/[MITgcm]/MITgcm/pkg/icefront/icefront_thermodynamics.F
ViewVC logotype

Contents of /MITgcm/pkg/icefront/icefront_thermodynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (show annotations) (download)
Wed Feb 17 20:31:24 2010 UTC (14 years, 3 months ago) by dimitri
Branch: MAIN
CVS Tags: checkpoint62c, checkpoint62e, checkpoint62d
Changes since 1.6: +57 -66 lines
changing diagnostic computations to local, 1D array with no overlaps

1 C $Header: /u/gcmpack/MITgcm/pkg/icefront/icefront_thermodynamics.F,v 1.6 2010/02/16 21:25:22 dimitri Exp $
2 C $Name: $
3
4 #include "ICEFRONT_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: ICEFRONT_THERMODYNAMICS
8 C !INTERFACE:
9 SUBROUTINE ICEFRONT_THERMODYNAMICS(
10 I myTime, myIter, myThid )
11 C !DESCRIPTION: \bv
12 C *=============================================================*
13 C | S/R ICEFRONT_THERMODYNAMICS
14 C | o shelf-ice main routine.
15 C | compute temperature and (virtual) salt flux at the
16 C | shelf-ice ocean interface
17 C |
18 C | stresses at the ice/water interface are computed in separate
19 C | routines that are called from mom_fluxform/mom_vecinv
20 C *=============================================================*
21
22 C !USES:
23 IMPLICIT NONE
24
25 C === Global variables ===
26 #include "SIZE.h"
27 #include "EEPARAMS.h"
28 #include "PARAMS.h"
29 #include "GRID.h"
30 #include "DYNVARS.h"
31 #include "FFIELDS.h"
32 #include "ICEFRONT.h"
33
34 C !INPUT/OUTPUT PARAMETERS:
35 C === Routine arguments ===
36 C myIter :: iteration counter for this thread
37 C myTime :: time counter for this thread
38 C myThid :: thread number for this instance of the routine.
39 _RL myTime
40 INTEGER myIter
41 INTEGER myThid
42 CEOP
43
44 #ifdef ALLOW_ICEFRONT
45 C !LOCAL VARIABLES :
46 C === Local variables ===
47 C I,J,K,bi,bj :: loop counters
48 C tLoc, sLoc, pLoc :: local in-situ temperature, salinity, pressure
49 C thetaICE :: averaged temperature of glacier interior
50 C theta/saltFreeze :: temperature and salinity of water at the
51 C ice-ocean interface (at the freezing point)
52 C FreshWaterFlux :: fresh water flux due to freezing or melting of ice
53 C front in kg/m^2/s (positive increases ocean salinity)
54 C HeatFlux :: ice front heat flux in W/m^2
55 C (positive decreases ocean temperature)
56 C auxiliary variables and abbreviations:
57 C a0, b, c0
58 C eps1, eps2, eps3, eps4, eps5, eps6, eps7
59 C aqe, bqe, cqe, discrim, recip_aqe
60 INTEGER I,J,K
61 INTEGER bi,bj
62 _RL tLoc, sLoc, pLoc
63 _RL thetaICE
64 _RL thetaFreeze, saltFreeze
65 _RS FreshWaterFlux( 1:sNx, 1:sNy )
66 _RS HeatFlux ( 1:sNx, 1:sNy )
67 _RL a0, b, c0
68 _RL eps1, eps2, eps3, eps4, eps5, eps6, eps7
69 _RL aqe, bqe, cqe, discrim, recip_aqe
70
71
72 _RL SW_TEMP
73 EXTERNAL SW_TEMP
74
75 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
76
77 C Linear dependence of freezing point on salinity.
78 a0 = -0.0575 _d 0
79 c0 = 0.0901 _d 0
80 b = -7.61 _d -4
81
82 C A few abbreviations.
83 eps1 = rUnit2mass*HeatCapacity_Cp*ICEFRONTheatTransCoeff
84 eps2 = rUnit2mass*ICEFRONTlatentHeat*ICEFRONTsaltTransCoeff
85 eps3 = rUnit2mass*ICEFRONTheatCapacity_Cp*ICEFRONTsaltTransCoeff
86 eps5 = mass2rUnit/HeatCapacity_Cp
87 aqe = a0 *(-eps1+eps3)
88 recip_aqe = 0.5 _d 0/aqe
89
90 DO bj = myByLo(myThid), myByHi(myThid)
91 DO bi = myBxLo(myThid), myBxHi(myThid)
92 DO K = 1, Nr
93 DO J = 1, sNy
94 DO I = 1, sNx
95
96 IF( ICEFRONTlength(I,J,bi,bj) .GT. 0. _d 0
