/[MITgcm]/MITgcm/pkg/generic_advdiff/gad_som_adv_y.F
ViewVC logotype

Contents of /MITgcm/pkg/generic_advdiff/gad_som_adv_y.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (show annotations) (download)
Tue Jan 8 19:57:34 2008 UTC (16 years, 4 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint59m, checkpoint59n
Changes since 1.2: +6 -2 lines
fix flux output to have same units as other advection scheme fluxes
(was previously multiplied by deltaT)

1 C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_som_adv_y.F,v 1.2 2007/08/22 00:26:01 jmc Exp $
2 C $Name: $
3
4 #include "GAD_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: GAD_SOM_ADV_Y
8
9 C !INTERFACE: ==========================================================
10 SUBROUTINE GAD_SOM_ADV_Y(
11 I bi,bj,k, limiter,
12 I deltaTloc, vTrans,
13 U sm_v, sm_o, sm_x, sm_y, sm_z,
14 U sm_xx, sm_yy, sm_zz, sm_xy, sm_xz, sm_yz,
15 O vT,
16 I myThid )
17
18 C !DESCRIPTION:
19 C Calculates the area integrated meridional flux due to advection
20 C of a tracer using
21 C--
22 C Second-Order Moments Advection of tracer in Y-direction
23 C ref: M.J.Prather, 1986, JGR, 91, D6, pp 6671-6681.
24 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
25 C The 3-D grid has dimension (Nx,Ny,Nz) with corresponding
26 C velocity field (U,V,W). Parallel subroutine calculate
27 C advection in the X- and Z- directions.
28 C The moment [Si] are as defined in the text, Sm refers to
29 C the total mass in each grid box
30 C the moments [Fi] are similarly defined and used as temporary
31 C storage for portions of the grid boxes in transit.
32 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
33
34 C !USES: ===============================================================
35 IMPLICIT NONE
36 #include "SIZE.h"
37 c #include "GRID.h"
38 #include "GAD.h"
39
40 C !INPUT PARAMETERS: ===================================================
41 C bi,bj :: tile indices
42 C k :: vertical level
43 C limiter :: 0: no limiter ; 1: Prather, 1986 limiter
44 C vTrans :: zonal volume transport
45 C myThid :: my Thread Id. number
46 INTEGER bi,bj,k
47 INTEGER limiter
48 _RL deltaTloc
49 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
50 c _RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
51 INTEGER myThid
52
53 C !OUTPUT PARAMETERS: ==================================================
54 C sm_v :: volume of grid cell
55 C sm_o :: tracer content of grid cell (zero order moment)
56 C sm_x,y,z :: 1rst order moment of tracer distribution, in x,y,z direction
57 C sm_xx,yy,zz :: 2nd order moment of tracer distribution, in x,y,z direction
58 C sm_xy,xz,yz :: 2nd order moment of tracer distr., in cross direction xy,xz,yz
59 C vT :: meridional advective flux
60 _RL sm_v (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
61 _RL sm_o (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
62 _RL sm_x (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
63 _RL sm_y (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
64 _RL sm_z (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
65 _RL sm_xx (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
66 _RL sm_yy (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67 _RL sm_zz (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL sm_xy (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL sm_xz (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL sm_yz (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL vT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72
73 #ifdef GAD_ALLOW_SOM_ADVECT
74 C !LOCAL VARIABLES: ====================================================
75 C i,j :: loop indices
76 C vLoc :: volume transported (per time step)
77 _RL two, three
78 PARAMETER( two = 2. _d 0 )
79 PARAMETER( three = 3. _d 0 )
80 INTEGER i,j
81 _RL recip_dT
82 _RL slpmax, s1max, s1new, s2new
83 _RL vLoc, alf1, alf1q, alpmn
84 _RL alfp, alpq, alp1, locTp
85 _RL alfn, alnq, aln1, locTn
86 _RL alp (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL aln (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 _RL fp_v (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL fn_v (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RL fp_o (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 _RL fn_o (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92 _RL fp_x (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93 _RL fn_x (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
94 _RL fp_y (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
95 _RL fn_y (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
96 _RL fp_z (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL fn_z (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL fp_xx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL fn_xx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL fp_yy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL fn_yy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL fp_zz(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103 _RL fn_zz(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104 _RL fp_xy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105 _RL fn_xy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106 _RL fp_xz(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107 _RL fn_xz(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108 _RL fp_yz(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109 _RL fn_yz(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 CEOP
111
112 recip_dT = 0.
113 IF ( deltaTloc.GT.0. _d 0 ) recip_dT = 1.0 _d 0 / deltaTloc
114
115 IF ( limiter.EQ.1 ) THEN
116 DO j=1-OLy,sNy+OLy
117 DO i=1-OLx,sNx+OLx
118 C If flux-limiting transport is to be applied, place limits on
119 C appropriate moments before transport.
120 slpmax = 0.
