) = Ritop(i,j,k) * pMask(i,j,k,bi,bj)
288     if(k.eq.nzmax(i,j,bi,bj)) then
289     dbloc(i,j,k) = p0
290     ghat(i,j,k) = p0
291     Ritop(i,j,k) = p0
292     endif
293    
294     c numerator of bulk richardson number on grid levels
295     c note: land and ocean bottom values need to be set to zero
296     c so that the subroutine "bldepth" works correctly
297     Ritop(i,j,k) = (zgrid(1)-zgrid(k)) * Ritop(i,j,k)
298    
299     END DO
300     END DO
301     END DO
302    
303 heimbach 1.11 cph(
304     cph this avoids a single or double recomp./call of statekpp
305     CADJ store work2 = comlev1_kpp, key = ikey
306     #ifdef ALLOW_AUTODIFF_KPP_EXTENSIVE_STORE
307     CADJ store dbloc, Ritop, ghat = comlev1_kpp, key = ikey
308     CADJ store vddiff = comlev1_kpp, key = ikey
309     #endif
310     cph)
311    
312 adcroft 1.1 c------------------------------------------------------------------------
313     c friction velocity, turbulent and radiative surface buoyancy forcing
314     c -------------------------------------------------------------------
315 jmc 1.10 c taux / rho = SurfaceTendencyU * drF(1) (N/m^2)
316     c tauy / rho = SurfaceTendencyV * drF(1) (N/m^2)
317     c ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho ) (m/s)
318 heimbach 1.2 c bo = - g * ( alpha*SurfaceTendencyT +
319 jmc 1.10 c beta *SurfaceTendencyS ) * drF(1) / rho (m^2/s^3)
320     c bosol = - g * alpha * Qsw * drF(1) / rho (m^2/s^3)
321 adcroft 1.1 c------------------------------------------------------------------------
322    
323 heimbach 1.4 c initialize arrays to zero
324     DO j = jbot, jtop
325     DO i = ibot, itop
326     ustar(i,j) = p0
327     bo (I,J) = p0
328     bosol(I,J) = p0
329     END DO
330     END DO
331    
332 adcroft 1.1 DO j = jmin, jmax
333 heimbach 1.2 jp1 = j + 1
334     DO i = imin, imax
335     ip1 = i+1
336 heimbach 1.11 work3(i,j) =
337 heimbach 1.2 & (SurfaceTendencyU(i,j,bi,bj) + SurfaceTendencyU(ip1,j,bi,bj)) *
338     & (SurfaceTendencyU(i,j,bi,bj) + SurfaceTendencyU(ip1,j,bi,bj)) +
339     & (SurfaceTendencyV(i,j,bi,bj) + SurfaceTendencyV(i,jp1,bi,bj)) *
340     & (SurfaceTendencyV(i,j,bi,bj) + SurfaceTendencyV(i,jp1,bi,bj))
341 heimbach 1.11 END DO
342     END DO
343     cph(
344     CADJ store work3 = comlev1_kpp, key = ikey
345     cph)
346     DO j = jmin, jmax
347     jp1 = j + 1
348     DO i = imin, imax
349     ip1 = i+1
350     if ( work3(i,j) .lt. (phepsi*phepsi) ) then
351 jmc 1.10 ustar(i,j) = SQRT( phepsi * p5 * drF(1) )
352 heimbach 1.2 else
353 heimbach 1.11 tempVar2 = SQRT( work3(i,j) ) * p5 * drF(1)
354 heimbach 1.4 ustar(i,j) = SQRT( tempVar2 )
355 heimbach 1.2 endif
356     bo(I,J) = - gravity *
357     & ( vddiff(I,J,1,1) * SurfaceTendencyT(i,j,bi,bj) +
358     & vddiff(I,J,1,2) * SurfaceTendencyS(i,j,bi,bj)
359     & ) *
360 jmc 1.10 & drF(1) / work2(I,J)
361 adcroft 1.5 bosol(I,J) = gravity * vddiff(I,J,1,1) * Qsw(i,j,bi,bj) *
362     & recip_Cp*recip_rhoNil*recip_dRf(1) *
363 jmc 1.10 & drF(1) / work2(I,J)
364 heimbach 1.2 END DO
365 adcroft 1.1 END DO
366    
367 heimbach 1.11 cph(
368     CADJ store ustar = comlev1_kpp, key = ikey
369     cph)
370    
371 adcroft 1.1 c------------------------------------------------------------------------
372     c velocity shear
373     c --------------
374     c Get velocity shear squared, averaged from "u,v-grid"
375     c onto "t-grid" (in (m/s)**2):
376     c dVsq(k)=(Uref-U(k))**2+(Vref-V(k))**2 at grid levels
377     c shsq(k)=(U(k)-U(k+1))**2+(V(k)-V(k+1))**2 at interfaces
378     c------------------------------------------------------------------------
379    
380 heimbach 1.4 c initialize arrays to zero
381     DO k = 1, Nr
382     DO j = jbot, jtop
383     DO i = ibot, itop
384     shsq(i,j,k) = p0
385     dVsq(i,j,k) = p0
386     END DO
387     END DO
388     END DO
389    
390 adcroft 1.1 c dVsq computation
391    
392     #ifdef KPP_ESTIMATE_UREF
393    
394     c Get rid of vertical resolution dependence of dVsq term by
395     c estimating a surface velocity that is independent of first level
396     c thickness in the model. First determine mixed layer depth hMix.
