/[MITgcm]/MITgcm/pkg/kpp/kpp_calc.F
ViewVC logotype

Annotation of /MITgcm/pkg/kpp/kpp_calc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download)
Wed Jun 21 19:45:47 2000 UTC (23 years, 11 months ago) by adcroft
Branch: MAIN
CVS Tags: checkpoint29, checkpoint30
Packaged KPP mixing scheme.

1 adcroft 1.1 C $Header: $
2    
3     #include "KPP_OPTIONS.h"
4    
5     subroutine KPP_CALC(
6     I bi, bj, myTime, myThid )
7     C /==========================================================\
8     C | SUBROUTINE KPP_CALC |
9     C | o Compute all KPP fields defined in KPP.h |
10     C |==========================================================|
11     C | This subroutine serves as an interface between MITGCMUV |
12     C | code and NCOM 1-D routines in kpp_routines.F |
13     C \==========================================================/
14     IMPLICIT NONE
15    
16     c=======================================================================
17     c
18     c written by : jan morzel, august 11, 1994
19     c modified by : jan morzel, january 25, 1995 : "dVsq" and 1d code
20     c detlef stammer, august, 1997 : for MIT GCM Classic
21     c d. menemenlis, july, 1998 : for MIT GCM UV
22     c
23     c compute vertical mixing coefficients based on the k-profile
24     c and oceanic planetary boundary layer scheme by large & mcwilliams.
25     c
26     c summary:
27     c - compute interior mixing everywhere:
28     c interior mixing gets computed at all interfaces due to constant
29     c internal wave background activity ("fkpm" and "fkph"), which
30     c is enhanced in places of static instability (local richardson
31     c number < 0).
32     c Additionally, mixing can be enhanced by adding contribution due
33     c to shear instability which is a function of the local richardson
34     c number
35     c - double diffusivity:
36     c interior mixing can be enhanced by double diffusion due to salt
37     c fingering and diffusive convection (ifdef "kmixdd").
38     c - kpp scheme in the boundary layer:
39     c
40     c a.boundary layer depth:
41     c at every gridpoint the depth of the oceanic boundary layer
42     c ("hbl") gets computed by evaluating bulk richardson numbers.
43     c b.boundary layer mixing:
44     c within the boundary layer, above hbl, vertical mixing is
45     c determined by turbulent surface fluxes, and interior mixing at
46     c the lower boundary, i.e. at hbl.
47     c
48     c this subroutine provides the interface between the MIT GCM UV and the
49     c subroutine "kppmix", where boundary layer depth, vertical
50     c viscosity, vertical diffusivity, and counter gradient term (ghat)
51     c are computed slabwise.
52     c note: subroutine "kppmix" uses m-k-s units.
53     c
54     c time level:
55     c input tracer and velocity profiles are evaluated at time level
56     c tau, surface fluxes come from tau or tau-1.
57     c
58     c grid option:
59     c in this "1-grid" implementation, diffusivity and viscosity
60     c profiles are computed on the "t-grid" (by using velocity shear
61     c profiles averaged from the "u,v-grid" onto the "t-grid"; note, that
62     c the averaging includes zero values on coastal and seafloor grid
63     c points). viscosity on the "u,v-grid" is computed by averaging the
64     c "t-grid" viscosity values onto the "u,v-grid".
65     c
66     c vertical grid:
67     c mixing coefficients get evaluated at the bottom of the lowest
68     c layer, i.e., at depth zw(Nr). these values are only useful when
69     c the model ocean domain does not include the entire ocean down to
70     c the seafloor ("upperocean" setup) and allows flux through the
71     c bottom of the domain. for full-depth runs, these mixing
72     c coefficients are being zeroed out before leaving this subroutine.
73     c
74     c-------------------------------------------------------------------------
75    
76     c global parameters updated by kpp_calc
77     c KPPviscAz - KPP eddy viscosity coefficient (m^2/s)
78     c KPPdiffKzT - KPP diffusion coefficient for temperature (m^2/s)
79     c KPPdiffKzS - KPP diffusion coefficient for salt and tracers (m^2/s)
80     c KPPghat - Nonlocal transport coefficient (s/m^2)
81     c KPPhbl - Boundary layer depth on "t-grid" (m)
82     c KPPfrac - Fraction of short-wave flux penetrating mixing layer
83    
84     c-- KPP_CALC computes vertical viscosity and diffusivity for region
85     c (-2:sNx+3,-2:sNy+3) as required by CALC_DIFFUSIVITY and requires
86     c values of uVel, vVel, fu, fv in the region (-2:sNx+4,-2:sNy+4).
87     c Hence overlap region needs to be set OLx=4, OLy=4.
88     c When option FRUGAL_KPP is used, computation in overlap regions
89     c is replaced with exchange calls hence reducing overlap requirements
90     c to OLx=1, OLy=1.
