/[MITgcm]/MITgcm/pkg/icefront/icefront_thermodynamics.F
ViewVC logotype

Contents of /MITgcm/pkg/icefront/icefront_thermodynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download)
Fri Jan 22 00:51:54 2010 UTC (14 years, 4 months ago) by dimitri
Branch: MAIN
Changes since 1.1: +4 -27 lines
Removing some variables, which are not needed for baseline icefront code.

1 C $Header: /u/gcmpack/MITgcm/pkg/icefront/icefront_thermodynamics.F,v 1.1 2010/01/20 23:33:45 dimitri Exp $
2 C $Name: $
3
4 #include "ICEFRONT_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: ICEFRONT_THERMODYNAMICS
8 C !INTERFACE:
9 SUBROUTINE ICEFRONT_THERMODYNAMICS(
10 I myTime, myIter, myThid )
11 C !DESCRIPTION: \bv
12 C *=============================================================*
13 C | S/R ICEFRONT_THERMODYNAMICS
14 C | o shelf-ice main routine.
15 C | compute temperature and (virtual) salt flux at the
16 C | shelf-ice ocean interface
17 C |
18 C | stresses at the ice/water interface are computed in separate
19 C | routines that are called from mom_fluxform/mom_vecinv
20 C *=============================================================*
21
22 C !USES:
23 IMPLICIT NONE
24
25 C === Global variables ===
26 #include "SIZE.h"
27 #include "EEPARAMS.h"
28 #include "PARAMS.h"
29 #include "GRID.h"
30 #include "DYNVARS.h"
31 #include "FFIELDS.h"
32 #include "ICEFRONT.h"
33
34 C !INPUT/OUTPUT PARAMETERS:
35 C === Routine arguments ===
36 C myIter :: iteration counter for this thread
37 C myTime :: time counter for this thread
38 C myThid :: thread number for this instance of the routine.
39 _RL myTime
40 INTEGER myIter
41 INTEGER myThid
42 CEOP
43
44 #ifdef ALLOW_ICEFRONT
45 C !LOCAL VARIABLES :
46 C === Local variables ===
47 C I,J,K,Kp1,bi,bj :: loop counters
48 C tLoc, sLoc, pLoc :: local in-situ temperature, salinity, pressure
49 C theta/saltFreeze :: temperature and salinity of water at the
50 C ice-ocean interface (at the freezing point)
51 C freshWaterFlux :: local variable for fresh water melt flux due to
52 C melting in kg/m^2/s (negative density x melt rate)
53 C convertFW2SaltLoc:: local copy of convertFW2Salt
54 C cFac :: 1 for conservative form, 0, otherwise
55 C auxiliary variables and abbreviations:
56 C a0, a1, a2, b, c0
57 C eps1, eps2, eps3, eps4, eps5, eps6, eps7
58 C aqe, bqe, cqe, discrim, recip_aqe
59 C drKp1, recip_drLoc
60 INTEGER I,J,K,Kp1
61 INTEGER bi,bj
62 _RL tLoc(1:sNx,1:sNy)
63 _RL sLoc(1:sNx,1:sNy)
64 _RL pLoc(1:sNx,1:sNy)