397     c Second zRef = espilon * hMix. Third determine roughness length
398     c scale z0. Third estimate reference velocity.
399    
400     DO j = jmin, jmax
401     jp1 = j + 1
402     DO i = imin, imax
403     ip1 = i + 1
404    
405     c Determine mixed layer depth hMix as the shallowest depth at which
406     c dB/dz exceeds 5.2e-5 s^-2.
407     work1(i,j) = nzmax(i,j,bi,bj)
408     DO k = 1, Nr
409     IF ( k .LT. nzmax(i,j,bi,bj) .AND.
410     & dbloc(i,j,k) / drC(k+1) .GT. dB_dz )
411     & work1(i,j) = k
412     END DO
413    
414     c Linearly interpolate to find hMix.
415     k = work1(i,j)
416     IF ( k .EQ. 0 .OR. nzmax(i,j,bi,bj) .EQ. 1 ) THEN
417     zRef(i,j) = p0
418     ELSEIF ( k .EQ. 1) THEN
419     dBdz2 = dbloc(i,j,1) / drC(2)
420     zRef(i,j) = drF(1) * dB_dz / dBdz2
421     ELSEIF ( k .LT. nzmax(i,j,bi,bj) ) THEN
422     dBdz1 = dbloc(i,j,k-1) / drC(k )
423     dBdz2 = dbloc(i,j,k ) / drC(k+1)
424     zRef(i,j) = rF(k) + drF(k) * (dB_dz - dBdz1) /
425     & MAX ( phepsi, dBdz2 - dBdz1 )
426     ELSE
427     zRef(i,j) = rF(k+1)
428     ENDIF
429    
430     c Compute roughness length scale z0 subject to 0 < z0
431 heimbach 1.4 tempVar1 = p5 * (
432 adcroft 1.1 & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) *
433     & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) +
434     & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) *
435     & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) +
436     & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) *
437     & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) +
438     & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) *
439 heimbach 1.2 & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) )
440 heimbach 1.4 if ( tempVar1 .lt. (epsln*epsln) ) then
441     tempVar2 = epsln
442 heimbach 1.2 else
443 heimbach 1.4 tempVar2 = SQRT ( tempVar1 )
444 heimbach 1.2 endif
445 adcroft 1.1 z0(i,j) = rF(2) *
446     & ( rF(3) * LOG ( rF(3) / rF(2) ) /
447     & ( rF(3) - rF(2) ) -
448 heimbach 1.4 & tempVar2 * vonK /
449 adcroft 1.1 & MAX ( ustar(i,j), phepsi ) )
450     z0(i,j) = MAX ( z0(i,j), phepsi )
451    
452     c zRef is set to 0.1 * hMix subject to z0 <= zRef <= drF(1)
453     zRef(i,j) = MAX ( epsilon * zRef(i,j), z0(i,j) )
454     zRef(i,j) = MIN ( zRef(i,j), drF(1) )
455    
456     c Estimate reference velocity uRef and vRef.
