/[MITgcm]/MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F
ViewVC logotype

Contents of /MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.12 - (show annotations) (download)
Wed Oct 5 18:43:36 2016 UTC (7 years, 7 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint66g, checkpoint66f, checkpoint66e, checkpoint66d, checkpoint66c, checkpoint66b, checkpoint66a, checkpoint66o, checkpoint66n, checkpoint66m, checkpoint66l, checkpoint66k, checkpoint66j, checkpoint66i, checkpoint66h, HEAD
Changes since 1.11: +12 -2 lines
- add deep atmosphere and anelastic scaling factor in implicit vertical
  advection routines (gad_*_impl_r.F).

1 C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F,v 1.11 2014/04/04 20:29:08 jmc Exp $
2 C $Name: $
3
4 #include "GAD_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: GAD_U3C4_IMPL_R
8 C !INTERFACE:
9 SUBROUTINE GAD_U3C4_IMPL_R(
10 I bi,bj,k, iMin,iMax,jMin,jMax,
11 I advectionScheme, deltaTarg, rTrans, recip_hFac,
12 O a5d, b5d, c5d, d5d, e5d,
13 I myThid )
14
15 C !DESCRIPTION:
16 C Compute matrix element to solve vertical advection implicitly
17 C using 3rd order upwind advection scheme,
18 C or 3rd order Direct Space and Time advection scheme,
19 C or 4th order Centered advection scheme.
20 C Method:
21 C contribution of vertical transport at interface k is added
22 C to matrix lines k and k-1
23
24 C !USES:
25 IMPLICIT NONE
26
27 C == Global variables ===
28 #include "SIZE.h"
29 #include "GRID.h"
30 #include "EEPARAMS.h"
31 #include "PARAMS.h"
32 #include "GAD.h"
33
34 C !INPUT/OUTPUT PARAMETERS:
35 C == Routine Arguments ==
36 C bi,bj :: tile indices
37 C k :: vertical level
38 C iMin,iMax :: computation domain
39 C jMin,jMax :: computation domain
40 C advectionScheme :: advection scheme to use
41 C deltaTarg :: time step
42 C rTrans :: vertical volume transport
43 C recip_hFac :: inverse of cell open-depth factor
44 C a5d :: 2nd lower diag of pentadiagonal matrix
45 C b5d :: 1rst lower diag of pentadiagonal matrix
46 C c5d :: main diag of pentadiagonal matrix
47 C d5d :: 1rst upper diag of pentadiagonal matrix
48 C e5d :: 2nd upper diag of pentadiagonal matrix
49 C myThid :: thread number
50 INTEGER bi,bj,k
51 INTEGER iMin,iMax,jMin,jMax
52 INTEGER advectionScheme
53 _RL deltaTarg(Nr)
54 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
55 _RS recip_hFac(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
56 _RL a5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
57 _RL b5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
58 _RL c5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
59 _RL d5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
60 _RL e5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
61 INTEGER myThid
62
63 C == Local Variables ==
64 C i,j :: loop indices
65 C kp1 :: =min( k+1 , Nr )
66 C km2 :: =max( k-2 , 1 )
67 C rCenter :: centered contribution
68 C rUpwind :: upwind contribution
69 C rC4km, rC4kp :: high order contribution
70 C rHigh :: high order term factor
71 LOGICAL flagC4
72 INTEGER i,j,kp1,km2
73 #if (defined ALLOW_AUTODIFF && defined TARGET_NEC_SX)
74 _RL rC4km2D (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RL rC4kp2D (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL rCenter2D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL rUpwind2D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 #endif
79 _RL wCFL, rCenter, rUpwind
80 _RL rC4km, rC4kp, rHigh
81 _RL mskM, mskP, maskM2, maskP1
82 _RL deltaTcfl
83 CEOP
84
85 C-- process interior interface only:
86 IF ( k.GT.1 .AND. k.LE.Nr ) THEN
87
88 km2=MAX(1,k-2)
89 kp1=MIN(Nr,k+1)
90 maskP1 = 1. _d 0
91 maskM2 = 1. _d 0
92 IF ( k.LE.2 ) maskM2 = 0. _d 0
93 IF ( k.GE.Nr) maskP1 = 0. _d 0
94 flagC4 = advectionScheme.EQ.ENUM_CENTERED_4TH
