/[MITgcm]/MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F
ViewVC logotype

Annotation of /MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download)
Sat Dec 4 00:22:25 2004 UTC (19 years, 6 months ago) by jmc
Branch: MAIN
Changes since 1.2: +2 -2 lines
depth convergence accelerator: replace deltaTtracer by dTtracerLev(k)
 (not yet implemented for implicit vertical diffusion & advection)

1 jmc 1.3 C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F,v 1.2 2004/03/29 03:33:51 edhill Exp $
2 jmc 1.1 C $Name: $
3    
4     #include "GAD_OPTIONS.h"
5    
6     CBOP
7     C !ROUTINE: GAD_FLUXLIMIT_IMPL_R
8     C !INTERFACE:
9     SUBROUTINE GAD_U3C4_IMPL_R(
10     I bi,bj,k, iMin,iMax,jMin,jMax,
11     I advectionScheme, deltaTarg, rTrans,
12     O a5d, b5d, c5d, d5d, e5d,
13     I myThid )
14    
15 edhill 1.2 C !DESCRIPTION:
16    
17     C Compute matrix element to solve vertical advection
18     C \begin{enumerate}
19     C \item implicitly using 3rd order upwind, or
20     C \item 4th order Centered advection schemes.
21     C \end{enumerate}
22     C Also, the contribution of vertical transport at interface k
23     C is added to matrix lines k and k-1
24 jmc 1.1
25     C !USES:
26     IMPLICIT NONE
27    
28     C == Global variables ===
29     #include "SIZE.h"
30     #include "GRID.h"
31     #include "EEPARAMS.h"
32     #include "PARAMS.h"
33     #include "GAD.h"
34    
35 edhill 1.2 C !INPUT/OUTPUT PARAMETERS:
36     C == Routine Arguments ==
37     C bi,bj :: tile indices
38     C k :: vertical level
39     C iMin,iMax :: computation domain
40     C jMin,jMax :: computation domain
41     C advectionScheme :: advection scheme to use
42     C deltaTarg :: time step
43     C rTrans :: vertical volume transport
44     C tFld :: tracer field
45     C a5d :: 2nd lower diag of pentadiagonal matrix
46     C b5d :: 1rst lower diag of pentadiagonal matrix
47     C c5d :: main diag of pentadiagonal matrix
48     C d5d :: 1rst upper diag of pentadiagonal matrix
49     C e5d :: 2nd upper diag of pentadiagonal matrix
50     C myThid :: thread number
51 jmc 1.1 INTEGER bi,bj,k
52     INTEGER iMin,iMax,jMin,jMax
53     INTEGER advectionScheme
54     _RL deltaTarg
55     _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
56     _RL a5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
57     _RL b5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
58     _RL c5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
59     _RL d5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
60     _RL e5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
61     INTEGER myThid
62    
63 edhill 1.2 C == Local Variables ==
64     C i,j :: loop indices
65     C kp1 :: =min( k+1 , Nr )
66     C km2 :: =max( k-2 , 1 )
67     C rCenter :: centered contribution
68     C rUpwind :: upwind contribution
69 jmc 1.1 LOGICAL flagC4
70     INTEGER i,j,kp1,km2
71     _RL rCenter, rUpwind
72     _RL rC4km, rC4kp, rU1k, rU3km, rU3kp
73     _RL mskM, mskP, maskM2, maskP1
74     CEOP
75    
76     IF ( k.GT.Nr .OR. k.LT.2 ) RETURN
77    
78     km2=MAX(1,k-2)
79     kp1=MIN(Nr,k+1)
80     maskP1 = 1. _d 0
81     maskM2 = 1. _d 0
82     IF ( k.LE.2 ) maskM2 = 0. _d 0
83     IF ( k.GE.Nr) maskP1 = 0. _d 0
84     flagC4 = advectionScheme.EQ.ENUM_CENTERED_4TH
85     & .AND. k.GT.2 .AND. k.LT.Nr
86    
87     C-- Add centered & upwind contributions
88     DO j=jMin,jMax
89     DO i=iMin,iMax
90 jmc 1.3 rCenter= 0.5 _d 0 *deltaTarg*rTrans(i,j)
91 jmc 1.1 & *recip_rA(i,j,bi,bj)*rkFac
92     mskM = maskC(i,j,km2,bi,bj)*maskM2
93     mskP = maskC(i,j,kp1,bi,bj)*maskP1
94     rC4km = oneSixth*rCenter*mskM
95     rC4kp = oneSixth*rCenter*mskP
96     IF ( flagC4 .AND. mskM*mskP.GT.0. _d 0 ) THEN
97     rUpwind= 0. _d 0
98     rU3km = 0. _d 0
99     rU3kp = 0. _d 0
100     ELSE
101     rU1k = oneSixth*abs(rCenter)
102     rUpwind= rU1k+rU1k
103     rU3km = rU1k*mskM
104     rU3kp = rU1k*mskP
105     ENDIF
106     a5d(i,j,k) = a5d(i,j,k)
107     & - (rC4km - rU3km)
108     & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
109     b5d(i,j,k) = b5d(i,j,k)
110     & + (rCenter + rC4km - rUpwind - rU3km)
111     & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
112     c5d(i,j,k) = c5d(i,j,k)
113     & + (rCenter + rC4kp + rUpwind + rU3kp)
114     & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
115     d5d(i,j,k) = d5d(i,j,k)
116     & - (rC4kp + rU3kp)
117     & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
118     b5d(i,j,k-1) = b5d(i,j,k-1)
119     & + (rC4km - rU3km)
120     & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
121     c5d(i,j,k-1) = c5d(i,j,k-1)
122     & - (rCenter + rC4km - rUpwind - rU3km)
123     & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
124     d5d(i,j,k-1) = d5d(i,j,k-1)
125     & - (rCenter + rC4kp + rUpwind + rU3kp)
126     & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
127     e5d(i,j,k-1) = e5d(i,j,k-1)
128     & + (rC4kp + rU3kp)
129     & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
130     ENDDO
131     ENDDO
132    
133     RETURN
134     END

  ViewVC Help
Powered by ViewVC 1.1.22