91    
92     #include "SIZE.h"
93     #include "EEPARAMS.h"
94     #include "PARAMS.h"
95     #include "DYNVARS.h"
96     #include "KPP.h"
97     #include "KPP_PARAMS.h"
98     #include "FFIELDS.h"
99     #include "GRID.h"
100    
101     #ifdef ALLOW_AUTODIFF_TAMC
102     #include "tamc.h"
103     #include "tamc_keys.h"
104     #else /* ALLOW_AUTODIFF_TAMC */
105     integer ikey
106     #endif /* ALLOW_AUTODIFF_TAMC */
107    
108     EXTERNAL DIFFERENT_MULTIPLE
109     LOGICAL DIFFERENT_MULTIPLE
110    
111     c Routine arguments
112     c bi, bj - array indices on which to apply calculations
113     c myTime - Current time in simulation
114    
115     INTEGER bi, bj
116     INTEGER myThid
117     _RL myTime
118    
119     #ifdef ALLOW_KPP
120    
121     c Local arrays and variables
122     c work? (nx,ny) - horizontal working arrays
123     c ustar (nx,ny) - surface friction velocity (m/s)
124     c bo (nx,ny) - surface turbulent buoyancy forcing (m^2/s^3)
125     c bosol (nx,ny) - surface radiative buoyancy forcing (m^2/s^3)
126     c shsq (nx,ny,Nr) - local velocity shear squared
127     c at interfaces for ri_iwmix (m^2/s^2)
128     c dVsq (nx,ny,Nr) - velocity shear re surface squared
129     c at grid levels for bldepth (m^2/s^2)
130     c dbloc (nx,ny,Nr) - local delta buoyancy at interfaces
131     c for ri_iwmix and bldepth (m/s^2)
132     c Ritop (nx,ny,Nr) - numerator of bulk richardson number
133     c at grid levels for bldepth
134     c vddiff (nx,ny,Nrp2,1)- vertical viscosity on "t-grid" (m^2/s)
135     c vddiff (nx,ny,Nrp2,2)- vert. diff. on next row for temperature (m^2/s)
136     c vddiff (nx,ny,Nrp2,3)- vert. diff. on next row for salt&tracers (m^2/s)
137     c ghat (nx,ny,Nr) - nonlocal transport coefficient (s/m^2)
138     c hbl (nx,ny) - mixing layer depth (m)
139     c kmtj (nx,ny) - maximum number of wet levels in each column
140     c z0 (nx,ny) - Roughness length (m)
141     c zRef (nx,ny) - Reference depth: Hmix * epsilon (m)
142     c uRef (nx,ny) - Reference zonal velocity (m/s)
143     c vRef (nx,ny) - Reference meridional velocity (m/s)
144    
145     _RS worka (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
146     _RS workb (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
147     #ifdef FRUGAL_KPP
148     integer work1(sNx,sNy)
149     _RS work2 (sNx,sNy)
150     _RS ustar (sNx,sNy)
151     _RS bo (sNx,sNy)
152     _RS bosol (sNx,sNy)
153     _RS shsq (sNx,sNy,Nr)
154     _RS dVsq (sNx,sNy,Nr)
155     _RS dbloc (sNx,sNy,Nr)
156     _RS Ritop (sNx,sNy,Nr)
157     _RS vddiff (sNx,sNy,0:Nrp1,mdiff)
158     _RS ghat (sNx,sNy,Nr)
159     _RS hbl (sNx,sNy)
160     #ifdef KPP_ESTIMATE_UREF
161     _RS z0 (sNx,sNy)
162     _RS zRef (sNx,sNy)
163     _RS uRef (sNx,sNy)
164     _RS vRef (sNx,sNy)
165     #endif /* KPP_ESTIMATE_UREF */
166     #else /* FRUGAL_KPP */
167     integer work1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
168     _RS work2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
169     _RS ustar (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
170     _RS bo (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
171     _RS bosol (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
172     _RS shsq (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
173     _RS dVsq (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
174     _RS dbloc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
175     _RS Ritop (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
176     _RS vddiff (1-OLx:sNx+OLx,1-OLy:sNy+OLy,0:Nrp1,mdiff)
177     _RS ghat (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
178     _RS hbl (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
179     #ifdef KPP_ESTIMATE_UREF
180     _RS z0 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
181     _RS zRef (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182     _RS uRef (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
183     _RS vRef (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
184     #endif /* KPP_ESTIMATE_UREF */
185     #endif /* FRUGAL_KPP */
186    
187     c imin,imax,jmin,jmax - array indices
188     integer imin , imax , jmin , jmax
189     parameter( imin=-2, imax=sNx+3, jmin=-2, jmax=sNy+3 )
190    
191     c mixing process switches
192     logical lri
193     parameter( lri = .true. )
194    
195     _RS p0 , p5 , p25 , p125 , p0625
196     parameter( p0=0.0, p5=0.5, p25=0.25, p125=0.125, p0625=0.0625 )
197    
198     _RS tempVar
199     integer i, j, k, kp1, im1, ip1, jm1, jp1
200    
201     #ifdef KPP_ESTIMATE_UREF
202     _RS dBdz1, dBdz2, ustarX, ustarY
203     #endif
204    
205     IF (use_KPPmixing) THEN
206    
207     CADJ STORE fu (:,: ,bi,bj) = uvtape, key = ikey, byte = isbyte
208     CADJ STORE fv (:,: ,bi,bj) = uvtape, key = ikey, byte = isbyte
209    
210     c Check to see if new vertical mixing coefficient should be computed now?
