/[MITgcm]/MITgcm/pkg/generic_advdiff/gad_som_adv_r.F
ViewVC logotype

Contents of /MITgcm/pkg/generic_advdiff/gad_som_adv_r.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (show annotations) (download)
Fri May 9 21:43:16 2008 UTC (16 years, 1 month ago) by jmc
Branch: MAIN
CVS Tags: checkpoint60, checkpoint61, checkpoint59r, checkpoint61b, checkpoint61a
Changes since 1.3: +1 -4 lines
change option: GAD_ALLOW_SOM_ADVECT to GAD_ALLOW_TS_SOM_ADV which only
applies to files where Temperature & salinity 2nd Order moments are used

1 C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_som_adv_r.F,v 1.3 2008/01/08 19:57:34 jmc Exp $
2 C $Name: $
3
4 #include "GAD_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: GAD_SOM_ADV_R
8
9 C !INTERFACE: ==========================================================
10 SUBROUTINE GAD_SOM_ADV_R(
11 I bi,bj,k, kUp, kDw,
12 I deltaTloc, rTrans, maskUp,
13 U sm_v, sm_o, sm_x, sm_y, sm_z,
14 U sm_xx, sm_yy, sm_zz, sm_xy, sm_xz, sm_yz,
15 U alp, aln, fp_v, fn_v, fp_o, fn_o,
16 U fp_x, fn_x, fp_y, fn_y, fp_z, fn_z,
17 U fp_xx, fn_xx, fp_yy, fn_yy, fp_zz, fn_zz,
18 U fp_xy, fn_xy, fp_xz, fn_xz, fp_yz, fn_yz,
19 O wT,
20 I myThid )
21
22 C !DESCRIPTION:
23 C Calculates the area integrated vertical flux due to advection
24 C of a tracer using
25 C--
26 C Second-Order Moments Advection of tracer in Z-direction
27 C ref: M.J.Prather, 1986, JGR, 91, D6, pp 6671-6681.
28 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
29 C The 3-D grid has dimension (Nx,Ny,Nz) with corresponding
30 C velocity field (U,V,W). Parallel subroutine calculate
31 C advection in the X- and Y- directions.
32 C The moment [Si] are as defined in the text, Sm refers to
33 C the total mass in each grid box
34 C the moments [Fi] are similarly defined and used as temporary
35 C storage for portions of the grid boxes in transit.
36 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
37
38 C !USES: ===============================================================
39 IMPLICIT NONE
40 #include "SIZE.h"
41 #include "EEPARAMS.h"
42 #include "PARAMS.h"
43 #include "SURFACE.h"
44 c #include "GRID.h"
45 #include "GAD.h"
46
47 C !INPUT PARAMETERS: ===================================================
48 C bi,bj :: tile indices
49 C k :: vertical level
50 C kUp :: index into 2 1/2D array, toggles between 1 and 2
51 C kDw :: index into 2 1/2D array, toggles between 2 and 1
52 C rTrans :: vertical volume transport
53 C maskUp :: 2-D array mask for W points
54 C myThid :: my Thread Id. number
55 INTEGER bi,bj,k, kUp, kDw
56 _RL deltaTloc
57 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
58 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
59 c _RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
60 INTEGER myThid
61
62 C !OUTPUT PARAMETERS: ==================================================
63 C sm_v :: volume of grid cell
64 C sm_o :: tracer content of grid cell (zero order moment)
65 C sm_x,y,z :: 1rst order moment of tracer distribution, in x,y,z direction
66 C sm_xx,yy,zz :: 2nd order moment of tracer distribution, in x,y,z direction
67 C sm_xy,xz,yz :: 2nd order moment of tracer distr., in cross direction xy,xz,yz
68 C wT :: vertical advective flux
69 _RL sm_v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
70 _RL sm_o (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
71 _RL sm_x (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
72 _RL sm_y (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
73 _RL sm_z (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74 _RL sm_xx (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75 _RL sm_yy (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
76 _RL sm_zz (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