65 _RL thetaFreeze, saltFreeze
66 _RL freshWaterFlux, convertFW2SaltLoc
67 _RL a0, a1, a2, b, c0
68 _RL eps1, eps2, eps3, eps4, eps5, eps6, eps7
69 _RL cFac, rFac
70 _RL aqe, bqe, cqe, discrim, recip_aqe
71 _RL drKp1, recip_drLoc
72 _RL tmpFac
73
74 _RL SW_TEMP
75 EXTERNAL SW_TEMP
76
77 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
78
79 C are we doing the conservative form of Jenkins et al. (2001)?
80 cFac = 0. _d 0
81 IF ( ICEFRONTconserve ) cFac = 1. _d 0
82 C with "real fresh water flux" (affecting ETAN), there is more to modify
83 rFac = 1. _d 0
84 IF ( ICEFRONTconserve .AND. useRealFreshWaterFlux ) rFac = 0. _d 0
85 C linear dependence of freezing point on salinity
86 a0 = -0.0575 _d 0
87 a1 = 0.0 _d -0
88 a2 = 0.0 _d -0
89 c0 = 0.0901 _d 0
90 b = -7.61 _d -4
91 #ifdef ALLOW_ISOMIP_TD
92 IF ( useISOMIPTD ) THEN
93 C non-linear dependence of freezing point on salinity
94 a0 = -0.0575 _d 0
95 a1 = 1.710523 _d -3
96 a2 = -2.154996 _d -4
97 b = -7.53 _d -4
98 c0 = 0. _d 0
99 ENDIF
100 convertFW2SaltLoc = convertFW2Salt
101 C hardcoding this value here is OK because it only applies to ISOMIP
102 C where this value is part of the protocol
103 IF ( convertFW2SaltLoc .EQ. -1. ) convertFW2SaltLoc = 33.4 _d 0
104 #endif /* ALLOW_ISOMIP_TD */
105
106 DO bj = myByLo(myThid), myByHi(myThid)
107 DO bi = myBxLo(myThid), myBxHi(myThid)
108 DO J = 1-Oly,sNy+Oly
109 DO I = 1-Olx,sNx+Olx
110 icefrontHeatFlux (I,J,bi,bj) = 0. _d 0
111 icefrontFreshWaterFlux(I,J,bi,bj) = 0. _d 0
112 icefrontForcingT (I,J,bi,bj) = 0. _d 0
113 icefrontForcingS (I,J,bi,bj) = 0. _d 0
114 ENDDO
115 ENDDO
116 DO J = 1, sNy
117 DO I = 1, sNx
118 C-- make local copies of temperature, salinity and depth (pressure)
119 C-- underneath the ice
120 K = 1
121 pLoc(I,J) = ABS(R_icefront(I,J,bi,bj))
122 tLoc(I,J) = theta(I,J,K,bi,bj)
123 sLoc(I,J) = MAX(salt(I,J,K,bi,bj), 0. _d 0)
124 ENDDO
125 ENDDO
126
127 C-- turn potential temperature into in-situ temperature relative
128 C-- to the surface
129 DO J = 1, sNy
130 DO I = 1, sNx
131 tLoc(I,J) = SW_TEMP(sLoc(I,J),tLoc(I,J),pLoc(I,J),0.D0)
132 ENDDO
133 ENDDO
134
135 #ifdef ALLOW_ISOMIP_TD
136 IF ( useISOMIPTD ) THEN
137 DO J = 1, sNy
138 DO I = 1, sNx
139 K = 1
140 IF ( K .NE. 0 .AND. pLoc(I,J) .GT. 0. _d 0 ) THEN
141 C-- Calculate freezing temperature as a function of salinity and pressure
142 thetaFreeze =
143 & sLoc(I,J) * ( a0 + a1*sqrt(sLoc(I,J)) + a2*sLoc(I,J) )
144 & + b*pLoc(I,J) + c0
145 C-- Calculate the upward heat and fresh water fluxes
146 icefrontHeatFlux(I,J,bi,bj) = maskC(I,J,K,bi,bj) *
147 & ICEFRONTheatTransCoeff * ( tLoc(I,J) - thetaFreeze )
148 & *HeatCapacity_Cp*rUnit2mass
149 C upward heat flux into the shelf-ice implies basal melting,
150 C thus a downward (negative upward) fresh water flux (as a mass flux),
151 C and vice versa
152 icefrontFreshWaterFlux(I,J,bi,bj) =
153 & - icefrontHeatFlux(I,J,bi,bj)
154 & *recip_ICEFRONTlatentHeat
155 C-- compute surface tendencies
156 icefrontForcingT(i,j,bi,bj) =
157 & - icefrontHeatFlux(I,J,bi,bj)
158 & *recip_Cp*mass2rUnit
159 & - cFac * icefrontFreshWaterFlux(I,J,bi,bj)*mass2rUnit
160 & * ( thetaFreeze - tLoc(I,J) )
161 icefrontForcingS(i,j,bi,bj) =
162 & icefrontFreshWaterFlux(I,J,bi,bj) * mass2rUnit
163 & * ( cFac*sLoc(I,J) + (1. _d 0-cFac)*convertFW2SaltLoc )