211     IF ( DIFFERENT_MULTIPLE(kpp_freq,myTime,myTime-deltaTClock) .OR.
212     1 myTime .EQ. startTime ) THEN
213    
214     c-----------------------------------------------------------------------
215     c prepare input arrays for subroutine "kppmix" to compute
216     c viscosity and diffusivity and ghat.
217     c All input arrays need to be in m-k-s units.
218     c
219     c note: for the computation of the bulk richardson number in the
220     c "bldepth" subroutine, gradients of velocity and buoyancy are
221     c required at every depth. in the case of very fine vertical grids
222     c (thickness of top layer < 2m), the surface reference depth must
223     c be set to zref=epsilon/2*zgrid(k), and the reference value
224     c of velocity and buoyancy must be computed as vertical average
225     c between the surface and 2*zref. in the case of coarse vertical
226     c grids zref is zgrid(1)/2., and the surface reference value is
227     c simply the surface value at zgrid(1).
228     c-----------------------------------------------------------------------
229    
230     c------------------------------------------------------------------------
231     c density related quantities
232     c --------------------------
233     c
234     c work2 - density of surface layer (kg/m^3)
235     c dbloc - local buoyancy gradient at Nr interfaces
236     c g/rho{k+1,k+1} * [ drho{k,k+1}-drho{k+1,k+1} ] (m/s^2)
237     c dbsfc (stored in Ritop to conserve stack memory)
238     c - buoyancy difference with respect to the surface
239     c g * [ drho{1,k}/rho{1,k} - drho{k,k}/rho{k,k} ] (m/s^2)
240     c ttalpha (stored in vddiff(:,:,:,1) to conserve stack memory)
241     c - thermal expansion coefficient without 1/rho factor
242     c d(rho{k,k})/d(T(k)) (kg/m^3/C)
243     c ssbeta (stored in vddiff(:,:,:,2) to conserve stack memory)
244     c - salt expansion coefficient without 1/rho factor
245     c d(rho{k,k})/d(S(k)) (kg/m^3/PSU)
246     c------------------------------------------------------------------------
247    
248     CALL TIMER_START('STATEKPP [KPP_CALC]', myThid)
249     CALL STATEKPP(
250     I bi, bj, myThid
251     O , work2, dbloc, Ritop
252     #ifdef FRUGAL_KPP
253     O , vddiff(1 ,1 ,1,1), vddiff(1 ,1 ,1,2)
254     #else
255     O , vddiff(1-OLx,1-OLy,1,1), vddiff(1-OLx,1-OLy,1,2)
256     #endif
257     & )
258     CALL TIMER_STOP ('STATEKPP [KPP_CALC]', myThid)
259    
260     #ifdef KPP_SMOOTH_DBLOC
261     c horizontally smooth dbloc with a 121 filter
262     c (stored in ghat to save space)
263    
264     DO k = 1, Nr
265     CALL SMOOTH_HORIZ_RS (
266     I k, bi, bj,
267     I dbloc(1-OLx,1-OLy,k),
268     O ghat (1-OLx,1-OLy,k) )
269     ENDDO
270    
271     #else /* KPP_SMOOTH_DBLOC */
272    
273     DO k = 1, Nr
274     #ifdef FRUGAL_KPP
275     DO j = 1, sNy
276     DO i = 1, sNx
277     #else
278     DO j = 1-OLy, sNy+OLy
279     DO i = imin, imax
280     #endif
281     ghat(i,j,k) = dbloc(i,j,k)
282     ENDDO
283     ENDDO
284     ENDDO
285    
286     #endif /* KPP_SMOOTH_DBLOC */
287    
288     #ifdef KPP_SMOOTH_DENS
289     c horizontally smooth density related quantities with 121 filters
290     CALL SMOOTH_HORIZ_RS (
291     I k, bi, bj,
292     I work2,
293     O work2 )
294     DO k = 1, Nr
295     CALL SMOOTH_HORIZ_RS (
296     I k, bi, bj,
297     I dbloc (1-OLx,1-OLy,k) ,
298     O dbloc (1-OLx,1-OLy,k) )
299     CALL SMOOTH_HORIZ_RS (
300     I k, bi, bj,
301     I Ritop (1-OLx,1-OLy,k) ,
302     O Ritop (1-OLx,1-OLy,k) )
303     CALL SMOOTH_HORIZ_RS (
304     I k, bi, bj,
305     I vddiff(1-OLx,1-OLy,k,1),
306     O vddiff(1-OLx,1-OLy,k,1) )
307     CALL SMOOTH_HORIZ_RS (
308     I k, bi, bj,
309     I vddiff(1-OLx,1-OLy,k,2),
310     O vddiff(1-OLx,1-OLy,k,2) )
311     ENDDO
312     #endif /* KPP_SMOOTH_DENS */
313    
314     DO k = 1, Nr
315     #ifdef FRUGAL_KPP
316     DO j = 1, sNy
317     DO i = 1, sNx
318     #else
319     DO j = 1-OLy, sNy+OLy
320     DO i = 1-OLx, sNx+OLx
321     #endif
