/[MITgcm]/MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F
ViewVC logotype

Contents of /MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (show annotations) (download)
Sat Dec 4 18:50:34 2004 UTC (19 years, 5 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint57d_post, checkpoint57g_post, checkpoint57b_post, checkpoint57c_pre, checkpoint57i_post, checkpoint57e_post, checkpoint57g_pre, checkpoint57f_pre, checkpoint57a_post, checkpoint57a_pre, checkpoint57, eckpoint57e_pre, checkpoint57h_done, checkpoint57f_post, checkpoint57c_post, checkpoint57h_pre, checkpoint57h_post
Changes since 1.3: +16 -5 lines
dTtracerLev(k) implemented for implicit vertical diffusion & advection

1 C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F,v 1.3 2004/12/04 00:22:25 jmc Exp $
2 C $Name: $
3
4 #include "GAD_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: GAD_FLUXLIMIT_IMPL_R
8 C !INTERFACE:
9 SUBROUTINE GAD_U3C4_IMPL_R(
10 I bi,bj,k, iMin,iMax,jMin,jMax,
11 I advectionScheme, deltaTarg, rTrans,
12 O a5d, b5d, c5d, d5d, e5d,
13 I myThid )
14
15 C !DESCRIPTION:
16
17 C Compute matrix element to solve vertical advection
18 C \begin{enumerate}
19 C \item implicitly using 3rd order upwind, or
20 C \item 4th order Centered advection schemes.
21 C \end{enumerate}
22 C Also, the contribution of vertical transport at interface k
23 C is added to matrix lines k and k-1
24
25 C !USES:
26 IMPLICIT NONE
27
28 C == Global variables ===
29 #include "SIZE.h"
30 #include "GRID.h"
31 #include "EEPARAMS.h"
32 #include "PARAMS.h"
33 #include "GAD.h"
34
35 C !INPUT/OUTPUT PARAMETERS:
36 C == Routine Arguments ==
37 C bi,bj :: tile indices
38 C k :: vertical level
39 C iMin,iMax :: computation domain
40 C jMin,jMax :: computation domain
41 C advectionScheme :: advection scheme to use
42 C deltaTarg :: time step
43 C rTrans :: vertical volume transport
44 C tFld :: tracer field
45 C a5d :: 2nd lower diag of pentadiagonal matrix
46 C b5d :: 1rst lower diag of pentadiagonal matrix
47 C c5d :: main diag of pentadiagonal matrix
48 C d5d :: 1rst upper diag of pentadiagonal matrix
49 C e5d :: 2nd upper diag of pentadiagonal matrix
50 C myThid :: thread number
51 INTEGER bi,bj,k
52 INTEGER iMin,iMax,jMin,jMax
53 INTEGER advectionScheme
54 _RL deltaTarg(Nr)
55 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
56 _RL a5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
57 _RL b5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
58 _RL c5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
59 _RL d5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
60 _RL e5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
61 INTEGER myThid
62
63 C == Local Variables ==
64 C i,j :: loop indices
65 C kp1 :: =min( k+1 , Nr )
66 C km2 :: =max( k-2 , 1 )
67 C rCenter :: centered contribution
68 C rUpwind :: upwind contribution
69 LOGICAL flagC4
70 INTEGER i,j,kp1,km2
71 _RL rCenter, rUpwind
72 _RL rC4km, rC4kp, rU1k, rU3km, rU3kp
73 _RL mskM, mskP, maskM2, maskP1
74 CEOP
75
76 C-- process interior interface only:
77 IF ( k.GT.1 .AND. k.LE.Nr ) THEN
78
79 km2=MAX(1,k-2)
80 kp1=MIN(Nr,k+1)
81 maskP1 = 1. _d 0
82 maskM2 = 1. _d 0
83 IF ( k.LE.2 ) maskM2 = 0. _d 0
84 IF ( k.GE.Nr) maskP1 = 0. _d 0
85 flagC4 = advectionScheme.EQ.ENUM_CENTERED_4TH
86 & .AND. k.GT.2 .AND. k.LT.Nr
87
88 C-- Add centered & upwind contributions
89 DO j=jMin,jMax
90 DO i=iMin,iMax
91 rCenter= 0.5 _d 0 *rTrans(i,j)*recip_rA(i,j,bi,bj)*rkFac
92 mskM = maskC(i,j,km2,bi,bj)*maskM2
93 mskP = maskC(i,j,kp1,bi,bj)*maskP1
94 rC4km = oneSixth*rCenter*mskM
95 rC4kp = oneSixth*rCenter*mskP
96 IF ( flagC4 .AND. mskM*mskP.GT.0. _d 0 ) THEN
97 rUpwind= 0. _d 0
98 rU3km = 0. _d 0
99 rU3kp = 0. _d 0
100 ELSE
101 rU1k = oneSixth*abs(rCenter)
102 rUpwind= rU1k+rU1k
103 rU3km = rU1k*mskM
104 rU3kp = rU1k*mskP
105 ENDIF
106 a5d(i,j,k) = a5d(i,j,k)
107 & - (rC4km - rU3km)
108 & *deltaTarg(k)
109 & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
110 b5d(i,j,k) = b5d(i,j,k)
111 & + (rCenter + rC4km - rUpwind - rU3km)
112 & *deltaTarg(k)
113 & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
114 c5d(i,j,k) = c5d(i,j,k)
115 & + (rCenter + rC4kp + rUpwind + rU3kp)
116 & *deltaTarg(k)
117 & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
118 d5d(i,j,k) = d5d(i,j,k)
119 & - (rC4kp + rU3kp)
120 & *deltaTarg(k)
121 & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
122 b5d(i,j,k-1) = b5d(i,j,k-1)
123 & + (rC4km - rU3km)
124 & *deltaTarg(k-1)
125 & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
126 c5d(i,j,k-1) = c5d(i,j,k-1)
127 & - (rCenter + rC4km - rUpwind - rU3km)
128 & *deltaTarg(k-1)
129 & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
130 d5d(i,j,k-1) = d5d(i,j,k-1)
131 & - (rCenter + rC4kp + rUpwind + rU3kp)
132 & *deltaTarg(k-1)
133 & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
134 e5d(i,j,k-1) = e5d(i,j,k-1)
135 & + (rC4kp + rU3kp)
136 & *deltaTarg(k-1)
137 & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
138 ENDDO
139 ENDDO
140
141 C-- process interior interface only: end
142 ENDIF
143
144 RETURN
145 END

  ViewVC Help
Powered by ViewVC 1.1.22