95 & .AND. k.GT.2 .AND. k.LT.Nr
96
97 C-- Add centered, upwind and high-order contributions
98 deltaTcfl = deltaTarg(k)
99 #if (defined ALLOW_AUTODIFF && defined TARGET_NEC_SX)
100 DO j=jMin,jMax
101 DO i=iMin,iMax
102 rCenter2D(i,j) =
103 & 0.5 _d 0 *rTrans(i,j)*recip_rA(i,j,bi,bj)*rkSign
104 mskM = maskC(i,j,km2,bi,bj)*maskM2
105 mskP = maskC(i,j,kp1,bi,bj)*maskP1
106 IF ( flagC4 .AND. mskM*mskP.GT.0. _d 0 ) THEN
107 rUpwind2D(i,j) = 0. _d 0
108 rC4km2D (i,j) = oneSixth*rCenter*mskM
109 rC4kp2D (i,j) = oneSixth*rCenter*mskP
110 ELSEIF ( advectionScheme.EQ.ENUM_DST3 ) THEN
111 wCFL = deltaTcfl*ABS(rTrans(i,j))
112 & *recip_rA(i,j,bi,bj)*recip_drC(k)
113 & *recip_deepFac2F(k)*recip_rhoFacF(k)
114 rHigh = (1. _d 0 -wCFL*wCFL)*oneSixth
115 c rUpwind2D(i,j) = (2. _d 0*rHigh - wCFL)*ABS(rCenter)
116 rUpwind2D(i,j) = (2. _d 0*rHigh )*ABS(rCenter)
117 rC4km2D (i,j) = rHigh * (rCenter+ABS(rCenter))*mskM
118 rC4kp2D (i,j) = rHigh * (rCenter-ABS(rCenter))*mskP
119 ELSE
120 rUpwind2D(i,j) = 2. _d 0*oneSixth*ABS(rCenter)
121 rC4km2D (i,j) = oneSixth*(rCenter+ABS(rCenter))*mskM
122 rC4kp2D (i,j) = oneSixth*(rCenter-ABS(rCenter))*mskP
123 ENDIF
124 ENDDO
125 ENDDO
126 #endif /* ALLOW_AUTODIFF and TARGET_NEC_SX */
127 DO j=jMin,jMax
128 DO i=iMin,iMax
129 #if (defined ALLOW_AUTODIFF && defined TARGET_NEC_SX)
130 rC4km = rC4km2D (i,j)
131 rC4kp = rC4kp2D (i,j)
132 rCenter = rCenter2D(i,j)
133 rUpwind = rUpwind2D(i,j)
134 #else
135 rCenter= 0.5 _d 0 *rTrans(i,j)*recip_rA(i,j,bi,bj)*rkSign
136 mskM = maskC(i,j,km2,bi,bj)*maskM2
137 mskP = maskC(i,j,kp1,bi,bj)*maskP1
138 IF ( flagC4 .AND. mskM*mskP.GT.0. _d 0 ) THEN
139 rUpwind= 0. _d 0
140 rC4km = oneSixth*rCenter*mskM
141 rC4kp = oneSixth*rCenter*mskP
142 ELSEIF ( advectionScheme.EQ.ENUM_DST3 ) THEN
143 wCFL = deltaTcfl*ABS(rTrans(i,j))
144 & *recip_rA(i,j,bi,bj)*recip_drC(k)
145 & *recip_deepFac2F(k)*recip_rhoFacF(k)
146 rHigh = (1. _d 0 -wCFL*wCFL)*oneSixth
147 c rUpwind= (2. _d 0*rHigh - wCFL)*ABS(rCenter)
148 rUpwind= (2. _d 0*rHigh )*ABS(rCenter)
149 rC4km = rHigh * (rCenter+ABS(rCenter))*mskM
150 rC4kp = rHigh * (rCenter-ABS(rCenter))*mskP
151 ELSE
152 rUpwind= 2. _d 0*oneSixth*ABS(rCenter)
153 rC4km = oneSixth*(rCenter+ABS(rCenter))*mskM
154 rC4kp = oneSixth*(rCenter-ABS(rCenter))*mskP
155 ENDIF
156 #endif /* ALLOW_AUTODIFF and TARGET_NEC_SX */
157 a5d(i,j,k) = a5d(i,j,k)
158 & + rC4km
159 & *deltaTarg(k)
160 & *recip_hFac(i,j,k)*recip_drF(k)
161 & *recip_deepFac2C(k)*recip_rhoFacC(k)
162 b5d(i,j,k) = b5d(i,j,k)
163 & - ( (rCenter+rUpwind) + rC4km )
164 & *deltaTarg(k)
165 & *recip_hFac(i,j,k)*recip_drF(k)
166 & *recip_deepFac2C(k)*recip_rhoFacC(k)
167 c5d(i,j,k) = c5d(i,j,k)
168 & - ( (rCenter-rUpwind) + rC4kp )
169 & *deltaTarg(k)
170 & *recip_hFac(i,j,k)*recip_drF(k)
171 & *recip_deepFac2C(k)*recip_rhoFacC(k)
172 d5d(i,j,k) = d5d(i,j,k)
173 & + rC4kp
174 & *deltaTarg(k)
175 & *recip_hFac(i,j,k)*recip_drF(k)
176 & *recip_deepFac2C(k)*recip_rhoFacC(k)
177 b5d(i,j,k-1) = b5d(i,j,k-1)
178 & - rC4km
179 & *deltaTarg(k-1)
180 & *recip_hFac(i,j,k-1)*recip_drF(k-1)
181 & *recip_deepFac2C(k-1)*recip_rhoFacC(k-1)
182 c5d(i,j,k-1) = c5d(i,j,k-1)
183 & + ( (rCenter+rUpwind) + rC4km )
184 & *deltaTarg(k-1)
185 & *recip_hFac(i,j,k-1)*recip_drF(k-1)
186 & *recip_deepFac2C(k-1)*recip_rhoFacC(k-1)
187 d5d(i,j,k-1) = d5d(i,j,k-1)
188 & + ( (rCenter-rUpwind) + rC4kp )
189 & *deltaTarg(k-1)
190 & *recip_hFac(i,j,k-1)*recip_drF(k-1)
191 & *recip_deepFac2C(k-1)*recip_rhoFacC(k-1)
192 e5d(i,j,k-1) = e5d(i,j,k-1)
193 & - rC4kp
194 & *deltaTarg(k-1)
195 & *recip_hFac(i,j,k-1)*recip_drF(k-1)
196 & *recip_deepFac2C(k-1)*recip_rhoFacC(k-1)
197 ENDDO
198 ENDDO
199
200 C-- process interior interface only: end
201 ENDIF
202
203 RETURN
204 END

  ViewVC Help
Powered by ViewVC 1.1.22