322    
323     c zero out dbloc over land points (so that the convective
324     c part of the interior mixing can be diagnosed)
325     dbloc(i,j,k) = dbloc(i,j,k) * pMask(i,j,k,bi,bj)
326     ghat(i,j,k) = ghat(i,j,k) * pMask(i,j,k,bi,bj)
327     Ritop(i,j,k) = Ritop(i,j,k) * pMask(i,j,k,bi,bj)
328     if(k.eq.nzmax(i,j,bi,bj)) then
329     dbloc(i,j,k) = p0
330     ghat(i,j,k) = p0
331     Ritop(i,j,k) = p0
332     endif
333    
334     c numerator of bulk richardson number on grid levels
335     c note: land and ocean bottom values need to be set to zero
336     c so that the subroutine "bldepth" works correctly
337     Ritop(i,j,k) = (zgrid(1)-zgrid(k)) * Ritop(i,j,k)
338    
339     END DO
340     END DO
341     END DO
342    
343     c------------------------------------------------------------------------
344     c friction velocity, turbulent and radiative surface buoyancy forcing
345     c -------------------------------------------------------------------
346     c taux / rho = fu * delZ(1) (N/m^2)
347     c tauy / rho = fv * delZ(1) (N/m^2)
348     c ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho ) (m/s)
349     c bo = - g * (alpha*Qnet + beta*EmPmR) * delZ(1) / rho (m^2/s^3)
350     c bosol = - g * alpha * Qsw * delZ(1) / rho (m^2/s^3)
351     c------------------------------------------------------------------------
352    
353     #ifdef FRUGAL_KPP
354     DO j = 1, sNy
355     jp1 = j + 1
356     DO i = 1, sNx
357     #else
358     DO j = jmin, jmax
359     jp1 = j + 1
360     DO i = imin, imax
361     #endif
362     ip1 = i+1
363     ustar(i,j) = SQRT( SQRT(
364     & (fu(i,j,bi,bj) + fu(ip1,j,bi,bj)) * p5 * delZ(1) *
365     & (fu(i,j,bi,bj) + fu(ip1,j,bi,bj)) * p5 * delZ(1) +
366     & (fv(i,j,bi,bj) + fv(i,jp1,bi,bj)) * p5 * delZ(1) *
367     & (fv(i,j,bi,bj) + fv(i,jp1,bi,bj)) * p5 * delZ(1) ))
368     bo(I,J) = - gravity *
369     & ( vddiff(I,J,1,1) * Qnet(i,j,bi,bj) +
370     & vddiff(I,J,1,2) * EmPmR(i,j,bi,bj)
371     & ) *
372     & delZ(1) / work2(I,J)
373     bosol(I,J) = - gravity * vddiff(I,J,1,1) * Qsw(i,j,bi,bj) *
374     & delZ(1) / work2(I,J)
375     END DO
376     END DO
377    
378     #ifndef FRUGAL_KPP
379     c set array edges to zero
380     DO j = jmin, jmax
381     DO i = 1-OLx, imin-1
382     ustar(i,j) = p0
383     bo (I,J) = p0
384     bosol(I,J) = p0
385     END DO
386     DO i = imax+1, sNx+OLx
387     ustar(i,j) = p0
388     bo (I,J) = p0
389     bosol(I,J) = p0
390     END DO
391     END DO
392     DO i = 1-OLx, sNx+OLx
393     DO j = 1-OLy, jmin-1
394     ustar(i,j) = p0
395     bo (I,J) = p0
396     bosol(I,J) = p0
397     END DO
398     DO j = jmax+1, sNy+OLy
399     ustar(i,j) = p0
400     bo (I,J) = p0
401     bosol(I,J) = p0
402     END DO
403     END DO
404     #endif
405    
406     c------------------------------------------------------------------------
407     c velocity shear
408     c --------------
409     c Get velocity shear squared, averaged from "u,v-grid"
410     c onto "t-grid" (in (m/s)**2):
411     c dVsq(k)=(Uref-U(k))**2+(Vref-V(k))**2 at grid levels
412     c shsq(k)=(U(k)-U(k+1))**2+(V(k)-V(k+1))**2 at interfaces
413     c------------------------------------------------------------------------
414    
415     c dVsq computation
416    
417     #ifdef KPP_ESTIMATE_UREF
418    
419     c Get rid of vertical resolution dependence of dVsq term by
420     c estimating a surface velocity that is independent of first level
421     c thickness in the model. First determine mixed layer depth hMix.
422     c Second zRef = espilon * hMix. Third determine roughness length
423     c scale z0. Third estimate reference velocity.
424    
425     #ifdef FRUGAL_KPP
426     DO j = 1, sNy
427     jp1 = j + 1
428     DO i = 1, sNx
429     #else
430     DO j = jmin, jmax
431     jp1 = j + 1
432     DO i = imin, imax
433     #endif /* FRUGAL_KPP */
434     ip1 = i + 1
435    
436     c Determine mixed layer depth hMix as the shallowest depth at which
437     c dB/dz exceeds 5.2e-5 s^-2.
