/[MITgcm]/MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F
ViewVC logotype

Annotation of /MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download)
Wed Jan 7 21:37:59 2004 UTC (20 years, 4 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint52l_pre, hrcube4, checkpoint52j_post, checkpoint52e_post, hrcube_1, checkpoint52l_post, checkpoint52k_post, checkpoint52f_post, hrcube5, checkpoint52i_post, checkpoint52j_pre, checkpoint52i_pre, checkpoint52h_pre, checkpoint52f_pre, hrcube_2, hrcube_3
Compute matrix element to solve vertical advection implicitly

1 jmc 1.1 C $Header: $
2     C $Name: $
3    
4     #include "GAD_OPTIONS.h"
5    
6     CBOP
7     C !ROUTINE: GAD_FLUXLIMIT_IMPL_R
8     C !INTERFACE:
9     SUBROUTINE GAD_U3C4_IMPL_R(
10     I bi,bj,k, iMin,iMax,jMin,jMax,
11     I advectionScheme, deltaTarg, rTrans,
12     O a5d, b5d, c5d, d5d, e5d,
13     I myThid )
14    
15     C !DESCRIPTION: \bv
16     C *==========================================================*
17     C | S/R GAD_U3C4_IMPL_R
18     C | o Compute matrix element to solve vertical advection
19     C | implicitly using 3rd order upwind
20     C | or 4th order Centered advection schemes
21     C *==========================================================*
22     C | o contribution of vertical transport at interface k
23     C | is added to matrix lines k & k-1
24     C *==========================================================*
25     C \ev
26    
27     C !USES:
28     IMPLICIT NONE
29    
30     C == Global variables ===
31     #include "SIZE.h"
32     #include "GRID.h"
33     #include "EEPARAMS.h"
34     #include "PARAMS.h"
35     #include "GAD.h"
36    
37     C !INPUT/OUTPUT PARAMETERS:
38     C == Routine Arguments ==
39     C bi,bj :: tile indices
40     C k :: vertical level
41     C iMin,iMax,jMin,jMax :: computation domain
42     C advectionScheme :: advection scheme to use
43     C deltaTarg :: time step
44     C rTrans :: vertical volume transport
45     C tFld :: tracer field
46     C a5d :: 2nd lower diagonal of the pentadiagonal matrix
47     C b5d :: 1rst lower diagonal of the pentadiagonal matrix
48     C c5d :: main diagonal of the pentadiagonal matrix
49     C d5d :: 1rst upper diagonal of the pentadiagonal matrix
50     C e5d :: 2nd upper diagonal of the pentadiagonal matrix
51     C myThid :: thread number
52     INTEGER bi,bj,k
53     INTEGER iMin,iMax,jMin,jMax
54     INTEGER advectionScheme
55     _RL deltaTarg
56     _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
57     _RL a5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
58     _RL b5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
59     _RL c5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
60     _RL d5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
61     _RL e5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
62     INTEGER myThid
63    
64     C == Local Variables ==
65     C i,j :: loop indices
66     C kp1 :: =min( k+1 , Nr )
67     C km2 :: =max( k-2 , 1 )
68     C rCenter :: centered contribution
69     C rUpwind :: upwind contribution
70     LOGICAL flagC4
71     INTEGER i,j,kp1,km2
72     _RL rCenter, rUpwind
73     _RL rC4km, rC4kp, rU1k, rU3km, rU3kp
74     _RL mskM, mskP, maskM2, maskP1
75     CEOP
76    
77     IF ( k.GT.Nr .OR. k.LT.2 ) RETURN
78    
79     km2=MAX(1,k-2)
80     kp1=MIN(Nr,k+1)
81     maskP1 = 1. _d 0
82     maskM2 = 1. _d 0
83     IF ( k.LE.2 ) maskM2 = 0. _d 0
84     IF ( k.GE.Nr) maskP1 = 0. _d 0
85     flagC4 = advectionScheme.EQ.ENUM_CENTERED_4TH
86     & .AND. k.GT.2 .AND. k.LT.Nr
87    
88     C-- Add centered & upwind contributions
89     DO j=jMin,jMax
90     DO i=iMin,iMax
91     rCenter= 0.5 _d 0 *deltaTtracer*rTrans(i,j)
92     & *recip_rA(i,j,bi,bj)*rkFac
93     mskM = maskC(i,j,km2,bi,bj)*maskM2
94     mskP = maskC(i,j,kp1,bi,bj)*maskP1
95     rC4km = oneSixth*rCenter*mskM
96     rC4kp = oneSixth*rCenter*mskP
97     IF ( flagC4 .AND. mskM*mskP.GT.0. _d 0 ) THEN
98     rUpwind= 0. _d 0
99     rU3km = 0. _d 0
100     rU3kp = 0. _d 0
101     ELSE
102     rU1k = oneSixth*abs(rCenter)
103     rUpwind= rU1k+rU1k
104     rU3km = rU1k*mskM
105     rU3kp = rU1k*mskP
106     ENDIF
107     a5d(i,j,k) = a5d(i,j,k)
108     & - (rC4km - rU3km)
109     & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
110     b5d(i,j,k) = b5d(i,j,k)
111     & + (rCenter + rC4km - rUpwind - rU3km)
112     & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
113     c5d(i,j,k) = c5d(i,j,k)
114     & + (rCenter + rC4kp + rUpwind + rU3kp)
115     & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
116     d5d(i,j,k) = d5d(i,j,k)
117     & - (rC4kp + rU3kp)
118     & *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
119     b5d(i,j,k-1) = b5d(i,j,k-1)
120     & + (rC4km - rU3km)
121     & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
122     c5d(i,j,k-1) = c5d(i,j,k-1)
123     & - (rCenter + rC4km - rUpwind - rU3km)
124     & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
125     d5d(i,j,k-1) = d5d(i,j,k-1)
126     & - (rCenter + rC4kp + rUpwind + rU3kp)
127     & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
128     e5d(i,j,k-1) = e5d(i,j,k-1)
129     & + (rC4kp + rU3kp)
130     & *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
131     ENDDO
132     ENDDO
133    
134     RETURN
135     END

  ViewVC Help
Powered by ViewVC 1.1.22