77 _RL sm_xy (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
78 _RL sm_xz (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
79 _RL sm_yz (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
80 _RL alp (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
81 _RL aln (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
82 _RL fp_v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
83 _RL fn_v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
84 _RL fp_o (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
85 _RL fn_o (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
86 _RL fp_x (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
87 _RL fn_x (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
88 _RL fp_y (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
89 _RL fn_y (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
90 _RL fp_z (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
91 _RL fn_z (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
92 _RL fp_xx(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
93 _RL fn_xx(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
94 _RL fp_yy(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
95 _RL fn_yy(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
96 _RL fp_zz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
97 _RL fn_zz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
98 _RL fp_xy(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
99 _RL fn_xy(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
100 _RL fp_xz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
101 _RL fn_xz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
102 _RL fp_yz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
103 _RL fn_yz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
104 _RL wT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105
106 C !LOCAL VARIABLES: ====================================================
107 C i,j :: loop indices
108 C wLoc :: volume transported (per time step)
109 _RL two, three
110 PARAMETER( two = 2. _d 0 )
111 PARAMETER( three = 3. _d 0 )
112 INTEGER i,j
113 INTEGER km1
114 _RL recip_dT
115 _RL wLoc, alf1, alf1q, alpmn
116 _RL alfp, alpq, alp1, locTp
117 _RL alfn, alnq, aln1, locTn
118 CEOP
119
120 recip_dT = 0.
121 IF ( deltaTloc.GT.0. _d 0 ) recip_dT = 1.0 _d 0 / deltaTloc
122
123 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
124 C--- part.1 : calculate flux for all moments
125 DO j=jMinAdvR,jMaxAdvR
126 DO i=iMinAdvR,iMaxAdvR
127 wLoc = rTrans(i,j)*deltaTloc
128 C-- Flux from (k) to (k-1) when W>0 (i.e., take upper side of box k)
129 C- note: Linear free surface case: this takes care of w_surf advection out
130 C of the domain since for this particular case, rTrans is not masked
131 fp_v (i,j,kUp) = MAX( 0. _d 0, wLoc )
132 alp (i,j,kUp) = fp_v(i,j,kUp)/sm_v(i,j,k)
133 alpq = alp(i,j,kUp)*alp(i,j,kUp)
134 alp1 = 1. _d 0 - alp(i,j,kUp)
135 C- Create temporary moments/masses for partial boxes in transit
136 C use same indexing as velocity, "p" for positive W
137 fp_o (i,j,kUp) = alp(i,j,kUp)*
138 & ( sm_o(i,j, k ) + alp1*sm_z(i,j, k )
139 & + alp1*(alp1-alp(i,j,kUp))*sm_zz(i,j, k )
140 & )
141 fp_z (i,j,kUp) = alpq*
142 & ( sm_z(i,j, k ) + three*alp1*sm_zz(i,j, k ) )
143 fp_zz(i,j,kUp) = alp(i,j,kUp)*alpq*sm_zz(i,j, k )
144 fp_x (i,j,kUp) = alp(i,j,kUp)*
145 & ( sm_x(i,j, k ) + alp1*sm_xz(i,j, k ) )
146 fp_y (i,j,kUp) = alp(i,j,kUp)*
147 & ( sm_y(i,j, k ) + alp1*sm_yz(i,j, k ) )
148 fp_xz(i,j,kUp) = alpq *sm_xz(i,j, k )
149 fp_yz(i,j,kUp) = alpq *sm_yz(i,j, k )
150 fp_xx(i,j,kUp) = alp(i,j,kUp)*sm_xx(i,j, k )
151 fp_yy(i,j,kUp) = alp(i,j,kUp)*sm_yy(i,j, k )
152 fp_xy(i,j,kUp) = alp(i,j,kUp)*sm_xy(i,j, k )