438     work1(i,j) = nzmax(i,j,bi,bj)
439     DO k = 1, Nr
440     IF ( k .LT. nzmax(i,j,bi,bj) .AND.
441     & dbloc(i,j,k) / drC(k+1) .GT. dB_dz )
442     & work1(i,j) = k
443     END DO
444    
445     c Linearly interpolate to find hMix.
446     k = work1(i,j)
447     IF ( k .EQ. 0 .OR. nzmax(i,j,bi,bj) .EQ. 1 ) THEN
448     zRef(i,j) = p0
449     ELSEIF ( k .EQ. 1) THEN
450     dBdz2 = dbloc(i,j,1) / drC(2)
451     zRef(i,j) = drF(1) * dB_dz / dBdz2
452     ELSEIF ( k .LT. nzmax(i,j,bi,bj) ) THEN
453     dBdz1 = dbloc(i,j,k-1) / drC(k )
454     dBdz2 = dbloc(i,j,k ) / drC(k+1)
455     zRef(i,j) = rF(k) + drF(k) * (dB_dz - dBdz1) /
456     & MAX ( phepsi, dBdz2 - dBdz1 )
457     ELSE
458     zRef(i,j) = rF(k+1)
459     ENDIF
460    
461     c Compute roughness length scale z0 subject to 0 < z0
462     tempVar = SQRT ( p5 * (
463     & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) *
464     & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) +
465     & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) *
466     & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) +
467     & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) *
468     & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) +
469     & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) *
470     & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) ) )
471     z0(i,j) = rF(2) *
472     & ( rF(3) * LOG ( rF(3) / rF(2) ) /
473     & ( rF(3) - rF(2) ) -
474     & tempVar * vonK /
475     & MAX ( ustar(i,j), phepsi ) )
476     z0(i,j) = MAX ( z0(i,j), phepsi )
477    
478     c zRef is set to 0.1 * hMix subject to z0 <= zRef <= drF(1)
479     zRef(i,j) = MAX ( epsilon * zRef(i,j), z0(i,j) )
480     zRef(i,j) = MIN ( zRef(i,j), drF(1) )
481    
482     c Estimate reference velocity uRef and vRef.
483     uRef(i,j) = p5 *
484     & ( uVel(i,j,1,bi,bj) + uVel(ip1,j,1,bi,bj) )
485     vRef(i,j) = p5 *
486     & ( vVel(i,j,1,bi,bj) + vVel(i,jp1,1,bi,bj) )
487     IF ( zRef(i,j) .LT. drF(1) ) THEN
488     ustarX = ( fu(i,j,bi,bj) + fu(ip1,j,bi,bj) ) * p5
489     ustarY = ( fv(i,j,bi,bj) + fu(i,jp1,bi,bj) ) * p5
490     tempVar = MAX ( phepsi,
491     & SQRT ( ustarX * ustarX + ustarY * ustarY ) )
492     tempVar = ustar(i,j) *
493     & ( LOG ( zRef(i,j) / rF(2) ) +
494     & z0(i,j) / zRef(i,j) - z0(i,j) / rF(2) ) /
495     & vonK / tempVar
496     uRef(i,j) = uRef(i,j) + ustarX * tempVar
497     vRef(i,j) = vRef(i,j) + ustarY * tempVar
498     ENDIF
499    
500     END DO
501     END DO
502    
503     IF (KPPmixingMaps) THEN
504     #ifdef FRUGAL_KPP
505     CALL PRINT_MAPRS(
506     I zRef, 'zRef', PRINT_MAP_XY,
507     I 1, sNx, 1, sNy, 1, 1, 1, 1,
508     I 1, sNx, 1, sNy, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
509     CALL PRINT_MAPRS(
510     I z0, 'z0', PRINT_MAP_XY,
511     I 1, sNx, 1, sNy, 1, 1, 1, 1,
512     I 1, sNx, 1, sNy, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
513     CALL PRINT_MAPRS(
514     I uRef, 'uRef', PRINT_MAP_XY,
515     I 1, sNx, 1, sNy, 1, 1, 1, 1,
516     I 1, sNx, 1, sNy, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
517     CALL PRINT_MAPRS(
518     I vRef, 'vRef', PRINT_MAP_XY,
519     I 1, sNx, 1, sNy, 1, 1, 1, 1,
520     I 1, sNx, 1, sNy, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
521     #else
522     CALL PRINT_MAPRS(
523     I zRef, 'zRef', PRINT_MAP_XY,
524     I 1-OLx, sNx+OLx, 1-OLy, sNy+OLy, 1, 1, 1, 1,
525     I 1, sNx, 1, sNy, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
526     CALL PRINT_MAPRS(
527     I z0, 'z0', PRINT_MAP_XY,
528     I 1-OLx, sNx+OLx, 1-OLy, sNy+OLy, 1, 1, 1, 1,
529     I 1, sNx, 1, sNy, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
530     CALL PRINT_MAPRS(
531     I uRef, 'uRef', PRINT_MAP_XY,
532     I 1-OLx, sNx+OLx, 1-OLy, sNy+OLy, 1, 1, 1, 1,
533     I 1, sNx, 1, sNy, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
534     CALL PRINT_MAPRS(
535     I vRef, 'vRef', PRINT_MAP_XY,
536     I 1-OLx, sNx+OLx, 1-OLy, sNy+OLy, 1, 1, 1, 1,