457     uRef(i,j) = p5 *
458     & ( uVel(i,j,1,bi,bj) + uVel(ip1,j,1,bi,bj) )
459     vRef(i,j) = p5 *
460     & ( vVel(i,j,1,bi,bj) + vVel(i,jp1,1,bi,bj) )
461     IF ( zRef(i,j) .LT. drF(1) ) THEN
462 heimbach 1.2 ustarX = ( SurfaceTendencyU(i, j,bi,bj) +
463     & SurfaceTendencyU(ip1,j,bi,bj) ) * p5
464     ustarY = ( SurfaceTendencyV(i,j, bi,bj) +
465     & SurfaceTendencyU(i,jp1,bi,bj) ) * p5
466 heimbach 1.4 tempVar1 = ustarX * ustarX + ustarY * ustarY
467     if ( tempVar1 .lt. (epsln*epsln) ) then
468     tempVar2 = epsln
469 heimbach 1.2 else
470 heimbach 1.4 tempVar2 = SQRT ( tempVar1 )
471 heimbach 1.2 endif
472 heimbach 1.4 tempVar2 = ustar(i,j) *
473 adcroft 1.1 & ( LOG ( zRef(i,j) / rF(2) ) +
474     & z0(i,j) / zRef(i,j) - z0(i,j) / rF(2) ) /
475 heimbach 1.4 & vonK / tempVar2
476     uRef(i,j) = uRef(i,j) + ustarX * tempVar2
477     vRef(i,j) = vRef(i,j) + ustarY * tempVar2
478 adcroft 1.1 ENDIF
479    
480     END DO
481     END DO
482    
483     DO k = 1, Nr
484     DO j = jmin, jmax
485     jm1 = j - 1
486     jp1 = j + 1
487     DO i = imin, imax
488     im1 = i - 1
489     ip1 = i + 1
490     dVsq(i,j,k) = p5 * (
491     $ (uRef(i,j) - uVel(i, j, k,bi,bj)) *
492     $ (uRef(i,j) - uVel(i, j, k,bi,bj)) +
493     $ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) *
494     $ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) +
495     $ (vRef(i,j) - vVel(i, j, k,bi,bj)) *
496     $ (vRef(i,j) - vVel(i, j, k,bi,bj)) +
497     $ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) *
498     $ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) )
499     #ifdef KPP_SMOOTH_DVSQ
500     dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * (
501     $ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) *
502     $ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) +
503     $ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) *
504     $ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) +
505     $ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) *
506     $ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) +
507     $ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) *
508     $ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) +
509     $ (vRef(i,j) - vVel(im1,j, k,bi,bj)) *
510     $ (vRef(i,j) - vVel(im1,j, k,bi,bj)) +
511     $ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) *
512     $ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) +
513     $ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) *
514     $ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) +
515     $ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) *
516     $ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) )
517     #endif /* KPP_SMOOTH_DVSQ */
518     END DO
519     END DO
520     END DO
521    
522     #else /* KPP_ESTIMATE_UREF */
523    
524     DO k = 1, Nr
525     DO j = jmin, jmax
526     jm1 = j - 1
527     jp1 = j + 1
528     DO i = imin, imax
529     im1 = i - 1
530     ip1 = i + 1
531     dVsq(i,j,k) = p5 * (
532     $ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) *
533     $ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) +
534     $ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) *
535     $ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) +
536     $ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) *
537     $ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) +
538     $ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) *
539     $ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) )
540     #ifdef KPP_SMOOTH_DVSQ
541     dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * (
542     $ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) *
543     $ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) +
544     $ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) *
545     $ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) +