121 IF ( sm_o(i,j).GT.0. ) slpmax = sm_o(i,j)
122 s1max = slpmax*1.5 _d 0
123 s1new = MIN( s1max, MAX(-s1max,sm_y(i,j)) )
124 s2new = MIN( (slpmax+slpmax-ABS(s1new)/three),
125 & MAX(ABS(s1new)-slpmax,sm_yy(i,j)) )
126 sm_xy(i,j) = MIN( slpmax, MAX(-slpmax,sm_xy(i,j)) )
127 sm_yz(i,j) = MIN( slpmax, MAX(-slpmax,sm_yz(i,j)) )
128 sm_y (i,j) = s1new
129 sm_yy(i,j) = s2new
130 ENDDO
131 ENDDO
132 ENDIF
133
134 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
135 C--- part.1 : calculate flux for all moments
136 DO i=1-OLx,sNx+OLx
137 vT(i,1-OLy)=0.
138 ENDDO
139 DO j=1-OLy+1,sNy+OLy
140 DO i=1-OLx,sNx+OLx
141 vLoc = vTrans(i,j)*deltaTloc
142 C-- Flux from (j-1) to (j) when V>0 (i.e., take right side of box j-1)
143 fp_v (i,j) = MAX( 0. _d 0, vLoc )
144 alp (i,j) = fp_v(i,j)/sm_v(i,j-1)
145 alpq = alp(i,j)*alp(i,j)
146 alp1 = 1. _d 0 - alp(i,j)
147 C- Create temporary moments/masses for partial boxes in transit
148 C use same indexing as velocity, "p" for positive V
149 fp_o (i,j) = alp(i,j)*( sm_o(i,j-1) + alp1*sm_y(i,j-1)
150 & + alp1*(alp1-alp(i,j))*sm_yy(i,j-1)
151 & )
152 fp_y (i,j) = alpq *( sm_y(i,j-1) + three*alp1*sm_yy(i,j-1) )
153 fp_yy(i,j) = alp(i,j)*alpq*sm_yy(i,j-1)
154 fp_x (i,j) = alp(i,j)*( sm_x(i,j-1) + alp1*sm_xy(i,j-1) )
155 fp_z (i,j) = alp(i,j)*( sm_z(i,j-1) + alp1*sm_yz(i,j-1) )
156
157 fp_xy(i,j) = alpq *sm_xy(i,j-1)
158 fp_yz(i,j) = alpq *sm_yz(i,j-1)
159 fp_xx(i,j) = alp(i,j)*sm_xx(i,j-1)
160 fp_zz(i,j) = alp(i,j)*sm_zz(i,j-1)
161 fp_xz(i,j) = alp(i,j)*sm_xz(i,j-1)
162 C-- Flux from (j) to (j-1) when V<0 (i.e., take left side of box j)
163 fn_v (i,j) = MAX( 0. _d 0, -vLoc )
164 aln (i,j) = fn_v(i,j)/sm_v(i, j )
165 alnq = aln(i,j)*aln(i,j)
166 aln1 = 1. _d 0 - aln(i,j)
167 C- Create temporary moments/masses for partial boxes in transit
168 C use same indexing as velocity, "n" for negative V
169 fn_o (i,j) = aln(i,j)*( sm_o(i, j ) - aln1*sm_y(i, j )
170 & + aln1*(aln1-aln(i,j))*sm_yy(i, j )
171 & )
172 fn_y (i,j) = alnq *( sm_y(i, j ) - three*aln1*sm_yy(i, j ) )
173 fn_yy(i,j) = aln(i,j)*alnq*sm_yy(i, j )
174 fn_x (i,j) = aln(i,j)*( sm_x(i, j ) - aln1*sm_xy(i, j ) )
175 fn_z (i,j) = aln(i,j)*( sm_z(i, j ) - aln1*sm_yz(i, j ) )
176 fn_xy(i,j) = alnq *sm_xy(i, j )
177 fn_yz(i,j) = alnq *sm_yz(i, j )
178 fn_xx(i,j) = aln(i,j)*sm_xx(i, j )
179 fn_zz(i,j) = aln(i,j)*sm_zz(i, j )
180 fn_xz(i,j) = aln(i,j)*sm_xz(i, j )
181 C-- Save zero-order flux:
182 vT(i,j) = ( fp_o(i,j) - fn_o(i,j) )*recip_dT
183 ENDDO
184 ENDDO
185
186 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