537     I 1, sNx, 1, sNy, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
538     #endif
539     ENDIF
540    
541     DO k = 1, Nr
542     #ifdef FRUGAL_KPP
543     DO j = 1, sNy
544     jm1 = j - 1
545     jp1 = j + 1
546     DO i = 1, sNx
547     #else
548     DO j = jmin, jmax
549     jm1 = j - 1
550     jp1 = j + 1
551     DO i = imin, imax
552     #endif /* FRUGAL_KPP */
553     im1 = i - 1
554     ip1 = i + 1
555     dVsq(i,j,k) = p5 * (
556     $ (uRef(i,j) - uVel(i, j, k,bi,bj)) *
557     $ (uRef(i,j) - uVel(i, j, k,bi,bj)) +
558     $ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) *
559     $ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) +
560     $ (vRef(i,j) - vVel(i, j, k,bi,bj)) *
561     $ (vRef(i,j) - vVel(i, j, k,bi,bj)) +
562     $ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) *
563     $ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) )
564     #ifdef KPP_SMOOTH_DVSQ
565     dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * (
566     $ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) *
567     $ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) +
568     $ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) *
569     $ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) +
570     $ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) *
571     $ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) +
572     $ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) *
573     $ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) +
574     $ (vRef(i,j) - vVel(im1,j, k,bi,bj)) *
575     $ (vRef(i,j) - vVel(im1,j, k,bi,bj)) +
576     $ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) *
577     $ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) +
578     $ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) *
579     $ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) +
580     $ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) *
581     $ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) )
582     #endif /* KPP_SMOOTH_DVSQ */
583     END DO
584     END DO
585     END DO
586    
587     #else /* KPP_ESTIMATE_UREF */
588    
589     DO k = 1, Nr
590     #ifdef FRUGAL_KPP
591     DO j = 1, sNy
592     jm1 = j - 1
593     jp1 = j + 1
594     DO i = 1, sNx
595     #else
596     DO j = jmin, jmax
597     jm1 = j - 1
598     jp1 = j + 1
599     DO i = imin, imax
600     #endif /* FRUGAL_KPP */
601     im1 = i - 1
602     ip1 = i + 1
603     dVsq(i,j,k) = p5 * (
604     $ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) *
605     $ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) +
606     $ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) *
607     $ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) +
608     $ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) *
609     $ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) +
610     $ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) *
611     $ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) )
612     #ifdef KPP_SMOOTH_DVSQ
613     dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * (
614     $ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) *
615     $ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) +
616     $ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) *
617     $ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) +
618     $ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) *
619     $ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) +
620     $ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) *
621     $ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) +
622     $ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) *
623     $ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) +
624     $ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) *
625     $ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) +
626     $ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) *
627     $ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) +