546     $ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) *
547     $ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) +
548     $ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) *
549     $ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) +
550     $ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) *
551     $ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) +
552     $ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) *
553     $ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) +
554     $ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) *
555     $ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) +
556     $ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) *
557     $ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) )
558     #endif /* KPP_SMOOTH_DVSQ */
559     END DO
560     END DO
561     END DO
562    
563     #endif /* KPP_ESTIMATE_UREF */
564    
565     c shsq computation
566     DO k = 1, Nrm1
567     kp1 = k + 1
568     DO j = jmin, jmax
569     jm1 = j - 1
570     jp1 = j + 1
571     DO i = imin, imax
572     im1 = i - 1
573     ip1 = i + 1
574     shsq(i,j,k) = p5 * (
575     $ (uVel(i, j, k,bi,bj)-uVel(i, j, kp1,bi,bj)) *
576     $ (uVel(i, j, k,bi,bj)-uVel(i, j, kp1,bi,bj)) +
577     $ (uVel(ip1,j, k,bi,bj)-uVel(ip1,j, kp1,bi,bj)) *
578     $ (uVel(ip1,j, k,bi,bj)-uVel(ip1,j, kp1,bi,bj)) +
579     $ (vVel(i, j, k,bi,bj)-vVel(i, j, kp1,bi,bj)) *
580     $ (vVel(i, j, k,bi,bj)-vVel(i, j, kp1,bi,bj)) +
581     $ (vVel(i, jp1,k,bi,bj)-vVel(i, jp1,kp1,bi,bj)) *
582     $ (vVel(i, jp1,k,bi,bj)-vVel(i, jp1,kp1,bi,bj)) )
583     #ifdef KPP_SMOOTH_SHSQ
584     shsq(i,j,k) = p5 * shsq(i,j,k) + p125 * (
585     $ (uVel(i, jm1,k,bi,bj)-uVel(i, jm1,kp1,bi,bj)) *
586     $ (uVel(i, jm1,k,bi,bj)-uVel(i, jm1,kp1,bi,bj)) +
587     $ (uVel(ip1,jm1,k,bi,bj)-uVel(ip1,jm1,kp1,bi,bj)) *
588     $ (uVel(ip1,jm1,k,bi,bj)-uVel(ip1,jm1,kp1,bi,bj)) +
589     $ (uVel(i, jp1,k,bi,bj)-uVel(i, jp1,kp1,bi,bj)) *
590     $ (uVel(i, jp1,k,bi,bj)-uVel(i, jp1,kp1,bi,bj)) +
591     $ (uVel(ip1,jp1,k,bi,bj)-uVel(ip1,jp1,kp1,bi,bj)) *
592     $ (uVel(ip1,jp1,k,bi,bj)-uVel(ip1,jp1,kp1,bi,bj)) +
593     $ (vVel(im1,j, k,bi,bj)-vVel(im1,j, kp1,bi,bj)) *
594     $ (vVel(im1,j, k,bi,bj)-vVel(im1,j, kp1,bi,bj)) +
595     $ (vVel(im1,jp1,k,bi,bj)-vVel(im1,jp1,kp1,bi,bj)) *
596     $ (vVel(im1,jp1,k,bi,bj)-vVel(im1,jp1,kp1,bi,bj)) +
597     $ (vVel(ip1,j, k,bi,bj)-vVel(ip1,j, kp1,bi,bj)) *
598     $ (vVel(ip1,j, k,bi,bj)-vVel(ip1,j, kp1,bi,bj)) +
599     $ (vVel(ip1,jp1,k,bi,bj)-vVel(ip1,jp1,kp1,bi,bj)) *
600     $ (vVel(ip1,jp1,k,bi,bj)-vVel(ip1,jp1,kp1,bi,bj)) )
601     #endif
602     END DO
603     END DO
604     END DO
605    
606 heimbach 1.11 cph(
607     #ifdef ALLOW_AUTODIFF_KPP_EXTENSIVE_STORE
608     CADJ store dvsq, shsq = comlev1_kpp, key = ikey
609     #endif
610     cph)
611    
612 adcroft 1.1 c-----------------------------------------------------------------------
613     c solve for viscosity, diffusivity, ghat, and hbl on "t-grid"
614     c-----------------------------------------------------------------------
615    
616 heimbach 1.4 DO j = jbot, jtop
617     DO i = ibot, itop
618 adcroft 1.1 work1(i,j) = nzmax(i,j,bi,bj)
619     work2(i,j) = Fcori(i,j,bi,bj)
620     END DO
621     END DO
622     CALL TIMER_START('KPPMIX [KPP_CALC]', myThid)
623     CALL KPPMIX (
624 heimbach 1.4 I mytime, mythid
625     I , work1, shsq, dVsq, ustar
626 adcroft 1.1 I , bo, bosol, dbloc, Ritop, work2
627     I , ikey
628     O , vddiff
629     U , ghat
630 heimbach 1.4 O , hbl )
631 adcroft 1.1
632     CALL TIMER_STOP ('KPPMIX [KPP_CALC]', myThid)
633    
634     c-----------------------------------------------------------------------
635 heimbach 1.4 c zero out land values and transfer to global variables
636 adcroft 1.1 c-----------------------------------------------------------------------