164 C-- stress at the ice/water interface is computed in separate
165 C routines that are called from mom_fluxform/mom_vecinv
166 ELSE
167 icefrontHeatFlux (I,J,bi,bj) = 0. _d 0
168 icefrontFreshWaterFlux(I,J,bi,bj) = 0. _d 0
169 icefrontForcingT (I,J,bi,bj) = 0. _d 0
170 icefrontForcingS (I,J,bi,bj) = 0. _d 0
171 ENDIF
172 ENDDO
173 ENDDO
174 ELSE
175 #else
176 IF ( .TRUE. ) THEN
177 #endif /* ALLOW_ISOMIP_TD */
178 C use BRIOS thermodynamics, following Hellmers PhD thesis:
179 C Hellmer, H., 1989, A two-dimensional model for the thermohaline
180 C circulation under an ice shelf, Reports on Polar Research, No. 60
181 C (in German).
182
183 C a few abbreviations
184 eps1 = rUnit2mass*HeatCapacity_Cp*ICEFRONTheatTransCoeff
185 eps2 = rUnit2mass*ICEFRONTlatentHeat*ICEFRONTsaltTransCoeff
186 eps5 = rUnit2mass*HeatCapacity_Cp*ICEFRONTsaltTransCoeff
187
188 DO J = 1, sNy
189 DO I = 1, sNx
190 K = 1
191 IF ( K .NE. 0 .AND. pLoc(I,J) .GT. 0. _d 0 ) THEN
192 C solve quadratic equation to get salinity at icefront-ocean interface
193 C note: this part of the code is not very intuitive as it involves
194 C many arbitrary abbreviations that were introduced to derive the
195 C correct form of the quadratic equation for salinity. The abbreviations
196 C only make sense in connection with my notes on this (M.Losch)
197 eps3 = rhoIcefront*ICEFRONTheatCapacity_Cp
198 & * ICEFRONTkappa/pLoc(I,J)
199 eps4 = b*pLoc(I,J) + c0
200 eps6 = eps4 - tLoc(I,J)
201 eps7 = eps4 - ICEFRONTthetaSurface
202 aqe = a0 *(eps1+eps3)
203 recip_aqe = 0. _d 0
204 IF ( aqe .NE. 0. _d 0 ) recip_aqe = 0.5 _d 0/aqe
205 bqe = eps1*eps6 + eps3*eps7 - eps2
206 cqe = eps2*sLoc(I,J)
207 discrim = bqe*bqe - 4. _d 0*aqe*cqe
208 #undef ALLOW_ICEFRONT_DEBUG
209 #ifdef ALLOW_ICEFRONT_DEBUG
210 IF ( discrim .LT. 0. _d 0 ) THEN
211 print *, 'ml-icefront: discrim = ', discrim,aqe,bqe,cqe
212 print *, 'ml-icefront: pLoc = ', pLoc(I,J)
213 print *, 'ml-icefront: tLoc = ', tLoc(I,J)
214 print *, 'ml-icefront: sLoc = ', sLoc(I,J)
215 print *, 'ml-icefront: tsurface= ',
216 & ICEFRONTthetaSurface
217 print *, 'ml-icefront: eps1 = ', eps1
218 print *, 'ml-icefront: eps2 = ', eps2
219 print *, 'ml-icefront: eps3 = ', eps3
220 print *, 'ml-icefront: eps4 = ', eps4
221 print *, 'ml-icefront: eps5 = ', eps5
222 print *, 'ml-icefront: eps6 = ', eps6
223 print *, 'ml-icefront: eps7 = ', eps7
224 print *, 'ml-icefront: rU2mass = ', rUnit2mass
225 print *, 'ml-icefront: rhoIce = ', rhoIcefront
226 print *, 'ml-icefront: cFac = ', cFac
227 print *, 'ml-icefront: Cp_W = ', HeatCapacity_Cp