153 ENDDO
154 ENDDO
155 IF ( k.EQ.1 ) THEN
156 C-- Linear free surface, calculate w_surf (<0) advection term
157 km1 = 1
158 DO j=jMinAdvR,jMaxAdvR
159 DO i=iMinAdvR,iMaxAdvR
160 wLoc = rTrans(i,j)*deltaTloc
161 C- Flux from above to (k) when W<0 , surface case:
162 C take box k=1, assuming zero 1rst & 2nd moment in Z dir.
163 fn_v (i,j,kUp) = MAX( 0. _d 0, -wLoc )
164 aln (i,j,kUp) = fn_v(i,j,kUp)/sm_v(i,j,km1)
165 alnq = aln(i,j,kUp)*aln(i,j,kUp)
166 aln1 = 1. _d 0 - aln(i,j,kUp)
167 C- Create temporary moments/masses for partial boxes in transit
168 C use same indexing as velocity, "n" for negative W
169 fn_o (i,j,kUp) = aln(i,j,kUp)*sm_o(i,j,km1)
170 fn_z (i,j,kUp) = 0. _d 0
171 fn_zz(i,j,kUp) = 0. _d 0
172 fn_x (i,j,kUp) = aln(i,j,kUp)*sm_x(i,j,km1)
173 fn_y (i,j,kUp) = aln(i,j,kUp)*sm_y(i,j,km1)
174 fn_xz(i,j,kUp) = 0. _d 0
175 fn_yz(i,j,kUp) = 0. _d 0
176 fn_xx(i,j,kUp) = aln(i,j,kUp)*sm_xx(i,j,km1)
177 fn_yy(i,j,kUp) = aln(i,j,kUp)*sm_yy(i,j,km1)
178 fn_xy(i,j,kUp) = aln(i,j,kUp)*sm_xy(i,j,km1)
179 C-- Save zero-order flux:
180 wT(i,j) = ( fp_o(i,j,kUp) - fn_o(i,j,kUp) )*recip_dT
181 ENDDO
182 ENDDO
183 ELSE
184 C-- Interior only: mask rTrans (if not already done)
185 km1 = k-1
186 DO j=jMinAdvR,jMaxAdvR
187 DO i=iMinAdvR,iMaxAdvR
188 wLoc = maskUp(i,j)*rTrans(i,j)*deltaTloc
189 C- Flux from (k-1) to (k) when W<0 (i.e., take lower side of box k-1)
190 fn_v (i,j,kUp) = MAX( 0. _d 0, -wLoc )
191 aln (i,j,kUp) = fn_v(i,j,kUp)/sm_v(i,j,km1)
192 alnq = aln(i,j,kUp)*aln(i,j,kUp)
193 aln1 = 1. _d 0 - aln(i,j,kUp)
194 C- Create temporary moments/masses for partial boxes in transit
195 C use same indexing as velocity, "n" for negative W
196 fn_o (i,j,kUp) = aln(i,j,kUp)*
197 & ( sm_o(i,j,km1) - aln1*sm_z(i,j,km1)
198 & + aln1*(aln1-aln(i,j,kUp))*sm_zz(i,j,km1)
199 & )
200 fn_z (i,j,kUp) = alnq*
201 & ( sm_z(i,j,km1) - three*aln1*sm_zz(i,j,km1) )
202 fn_zz(i,j,kUp) = aln(i,j,kUp)*alnq*sm_zz(i,j,km1)
203 fn_x (i,j,kUp) = aln(i,j,kUp)*
204 & ( sm_x(i,j,km1) - aln1*sm_xz(i,j,km1) )
205 fn_y (i,j,kUp) = aln(i,j,kUp)*
206 & ( sm_y(i,j,km1) - aln1*sm_yz(i,j,km1) )
207 fn_xz(i,j,kUp) = alnq *sm_xz(i,j,km1)
208 fn_yz(i,j,kUp) = alnq *sm_yz(i,j,km1)
209 fn_xx(i,j,kUp) = aln(i,j,kUp)*sm_xx(i,j,km1)
210 fn_yy(i,j,kUp) = aln(i,j,kUp)*sm_yy(i,j,km1)
211 fn_xy(i,j,kUp) = aln(i,j,kUp)*sm_xy(i,j,km1)