628     $ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) *
629     $ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) )
630     #endif /* KPP_SMOOTH_DVSQ */
631     END DO
632     END DO
633     END DO
634    
635     #endif /* KPP_ESTIMATE_UREF */
636    
637     c shsq computation
638     DO k = 1, Nrm1
639     kp1 = k + 1
640     #ifdef FRUGAL_KPP
641     DO j = 1, sNy
642     jm1 = j - 1
643     jp1 = j + 1
644     DO i = 1, sNx
645     #else
646     DO j = jmin, jmax
647     jm1 = j - 1
648     jp1 = j + 1
649     DO i = imin, imax
650     #endif /* FRUGAL_KPP */
651     im1 = i - 1
652     ip1 = i + 1
653     shsq(i,j,k) = p5 * (
654     $ (uVel(i, j, k,bi,bj)-uVel(i, j, kp1,bi,bj)) *
655     $ (uVel(i, j, k,bi,bj)-uVel(i, j, kp1,bi,bj)) +
656     $ (uVel(ip1,j, k,bi,bj)-uVel(ip1,j, kp1,bi,bj)) *
657     $ (uVel(ip1,j, k,bi,bj)-uVel(ip1,j, kp1,bi,bj)) +
658     $ (vVel(i, j, k,bi,bj)-vVel(i, j, kp1,bi,bj)) *
659     $ (vVel(i, j, k,bi,bj)-vVel(i, j, kp1,bi,bj)) +
660     $ (vVel(i, jp1,k,bi,bj)-vVel(i, jp1,kp1,bi,bj)) *
661     $ (vVel(i, jp1,k,bi,bj)-vVel(i, jp1,kp1,bi,bj)) )
662     #ifdef KPP_SMOOTH_SHSQ
663     shsq(i,j,k) = p5 * shsq(i,j,k) + p125 * (
664     $ (uVel(i, jm1,k,bi,bj)-uVel(i, jm1,kp1,bi,bj)) *
665     $ (uVel(i, jm1,k,bi,bj)-uVel(i, jm1,kp1,bi,bj)) +
666     $ (uVel(ip1,jm1,k,bi,bj)-uVel(ip1,jm1,kp1,bi,bj)) *
667     $ (uVel(ip1,jm1,k,bi,bj)-uVel(ip1,jm1,kp1,bi,bj)) +
668     $ (uVel(i, jp1,k,bi,bj)-uVel(i, jp1,kp1,bi,bj)) *
669     $ (uVel(i, jp1,k,bi,bj)-uVel(i, jp1,kp1,bi,bj)) +
670     $ (uVel(ip1,jp1,k,bi,bj)-uVel(ip1,jp1,kp1,bi,bj)) *
671     $ (uVel(ip1,jp1,k,bi,bj)-uVel(ip1,jp1,kp1,bi,bj)) +
672     $ (vVel(im1,j, k,bi,bj)-vVel(im1,j, kp1,bi,bj)) *
673     $ (vVel(im1,j, k,bi,bj)-vVel(im1,j, kp1,bi,bj)) +
674     $ (vVel(im1,jp1,k,bi,bj)-vVel(im1,jp1,kp1,bi,bj)) *
675     $ (vVel(im1,jp1,k,bi,bj)-vVel(im1,jp1,kp1,bi,bj)) +
676     $ (vVel(ip1,j, k,bi,bj)-vVel(ip1,j, kp1,bi,bj)) *
677     $ (vVel(ip1,j, k,bi,bj)-vVel(ip1,j, kp1,bi,bj)) +
678     $ (vVel(ip1,jp1,k,bi,bj)-vVel(ip1,jp1,kp1,bi,bj)) *
679     $ (vVel(ip1,jp1,k,bi,bj)-vVel(ip1,jp1,kp1,bi,bj)) )
680     #endif
681     END DO
682     END DO
683     END DO
684    
685     c shsq @ Nr computation
686     #ifdef FRUGAL_KPP
687     DO j = 1, sNy
688     DO i = 1, sNx
689     #else
690     DO j = jmin, jmax
691     DO i = imin, imax
692     #endif
693     shsq(i,j,Nr) = p0
694     END DO
695     END DO
696    
697     #ifndef FRUGAL_KPP
698     c set array edges to zero
699     DO k = 1, Nr
700     DO j = jmin, jmax
701     DO i = 1-OLx, imin-1
702     shsq(i,j,k) = p0
703     dVsq(i,j,k) = p0
704     END DO
705     DO i = imax+1, sNx+OLx
706     shsq(i,j,k) = p0
707     dVsq(i,j,k) = p0
708     END DO
709     END DO
710     DO i = 1-OLx, sNx+OLx
711     DO j = 1-OLy, jmin-1
712     shsq(i,j,k) = p0
713     dVsq(i,j,k) = p0
714     END DO
715     DO j = jmax+1, sNy+OLy
716     shsq(i,j,k) = p0
717     dVsq(i,j,k) = p0
718     END DO
719     END DO
720     END DO
721     #endif
722    
723     c-----------------------------------------------------------------------
724     c solve for viscosity, diffusivity, ghat, and hbl on "t-grid"
725     c-----------------------------------------------------------------------
726    
727     #ifdef FRUGAL_KPP
728     DO j = 1, sNy
729     DO i = 1, sNx
730     #else
731     DO j = 1-OLy, sNy+OLy
732     DO i = 1-OLx, sNx+OLx
733     #endif
734     work1(i,j) = nzmax(i,j,bi,bj)
735     work2(i,j) = Fcori(i,j,bi,bj)
736     END DO
737     END DO
738     CALL TIMER_START('KPPMIX [KPP_CALC]', myThid)
739     CALL KPPMIX (
740     I lri, work1, shsq, dVsq, ustar
741     I , bo, bosol, dbloc, Ritop, work2
742     I , ikey
743     O , vddiff
744     U , ghat
745     O , hbl
746     & )
747    
748     CALL TIMER_STOP ('KPPMIX [KPP_CALC]', myThid)
749    
750     IF (KPPmixingMaps) THEN
751     #ifdef FRUGAL_KPP
752     CALL PRINT_MAPRS(
753     I hbl, 'hbl', PRINT_MAP_XY,
754     I 1, sNx, 1, sNy, 1, 1, 1, 1,