97 & .AND. K .LE. K_icefront(I,J,bi,bj) ) THEN
98
99 C Make local copies of temperature, salinity and depth (pressure).
100 pLoc = ABS(rC(k))
101 tLoc = theta(I,J,K,bi,bj)
102 sLoc = MAX(salt(I,J,K,bi,bj), 0. _d 0)
103
104 C Turn potential temperature into in-situ temperature.
105 tLoc = SW_TEMP(sLoc,tLoc,pLoc,0.D0)
106
107 C Get ice temperature. Assume linear ice temperature change from
108 C the surface (ICEFRONTthetaSurface) to the base(0 degree C).
109 IF ( K .EQ. K_icefront(I,J,bi,bj)) THEN
110 pLoc = 0.5*(ABS(R_icefront(I,J,bi,bj))+ABS(rF(K)))
111 ENDIF
112 thetaICE = ICEFRONTthetaSurface*
113 & (R_icefront(I,J,bi,bj)-pLoc)
114 & / R_icefront(I,J,bi,bj)
115
116 C A few more abbreviations.
117 eps4 = b*pLoc + c0
118 eps6 = eps4 - tLoc
119 eps7 = eps4 - thetaIce
120
121 C Solve quadratic equation to get salinity at icefront-ocean interface.
122 bqe = - eps1*eps6 -sLoc*a0*eps3 + eps3*eps7 + eps2
123 cqe = -(eps2+eps3*eps7)*sLoc
124 discrim = bqe*bqe - 4. _d 0*aqe*cqe
125 saltFreeze = (- bqe - SQRT(discrim))*recip_aqe
126 IF ( saltFreeze .LT. 0. _d 0 )
127 & saltFreeze = (- bqe + SQRT(discrim))*recip_aqe
128 thetaFreeze = a0*saltFreeze + eps4
129
130 C-- Calculate the outward (leaving the ocean) heat (W/m^2)
131 C and freshwater (kg/m^2/s).
132 C Sign convention: inward (negative) fresh water flux implies glacier
133 C melting due to outward (positive) heat flux.
134 FreshWaterFlux(I,J) = maskC(I,J,K,bi,bj) *
135 & eps1 * ( thetaFreeze - tLoc ) /
136 & (ICEFRONTlatentHeat + ICEFRONTheatCapacity_cp*
137 & (thetaFreeze - thetaIce))
138 HeatFlux(I,J) = maskC(I,J,K,bi,bj) * HeatCapacity_Cp *
139 & ( -rUnit2mass*ICEFRONTheatTransCoeff +
140 & FreshWaterFlux(I,J) ) * ( thetaFreeze - tLoc )
141
142 C Compute tendencies.
143 icefront_TendT(i,j,K,bi,bj) = - HeatFlux(I,J)* eps5
144 icefront_TendS(i,j,K,bi,bj) = FreshWaterFlux(I,J) *
145 & mass2rUnit * sLoc
146
147 C Scale by icefrontlength, which is the ratio of the horizontal length
148 C of the ice front in each model grid cell divided by the grid cell area.
149 IF (k .LT. k_icefront(i,j,bi,bj)) THEN
150 icefront_TendT(i,j,K,bi,bj) = icefront_TendT(i,j,K,bi,bj)
151 & * ICEFRONTlength(i,j,bi,bj)
152 icefront_TendS(i,j,K,bi,bj) = icefront_TendS(i,j,K,bi,bj)
153 & * ICEFRONTlength(i,j,bi,bj)
154 ELSEIF (k .EQ. k_icefront(i,j,bi,bj)) THEN
155 C At the bottom of the ice shelf there is additional scaling due
156 C to the partial depth of the ice front.
157 icefront_TendT(i,j,K,bi,bj) = icefront_TendT(i,j,K,bi,bj)
158 & * ICEFRONTlength(i,j,bi,bj)
159 & * (ABS(R_icefront(I,J,bi,bj))-ABS(rF(K)))
160 & * recip_drF(K)
161 icefront_TendS(i,j,K,bi,bj) = icefront_TendS(i,j,K,bi,bj)
162 & * ICEFRONTlength(i,j,bi,bj)
163 & * (ABS(R_icefront(I,J,bi,bj))-ABS(rF(K)))
164 & * recip_drF(K)
165 ENDIF
166
167 ELSE ! K .LE. K_icefront
168
169 HeatFlux (I,J) = 0. _d 0
170 FreshWaterFlux(I,J) = 0. _d 0
171
172 ENDIF ! K .LE. K_icefront
173
174 ENDDO ! I = 1, sNx
175 ENDDO ! J = 1, sNy
176
177 #ifdef ALLOW_DIAGNOSTICS
178 IF ( useDiagnostics ) THEN
179 CALL DIAGNOSTICS_FILL_RS(FreshWaterFlux,'ICFfwFlx',
180 & k,1,3,bi,bj,myThid)
181 CALL DIAGNOSTICS_FILL_RS(HeatFlux, 'ICFhtFlx',
182 & k,1,3,bi,bj,myThid)
183 ENDIF
184 #endif /* ALLOW_DIAGNOSTICS */
185
186 ENDDO ! K = 1, Nr
187 ENDDO ! bi = myBxLo, myBxHi
188 ENDDO ! bj = myByLo, myByHi
189
190 #endif /* ALLOW_ICEFRONT */
191 RETURN
192 END

  ViewVC Help
Powered by ViewVC 1.1.22