212 C-- Save zero-order flux:
213 wT(i,j) = ( fp_o(i,j,kUp) - fn_o(i,j,kUp) )*recip_dT
214 ENDDO
215 ENDDO
216 C-- end surface/interior cases for W<0 advective fluxes
217 ENDIF
218 IF ( usingPCoords .AND. k.NE.1 .AND.
219 & .NOT.rigidLid .AND. nonlinFreeSurf.LE.0 ) THEN
220 C-- Linear free surface, but surface not @ k=1 :
221 C calculate w_surf (<0) advection term from current level
222 C moments assuming zero 1rst & 2nd moment in Z dir. ;
223 C and add to previous fluxes; note: identical to resetting fluxes
224 C since previous fluxes are zero in this case (=> let TAF decide)
225 km1 = k
226 DO j=jMinAdvR,jMaxAdvR
227 DO i=iMinAdvR,iMaxAdvR
228 wLoc = rTrans(i,j)*deltaTloc
229 IF ( k.EQ.ksurfC(i,j,bi,bj) ) THEN
230 C- Flux from (k-1) to (k) when W<0 (special surface case, take box k)
231 fn_v (i,j,kUp) = MAX( 0. _d 0, -wLoc )
232 aln (i,j,kUp) = fn_v(i,j,kUp)/sm_v(i,j,km1)
233 C- Create temporary moments/masses for partial boxes in transit
234 C use same indexing as velocity, "n" for negative W
235 fn_o (i,j,kUp) = aln(i,j,kUp)*sm_o(i,j,km1)
236 fn_x (i,j,kUp) = aln(i,j,kUp)*sm_x(i,j,km1)
237 fn_y (i,j,kUp) = aln(i,j,kUp)*sm_y(i,j,km1)
238 fn_xx(i,j,kUp) = aln(i,j,kUp)*sm_xx(i,j,km1)
239 fn_yy(i,j,kUp) = aln(i,j,kUp)*sm_yy(i,j,km1)
240 fn_xy(i,j,kUp) = aln(i,j,kUp)*sm_xy(i,j,km1)
241 C-- Save zero-order flux:
242 wT(i,j) = ( fp_o(i,j,kUp) - fn_o(i,j,kUp) )*recip_dT
243 ENDIF
244 ENDDO
245 ENDDO
246 ENDIF
247
248 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
249 C--- part.2 : re-adjust moments remaining in the box
250 C take off from grid box (k): negative W(kDw) and positive W(kUp)
251 DO j=jMinAdvR,jMaxAdvR
252 DO i=iMinAdvR,iMaxAdvR
253 alf1 = 1. _d 0 - aln(i,j,kDw) - alp(i,j,kUp)
254 alf1q = alf1*alf1
255 alpmn = alp(i,j,kUp) - aln(i,j,kDw)
256 sm_v (i,j,k) = sm_v (i,j,k) - fn_v (i,j,kDw) - fp_v (i,j,kUp)
257 sm_o (i,j,k) = sm_o (i,j,k) - fn_o (i,j,kDw) - fp_o (i,j,kUp)
258 sm_z (i,j,k) = alf1q*( sm_z(i,j,k) - three*alpmn*sm_zz(i,j,k) )
259 sm_zz(i,j,k) = alf1*alf1q*sm_zz(i,j,k)
260 sm_xz(i,j,k) = alf1q*sm_xz(i,j,k)
261 sm_yz(i,j,k) = alf1q*sm_yz(i,j,k)
262 sm_x (i,j,k) = sm_x (i,j,k) - fn_x (i,j,kDw) - fp_x (i,j,kUp)