755     I 1, sNx, 1, sNy, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
756     #else
757     CALL PRINT_MAPRS(
758     I hbl, 'hbl', PRINT_MAP_XY,
759     I 1-OLx, sNx+OLx, 1-OLy, sNy+OLy, 1, 1, 1, 1,
760     I 1, sNx, 1, sNy, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
761     #endif
762     ENDIF
763    
764     CADJ STORE vddiff, ghat = uvtape, key = ikey
765    
766     c-----------------------------------------------------------------------
767     c zero out land values,
768     c make sure coefficients are within reasonable bounds,
769     c and transfer to global variables
770     c-----------------------------------------------------------------------
771    
772     #ifdef FRUGAL_KPP
773     DO j = 1, sNy
774     DO i = 1, sNx
775     #else
776     DO j = jmin, jmax
777     DO i = imin, imax
778     #endif
779     DO k = 1, Nr
780     c KPPviscAz
781     tempVar = min( maxKPPviscAz(k), vddiff(i,j,k-1,1) )
782     tempVar = max( minKPPviscAz, tempVar )
783     KPPviscAz(i,j,k,bi,bj) = tempVar*pMask(i,j,k,bi,bj)
784     c KPPdiffKzS
785     tempVar = min( maxKPPdiffKzS, vddiff(i,j,k-1,2) )
786     tempVar = max( minKPPdiffKzS, tempVar )
787     KPPdiffKzS(i,j,k,bi,bj) = tempVar*pMask(i,j,k,bi,bj)
788     c KPPdiffKzT
789     tempVar = min( maxKPPdiffKzT, vddiff(i,j,k-1,3) )
790     tempVar = max( minKPPdiffKzT, tempVar )
791     KPPdiffKzT(i,j,k,bi,bj) = tempVar*pMask(i,j,k,bi,bj)
792     c KPPghat
793     tempVar = min( maxKPPghat, ghat(i,j,k) )
794     tempVar = max( minKPPghat, tempVar )
795     KPPghat(i,j,k,bi,bj) = tempVar*pMask(i,j,k,bi,bj)
796     END DO
797     c KPPhbl: set to -zgrid(1) over land
798     KPPhbl(i,j,bi,bj) = (hbl(i,j) + zgrid(1))
799     & * pMask(i,j,1,bi,bj) -
800     & zgrid(1)
801     END DO
802     END DO
803     #ifdef FRUGAL_KPP
804     _EXCH_XYZ_R8(KPPviscAz , myThid )
805     _EXCH_XYZ_R8(KPPdiffKzS , myThid )
806     _EXCH_XYZ_R8(KPPdiffKzT , myThid )
807     _EXCH_XYZ_R8(KPPghat , myThid )
808     _EXCH_XY_R8 (KPPhbl , myThid )
809     #endif
810    
811     #ifdef KPP_SMOOTH_VISC
812     c horizontal smoothing of vertical viscosity
813     c as coded requires FRUGAL_KPP and OLx=4, OLy=4
814     c alternatively could recode with OLx=5, OLy=5
815    
816     DO k = 1, Nr
817     CALL SMOOTH_HORIZ_RL (
818     I k, bi, bj,
819     I KPPviscAz(1-OLx,1-OLy,k,bi,bj),
820     O KPPviscAz(1-OLx,1-OLy,k,bi,bj) )
821     END DO
822     #endif /* KPP_SMOOTH_VISC */
823    
824     #ifdef KPP_SMOOTH_DIFF
825     c horizontal smoothing of vertical diffusivity
826     c as coded requires FRUGAL_KPP and OLx=4, OLy=4
827     c alternatively could recode with OLx=5, OLy=5
828    
829     DO k = 1, Nr
830     CALL SMOOTH_HORIZ_RL (
831     I k, bi, bj,
832     I KPPdiffKzS(1-OLx,1-OLy,k,bi,bj),
833     O KPPdiffKzS(1-OLx,1-OLy,k,bi,bj) )
834     CALL SMOOTH_HORIZ_RL (
835     I k, bi, bj,
836     I KPPdiffKzT(1-OLx,1-OLy,k,bi,bj),
837     O KPPdiffKzT(1-OLx,1-OLy,k,bi,bj) )
838     END DO
839     #endif /* KPP_SMOOTH_DIFF */
840    
841    
842     C Compute fraction of solar short-wave flux penetrating to
843     C the bottom of the mixing layer.
844     DO j=1-OLy,sNy+OLy
845     DO i=1-OLx,sNx+OLx
846     worka(i,j) = KPPhbl(i,j,bi,bj)
847     ENDDO
848     ENDDO
849     CALL SWFRAC(
850     I (sNx+2*OLx)*(sNy+2*OLy), -1., worka,
851     O workb )
852     DO j=1-OLy,sNy+OLy
853     DO i=1-OLx,sNx+OLx
854     KPPfrac(i,j,bi,bj) = workb(i,j)
855     ENDDO
856     ENDDO
857    
858     CADJ STORE KPPhbl (:,: ,bi,bj) = uvtape, key = ikey, byte = isbyte
859     CADJ STORE KPPghat (:,:,:,bi,bj) = uvtape, key = ikey, byte = isbyte
860     CADJ STORE KPPviscAz (:,:,:,bi,bj) = uvtape, key = ikey, byte = isbyte
861     CADJ STORE KPPdiffKzT(:,:,:,bi,bj) = uvtape, key = ikey, byte = isbyte
862     CADJ STORE KPPdiffKzS(:,:,:,bi,bj) = uvtape, key = ikey, byte = isbyte
863    
864     ENDIF
865     ENDIF
866    
867     #endif ALLOW_KPP
868    
869     RETURN
870     END

  ViewVC Help
Powered by ViewVC 1.1.22