C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F,v 1.5 2005/06/22 00:27:47 jmc Exp $ C $Name: $ #include "GAD_OPTIONS.h" CBOP C !ROUTINE: GAD_FLUXLIMIT_IMPL_R C !INTERFACE: SUBROUTINE GAD_U3C4_IMPL_R( I bi,bj,k, iMin,iMax,jMin,jMax, I advectionScheme, deltaTarg, rTrans, O a5d, b5d, c5d, d5d, e5d, I myThid ) C !DESCRIPTION: C Compute matrix element to solve vertical advection C \begin{enumerate} C \item implicitly using 3rd order upwind, or C \item 4th order Centered advection schemes. C \end{enumerate} C Also, the contribution of vertical transport at interface k C is added to matrix lines k and k-1 C !USES: IMPLICIT NONE C == Global variables === #include "SIZE.h" #include "GRID.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GAD.h" C !INPUT/OUTPUT PARAMETERS: C == Routine Arguments == C bi,bj :: tile indices C k :: vertical level C iMin,iMax :: computation domain C jMin,jMax :: computation domain C advectionScheme :: advection scheme to use C deltaTarg :: time step C rTrans :: vertical volume transport C tFld :: tracer field C a5d :: 2nd lower diag of pentadiagonal matrix C b5d :: 1rst lower diag of pentadiagonal matrix C c5d :: main diag of pentadiagonal matrix C d5d :: 1rst upper diag of pentadiagonal matrix C e5d :: 2nd upper diag of pentadiagonal matrix C myThid :: thread number INTEGER bi,bj,k INTEGER iMin,iMax,jMin,jMax INTEGER advectionScheme _RL deltaTarg(Nr) _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL a5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL b5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL c5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL d5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL e5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) INTEGER myThid C == Local Variables == C i,j :: loop indices C kp1 :: =min( k+1 , Nr ) C km2 :: =max( k-2 , 1 ) C rCenter :: centered contribution C rUpwind :: upwind contribution LOGICAL flagC4 INTEGER i,j,kp1,km2 _RL rCenter, rUpwind _RL rC4km, rC4kp, rU1k, rU3km, rU3kp _RL mskM, mskP, maskM2, maskP1 CEOP C-- process interior interface only: IF ( k.GT.1 .AND. k.LE.Nr ) THEN km2=MAX(1,k-2) kp1=MIN(Nr,k+1) maskP1 = 1. _d 0 maskM2 = 1. _d 0 IF ( k.LE.2 ) maskM2 = 0. _d 0 IF ( k.GE.Nr) maskP1 = 0. _d 0 flagC4 = advectionScheme.EQ.ENUM_CENTERED_4TH & .AND. k.GT.2 .AND. k.LT.Nr C-- Add centered & upwind contributions DO j=jMin,jMax DO i=iMin,iMax rCenter= 0.5 _d 0 *rTrans(i,j)*recip_rA(i,j,bi,bj)*rkSign mskM = maskC(i,j,km2,bi,bj)*maskM2 mskP = maskC(i,j,kp1,bi,bj)*maskP1 rC4km = oneSixth*rCenter*mskM rC4kp = oneSixth*rCenter*mskP IF ( flagC4 .AND. mskM*mskP.GT.0. _d 0 ) THEN rUpwind= 0. _d 0 rU3km = 0. _d 0 rU3kp = 0. _d 0 ELSE rU1k = oneSixth*ABS(rCenter) rUpwind= rU1k+rU1k rU3km = rU1k*mskM rU3kp = rU1k*mskP ENDIF a5d(i,j,k) = a5d(i,j,k) & + (rC4km + rU3km) & *deltaTarg(k) & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k) b5d(i,j,k) = b5d(i,j,k) & - (rCenter + rC4km + rUpwind + rU3km) & *deltaTarg(k) & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k) c5d(i,j,k) = c5d(i,j,k) & - (rCenter + rC4kp - rUpwind - rU3kp) & *deltaTarg(k) & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k) d5d(i,j,k) = d5d(i,j,k) & + (rC4kp - rU3kp) & *deltaTarg(k) & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k) b5d(i,j,k-1) = b5d(i,j,k-1) & - (rC4km + rU3km) & *deltaTarg(k-1) & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1) c5d(i,j,k-1) = c5d(i,j,k-1) & + (rCenter + rC4km + rUpwind + rU3km) & *deltaTarg(k-1) & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1) d5d(i,j,k-1) = d5d(i,j,k-1) & + (rCenter + rC4kp - rUpwind - rU3kp) & *deltaTarg(k-1) & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1) e5d(i,j,k-1) = e5d(i,j,k-1) & - (rC4kp - rU3kp) & *deltaTarg(k-1) & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1) ENDDO ENDDO C-- process interior interface only: end ENDIF RETURN END