187 C--- part.2 : re-adjust moments remaining in the box
188 C take off from grid box (j): negative V(j) and positive V(j+1)
189 DO j=1-OLy+1,sNy+OLy-1
190 DO i=1-OLx,sNx+OLx
191 alf1 = 1. _d 0 - aln(i,j) - alp(i,j+1)
192 alf1q = alf1*alf1
193 alpmn = alp(i,j+1) - aln(i,j)
194 sm_v (i,j) = sm_v (i,j) - fn_v (i,j) - fp_v (i,j+1)
195 sm_o (i,j) = sm_o (i,j) - fn_o (i,j) - fp_o (i,j+1)
196 sm_y (i,j) = alf1q*( sm_y(i,j) - three*alpmn*sm_yy(i,j) )
197 sm_yy(i,j) = alf1*alf1q*sm_yy(i,j)
198 sm_xy(i,j) = alf1q*sm_xy(i,j)
199 sm_yz(i,j) = alf1q*sm_yz(i,j)
200 sm_x (i,j) = sm_x (i,j) - fn_x (i,j) - fp_x (i,j+1)
201 sm_xx(i,j) = sm_xx(i,j) - fn_xx(i,j) - fp_xx(i,j+1)
202 sm_z (i,j) = sm_z (i,j) - fn_z (i,j) - fp_z (i,j+1)
203 sm_zz(i,j) = sm_zz(i,j) - fn_zz(i,j) - fp_zz(i,j+1)
204 sm_xz(i,j) = sm_xz(i,j) - fn_xz(i,j) - fp_xz(i,j+1)
205 ENDDO
206 ENDDO
207
208 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
209 C--- part.3 : Put the temporary moments into appropriate neighboring boxes
210 C add into grid box (j): positive V(j) and negative V(j+1)
211 DO j=1-OLy+1,sNy+OLy-1
212 DO i=1-OLx,sNx+OLx
213 sm_v (i,j) = sm_v (i,j) + fp_v (i,j) + fn_v (i,j+1)
214 alfp = fp_v(i, j )/sm_v(i,j)
215 alfn = fn_v(i,j+1)/sm_v(i,j)
216 alf1 = 1. _d 0 - alfp - alfn
217 alp1 = 1. _d 0 - alfp
218 aln1 = 1. _d 0 - alfn
219 alpmn = alfp - alfn
220 locTp = alfp*sm_o(i,j) - alp1*fp_o(i,j)
221 locTn = alfn*sm_o(i,j) - aln1*fn_o(i,j+1)
222 sm_yy(i,j) = alf1*alf1*sm_yy(i,j) + alfp*alfp*fp_yy(i,j)
223 & + alfn*alfn*fn_yy(i,j+1)
224 & - 5. _d 0*(-alpmn*alf1*sm_y(i,j) + alfp*alp1*fp_y(i,j)
225 & - alfn*aln1*fn_y(i,j+1)
226 & + two*alfp*alfn*sm_o(i,j) + (alp1-alfp)*locTp
227 & + (aln1-alfn)*locTn
228 & )
229 sm_xy(i,j) = alf1*sm_xy(i,j) + alfp*fp_xy(i,j)
230 & + alfn*fn_xy(i,j+1)
231 & + three*( alpmn*sm_x(i,j) - alp1*fp_x(i,j)
232 & + aln1*fn_x(i,j+1)
233 & )
234 sm_yz(i,j) = alf1*sm_yz(i,j) + alfp*fp_yz(i,j)
235 & + alfn*fn_yz(i,j+1)
236 & + three*( alpmn*sm_z(i,j) - alp1*fp_z(i,j)
237 & + aln1*fn_z(i,j+1)
238 & )
239 sm_y (i,j) = alf1*sm_y(i,j) + alfp*fp_y(i,j) + alfn*fn_y(i,j+1)
240 & + three*( locTp - locTn )
241 sm_o (i,j) = sm_o (i,j) + fp_o (i,j) + fn_o (i,j+1)
242 sm_x (i,j) = sm_x (i,j) + fp_x (i,j) + fn_x (i,j+1)
243 sm_xx(i,j) = sm_xx(i,j) + fp_xx(i,j) + fn_xx(i,j+1)
244 sm_z (i,j) = sm_z (i,j) + fp_z (i,j) + fn_z (i,j+1)
245 sm_zz(i,j) = sm_zz(i,j) + fp_zz(i,j) + fn_zz(i,j+1)
246 sm_xz(i,j) = sm_xz(i,j) + fp_xz(i,j) + fn_xz(i,j+1)
247 ENDDO
248 ENDDO
249
250 #endif /* GAD_ALLOW_SOM_ADVECT */
251
252 RETURN
253 END

  ViewVC Help
Powered by ViewVC 1.1.22