/[MITgcm]/MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F
ViewVC logotype

Contents of /MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (show annotations) (download)
Sat Oct 22 20:17:44 2005 UTC (18 years, 6 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint58e_post, checkpoint57y_post, checkpoint57y_pre, checkpoint58, checkpoint58f_post, checkpoint57x_post, checkpoint58d_post, checkpoint58c_post, checkpoint57w_post, checkpoint58a_post, checkpoint58g_post, checkpoint57z_post, checkpoint58b_post
Changes since 1.6: +35 -26 lines
add code to solve implicitly vertical advection using
 DST2, 1rst.O.Upwind, DST3 or DST3_Flux-Limit advection schemes

1 C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F,v 1.6 2005/10/20 17:03:08 jmc Exp $
2 C $Name: $
3
4 #include "GAD_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: GAD_U3C4_IMPL_R
8 C !INTERFACE:
9 SUBROUTINE GAD_U3C4_IMPL_R(
10 I bi,bj,k, iMin,iMax,jMin,jMax,
11 I advectionScheme, deltaTarg, rTrans,
12 O a5d, b5d, c5d, d5d, e5d,
13 I myThid )
14
15 C !DESCRIPTION:
16 C Compute matrix element to solve vertical advection implicitly
17 C using 3rd order upwind advection scheme,
18 C or 3rd order Direct Space and Time advection scheme,
19 C or 4th order Centered advection scheme.
20 C Method:
21 C contribution of vertical transport at interface k is added
22 C to matrix lines k and k-1
23
24 C !USES:
25 IMPLICIT NONE
26
27 C == Global variables ===
28 #include "SIZE.h"
29 #include "GRID.h"
30 #include "EEPARAMS.h"
31 #include "PARAMS.h"
32 #include "GAD.h"
33
34 C !INPUT/OUTPUT PARAMETERS:
35 C == Routine Arguments ==
36 C bi,bj :: tile indices
37 C k :: vertical level
38 C iMin,iMax :: computation domain
39 C jMin,jMax :: computation domain
40 C advectionScheme :: advection scheme to use
41 C deltaTarg :: time step
42 C rTrans :: vertical volume transport
43 C a5d :: 2nd lower diag of pentadiagonal matrix
44 C b5d :: 1rst lower diag of pentadiagonal matrix
45 C c5d :: main diag of pentadiagonal matrix
46 C d5d :: 1rst upper diag of pentadiagonal matrix
47 C e5d :: 2nd upper diag of pentadiagonal matrix
48 C myThid :: thread number
49 INTEGER bi,bj,k
50 INTEGER iMin,iMax,jMin,jMax
51 INTEGER advectionScheme
52 _RL deltaTarg(Nr)
53 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
54 _RL a5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
55 _RL b5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
56 _RL c5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
57 _RL d5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
58 _RL e5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
59 INTEGER myThid
60
61 C == Local Variables ==
62 C i,j :: loop indices
63 C kp1 :: =min( k+1 , Nr )
64 C km2 :: =max( k-2 , 1 )
65 C rCenter :: centered contribution
66 C rUpwind :: upwind contribution
67 C rC4km, rC4kp :: high order contribution
68 C rHigh :: high order term factor
69 LOGICAL flagC4
70 INTEGER i,j,kp1,km2
71 _RL wCFL, rCenter, rUpwind
72 _RL rC4km, rC4kp, rHigh
73 _RL mskM, mskP, maskM2, maskP1
74 _RL deltaTcfl
75 CEOP
76
77 C-- process interior interface only:
78 IF ( k.GT.1 .AND. k.LE.Nr ) THEN
79
80 km2=MAX(1,k-2)
81 kp1=MIN(Nr,k+1)
82 maskP1 = 1. _d 0
83 maskM2 = 1. _d 0
84 IF ( k.LE.2 ) maskM2 = 0. _d 0
85 IF ( k.GE.Nr) maskP1 = 0. _d 0
86 flagC4 = advectionScheme.EQ.ENUM_CENTERED_4TH
87 & .AND. k.GT.2 .AND. k.LT.Nr
88
89 C-- Add centered, upwind and high-order contributions
90 deltaTcfl = deltaTarg(k)
91 DO j=jMin,jMax
92 DO i=iMin,iMax
93 rCenter= 0.5 _d 0 *rTrans(i,j)*recip_rA(i,j,bi,bj)*rkSign
94 mskM = maskC(i,j,km2,bi,bj)*maskM2
95 mskP = maskC(i,j,kp1,bi,bj)*maskP1
96 IF ( flagC4 .AND. mskM*mskP.GT.0. _d 0 ) THEN
97 rUpwind= 0. _d 0
98 rC4km = oneSixth*rCenter*mskM
99 rC4kp = oneSixth*rCenter*mskP
100 ELSEIF ( advectionScheme.EQ.ENUM_DST3 ) THEN
101 wCFL = deltaTcfl*ABS(rTrans(i,j))
102 & *recip_rA(i,j,bi,bj)*recip_drC(k)
103 rHigh = (1. _d 0 -wCFL*wCFL)*oneSixth
104 c rUpwind= (2. _d 0*rHigh - wCFL)*ABS(rCenter)
105 rUpwind= (2. _d 0*rHigh )*ABS(rCenter)
106 rC4km = rHigh * (rCenter+ABS(rCenter))*mskM
107 rC4kp = rHigh * (rCenter-ABS(rCenter))*mskP
108 ELSE
109 rUpwind= 2. _d 0*oneSixth*ABS(rCenter)
110 rC4km = oneSixth*(rCenter+ABS(rCenter))*mskM
111 rC4kp = oneSixth*(rCenter-ABS(rCenter))*mskP
112 ENDIF
113 a5d(i,j,k) = a5d(i,j,k)
114 & + rC4km
115 & *deltaTarg(k)
116 & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
117 b5d(i,j,k) = b5d(i,j,k)
118 & - ( (rCenter+rUpwind) + rC4km )
119 & *deltaTarg(k)
120 & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
121 c5d(i,j,k) = c5d(i,j,k)
122 & - ( (rCenter-rUpwind) + rC4kp )
123 & *deltaTarg(k)
124 & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
125 d5d(i,j,k) = d5d(i,j,k)
126 & + rC4kp
127 & *deltaTarg(k)
128 & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
129 b5d(i,j,k-1) = b5d(i,j,k-1)
130 & - rC4km
131 & *deltaTarg(k-1)
132 & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
133 c5d(i,j,k-1) = c5d(i,j,k-1)
134 & + ( (rCenter+rUpwind) + rC4km )
135 & *deltaTarg(k-1)
136 & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
137 d5d(i,j,k-1) = d5d(i,j,k-1)
138 & + ( (rCenter-rUpwind) + rC4kp )
139 & *deltaTarg(k-1)
140 & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
141 e5d(i,j,k-1) = e5d(i,j,k-1)
142 & - rC4kp
143 & *deltaTarg(k-1)
144 & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
145 ENDDO
146 ENDDO
147
148 C-- process interior interface only: end
149 ENDIF
150
151 RETURN
152 END

  ViewVC Help
Powered by ViewVC 1.1.22