637    
638     DO j = jmin, jmax
639 heimbach 1.4 DO i = imin, imax
640     DO k = 1, Nr
641     KPPviscAz(i,j,k,bi,bj) = vddiff(i,j,k-1,1) * pMask(i,j,k,bi,bj)
642     KPPdiffKzS(i,j,k,bi,bj)= vddiff(i,j,k-1,2) * pMask(i,j,k,bi,bj)
643     KPPdiffKzT(i,j,k,bi,bj)= vddiff(i,j,k-1,3) * pMask(i,j,k,bi,bj)
644     KPPghat(i,j,k,bi,bj) = ghat(i,j,k) * pMask(i,j,k,bi,bj)
645     END DO
646     KPPhbl(i,j,bi,bj) = hbl(i,j) * pMask(i,j,1,bi,bj)
647     END DO
648 adcroft 1.1 END DO
649     #ifdef FRUGAL_KPP
650     _EXCH_XYZ_R8(KPPviscAz , myThid )
651     _EXCH_XYZ_R8(KPPdiffKzS , myThid )
652     _EXCH_XYZ_R8(KPPdiffKzT , myThid )
653     _EXCH_XYZ_R8(KPPghat , myThid )
654     _EXCH_XY_R8 (KPPhbl , myThid )
655     #endif
656    
657     #ifdef KPP_SMOOTH_VISC
658     c horizontal smoothing of vertical viscosity
659     DO k = 1, Nr
660 heimbach 1.4 CALL SMOOTH_HORIZ (
661 adcroft 1.1 I k, bi, bj,
662 heimbach 1.4 U KPPviscAz(1-OLx,1-OLy,k,bi,bj) )
663 adcroft 1.1 END DO
664 heimbach 1.4 _EXCH_XYZ_R8(KPPviscAz , myThid )
665 adcroft 1.1 #endif /* KPP_SMOOTH_VISC */
666    
667     #ifdef KPP_SMOOTH_DIFF
668     c horizontal smoothing of vertical diffusivity
669     DO k = 1, Nr
670 heimbach 1.4 CALL SMOOTH_HORIZ (
671 adcroft 1.1 I k, bi, bj,
672 heimbach 1.4 U KPPdiffKzS(1-OLx,1-OLy,k,bi,bj) )
673     CALL SMOOTH_HORIZ (
674 adcroft 1.1 I k, bi, bj,
675 heimbach 1.4 U KPPdiffKzT(1-OLx,1-OLy,k,bi,bj) )
676 adcroft 1.1 END DO
677 heimbach 1.4 _EXCH_XYZ_R8(KPPdiffKzS , myThid )
678     _EXCH_XYZ_R8(KPPdiffKzT , myThid )
679 adcroft 1.1 #endif /* KPP_SMOOTH_DIFF */
680 heimbach 1.11
681     cph(
682     cph crucial: this avoids full recomp./call of kppmix
683     CADJ store KPPhbl = comlev1_kpp, key = ikey
684     cph)
685 adcroft 1.1
686     C Compute fraction of solar short-wave flux penetrating to
687     C the bottom of the mixing layer.
688     DO j=1-OLy,sNy+OLy
689     DO i=1-OLx,sNx+OLx
690     worka(i,j) = KPPhbl(i,j,bi,bj)
691     ENDDO
692     ENDDO
693     CALL SWFRAC(
694 heimbach 1.4 I (sNx+2*OLx)*(sNy+2*OLy), minusone,
695     I mytime, mythid,
696     U worka )
697 adcroft 1.1 DO j=1-OLy,sNy+OLy
698     DO i=1-OLx,sNx+OLx
699 heimbach 1.4 KPPfrac(i,j,bi,bj) = worka(i,j)
700 adcroft 1.1 ENDDO
701     ENDDO
702    
703     ENDIF
704    
705 adcroft 1.9 #endif /* ALLOW_KPP */
706 adcroft 1.1
707 heimbach 1.8 RETURN
708     END
709    
710     subroutine KPP_CALC_DUMMY(
711     I bi, bj, myTime, myThid )
712     C /==========================================================\
713     C | SUBROUTINE KPP_CALC_DUMMY |
714     C | o Compute all KPP fields defined in KPP.h |
715     C | o Dummy routine for TAMC
716     C |==========================================================|
717     C | This subroutine serves as an interface between MITGCMUV |
718     C | code and NCOM 1-D routines in kpp_routines.F |
719     C \==========================================================/
720     IMPLICIT NONE
721    
722     #include "SIZE.h"
723     #include "EEPARAMS.h"
724     #include "PARAMS.h"
725     #include "KPP.h"
726     #include "KPP_PARAMS.h"
727     #include "GRID.h"
728    
729     c Routine arguments
730     c bi, bj - array indices on which to apply calculations
731     c myTime - Current time in simulation
732    
733     INTEGER bi, bj
734     INTEGER myThid
735     _RL myTime
736    
737     #ifdef ALLOW_KPP
738    
739     c Local constants
740     integer i, j, k
741    
742     DO j=1-OLy,sNy+OLy
743     DO i=1-OLx,sNx+OLx
744     KPPhbl (i,j,bi,bj) = 1.0
745     KPPfrac(i,j,bi,bj) = 0.0
746     DO k = 1,Nr
747     KPPghat (i,j,k,bi,bj) = 0.0
748     KPPviscAz (i,j,k,bi,bj) = viscAz
749     KPPdiffKzT(i,j,k,bi,bj) = diffKzT
750     KPPdiffKzS(i,j,k,bi,bj) = diffKzS
751     ENDDO
752     ENDDO
753     ENDDO
754    
755     #endif
756 adcroft 1.1 RETURN
757     END

  ViewVC Help
Powered by ViewVC 1.1.22