263 sm_xx(i,j,k) = sm_xx(i,j,k) - fn_xx(i,j,kDw) - fp_xx(i,j,kUp)
264 sm_y (i,j,k) = sm_y (i,j,k) - fn_y (i,j,kDw) - fp_y (i,j,kUp)
265 sm_yy(i,j,k) = sm_yy(i,j,k) - fn_yy(i,j,kDw) - fp_yy(i,j,kUp)
266 sm_xy(i,j,k) = sm_xy(i,j,k) - fn_xy(i,j,kDw) - fp_xy(i,j,kUp)
267 ENDDO
268 ENDDO
269
270 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
271 C--- part.3 : Put the temporary moments into appropriate neighboring boxes
272 C add into grid box (k): positive W(kDw) and negative W(kUp)
273 DO j=jMinAdvR,jMaxAdvR
274 DO i=iMinAdvR,iMaxAdvR
275 sm_v (i,j,k) = sm_v (i,j,k) + fp_v (i,j,kDw) + fn_v (i,j,kUp)
276 alfp = fp_v(i,j,kDw)/sm_v(i,j,k)
277 alfn = fn_v(i,j,kUp)/sm_v(i,j,k)
278 alf1 = 1. _d 0 - alfp - alfn
279 alp1 = 1. _d 0 - alfp
280 aln1 = 1. _d 0 - alfn
281 alpmn = alfp - alfn
282 locTp = alfp*sm_o(i,j,k) - alp1*fp_o(i,j,kDw)
283 locTn = alfn*sm_o(i,j,k) - aln1*fn_o(i,j,kUp)
284 sm_zz(i,j,k) = alf1*alf1*sm_zz(i,j,k) + alfp*alfp*fp_zz(i,j,kDw)
285 & + alfn*alfn*fn_zz(i,j,kUp)
286 & - 5. _d 0*(-alpmn*alf1*sm_z(i,j,k) + alfp*alp1*fp_z(i,j,kDw)
287 & - alfn*aln1*fn_z(i,j,kUp)
288 & + two*alfp*alfn*sm_o(i,j,k) + (alp1-alfp)*locTp
289 & + (aln1-alfn)*locTn
290 & )
291 sm_xz(i,j,k) = alf1*sm_xz(i,j,k) + alfp*fp_xz(i,j,kDw)
292 & + alfn*fn_xz(i,j,kUp)
293 & + three*( alpmn*sm_x(i,j,k) - alp1*fp_x(i,j,kDw)
294 & + aln1*fn_x(i,j,kUp)
295 & )
296 sm_yz(i,j,k) = alf1*sm_yz(i,j,k) + alfp*fp_yz(i,j,kDw)
297 & + alfn*fn_yz(i,j,kUp)
298 & + three*( alpmn*sm_y(i,j,k) - alp1*fp_y(i,j,kDw)
299 & + aln1*fn_y(i,j,kUp)
300 & )
301 sm_z (i,j,k) = alf1*sm_z(i,j,k) + alfp*fp_z(i,j,kDw)
302 & + alfn*fn_z(i,j,kUp)
303 & + three*( locTp - locTn )
304 sm_o (i,j,k) = sm_o (i,j,k) + fp_o (i,j,kDw) + fn_o (i,j,kUp)
305 sm_x (i,j,k) = sm_x (i,j,k) + fp_x (i,j,kDw) + fn_x (i,j,kUp)
306 sm_xx(i,j,k) = sm_xx(i,j,k) + fp_xx(i,j,kDw) + fn_xx(i,j,kUp)
307 sm_y (i,j,k) = sm_y (i,j,k) + fp_y (i,j,kDw) + fn_y (i,j,kUp)
308 sm_yy(i,j,k) = sm_yy(i,j,k) + fp_yy(i,j,kDw) + fn_yy(i,j,kUp)
309 sm_xy(i,j,k) = sm_xy(i,j,k) + fp_xy(i,j,kDw) + fn_xy(i,j,kUp)
310 ENDDO
311 ENDDO
312
313 RETURN
314 END

  ViewVC Help
Powered by ViewVC 1.1.22