228 print *, 'ml-icefront: Cp_I = ',
229 & ICEFRONTHeatCapacity_Cp
230 print *, 'ml-icefront: gammaT = ',
231 & ICEFRONTheatTransCoeff
232 print *, 'ml-icefront: gammaS = ',
233 & ICEFRONTsaltTransCoeff
234 print *, 'ml-icefront: lat.heat= ',
235 & ICEFRONTlatentHeat
236 STOP 'ABNORMAL END in S/R ICEFRONT_THERMODYNAMICS'
237 ENDIF
238 #endif /* ALLOW_ICEFRONT_DEBUG */
239 saltFreeze = (- bqe - SQRT(discrim))*recip_aqe
240 IF ( saltFreeze .LT. 0. _d 0 )
241 & saltFreeze = (- bqe + SQRT(discrim))*recip_aqe
242 thetaFreeze = a0*saltFreeze + eps4
243 C-- upward fresh water flux due to melting (in kg/m^2/s)
244 freshWaterFlux = rUnit2mass*ICEFRONTsaltTransCoeff
245 & * ( saltFreeze - sLoc(I,J) ) / saltFreeze
246 C-- Calculate the upward heat and fresh water fluxes;
247 C-- MITgcm sign conventions: downward (negative) fresh water flux
248 C-- implies melting and due to upward (positive) heat flux
249 icefrontHeatFlux(I,J,bi,bj) =
250 & ( eps3*( thetaFreeze - ICEFRONTthetaSurface )
251 & - cFac*freshWaterFlux*( ICEFRONTlatentHeat
252 & - HeatCapacity_Cp*( thetaFreeze - rFac*tLoc(I,J) ) )
253 & )
254 icefrontFreshWaterFlux(I,J,bi,bj) = freshWaterFlux
255 C-- compute surface tendencies
256 icefrontForcingT(i,j,bi,bj) =
257 & ( ICEFRONTheatTransCoeff
258 & - cFac*icefrontFreshWaterFlux(I,J,bi,bj)*mass2rUnit )
259 & * ( thetaFreeze - tLoc(I,J) )
260 icefrontForcingS(i,j,bi,bj) =
261 & ( ICEFRONTsaltTransCoeff
262 & - cFac*icefrontFreshWaterFlux(I,J,bi,bj)*mass2rUnit )
263 & * ( saltFreeze - sLoc(I,J) )
264 ELSE
265 icefrontHeatFlux (I,J,bi,bj) = 0. _d 0
266 icefrontFreshWaterFlux(I,J,bi,bj) = 0. _d 0
267 icefrontForcingT (I,J,bi,bj) = 0. _d 0
268 icefrontForcingS (I,J,bi,bj) = 0. _d 0
269 ENDIF
270 ENDDO
271 ENDDO
272 ENDIF
273 C endif (not) useISOMIPTD
274 ENDDO
275 ENDDO
276
277 #ifdef ALLOW_DIAGNOSTICS
278 IF ( useDiagnostics ) THEN
279 CALL DIAGNOSTICS_FILL_RS(icefrontFreshWaterFlux,'SHIfwFlx',
280 & 0,1,0,1,1,myThid)
281 CALL DIAGNOSTICS_FILL_RS(icefrontHeatFlux, 'SHIhtFlx',
282 & 0,1,0,1,1,myThid)
283 C SHIForcT (Ice shelf forcing for theta [W/m2], >0 increases theta)
284 tmpFac = HeatCapacity_Cp*rUnit2mass
285 CALL DIAGNOSTICS_SCALE_FILL(icefrontForcingT,tmpFac,1,
286 & 'SHIForcT',0, 1,0,1,1,myThid)
287 C SHIForcS (Ice shelf forcing for salt [g/m2/s], >0 increases salt)
288 tmpFac = rUnit2mass
289 CALL DIAGNOSTICS_SCALE_FILL(icefrontForcingS,tmpFac,1,
290 & 'SHIForcS',0, 1,0,1,1,myThid)
291 ENDIF
292 #endif /* ALLOW_DIAGNOSTICS */
293
294 #endif /* ALLOW_ICEFRONT */
295 RETURN
296 END

  ViewVC Help
Powered by ViewVC 1.1.22